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Abstract 
 

In this paper, we present the Ravenscar-Java profile 
from the perspective of memory utilization. This restricted 
programming model removes language features with high 
overheads and complex semantics, on which it is hard to 
perform various static analyses. Several classes in the 
RTSJ are refined, and a few new classes are added, which 
all result in a compact, yet powerful and predictable 
computational model for the development of software-
intensive high integrity real-time systems. We provide 
rationales behind the decisions we have made on the use 
of memory areas and other language features that can 
have an effect on the predictability of memory utilization. 
After that, some analysis approaches are discussed in 
terms of how they can be developed and beneficially used. 
 
1. Introduction 
 

Memory is an important resource in any computer-
based systems; improper use of it can cause system failure 
or malicious errors that can be hard to detect and correct. 
This is more so in high integrity systems or other 
embedded applications because, as a result of the complex 
computational models of today’s programming languages, 
it has become more challenging to verify that a 
multithreaded program correctly utilizes its allocated 
memory space. 

This paper reviews the Ravenscar-Java profile [21] in 
terms of how it facilitates predictable memory utilization, 
and gives rationales behind the decisions we have made. 
We then demonstrate some ways in which the profile 
eases various program analyses (e.g. memory 
consumption analysis) on Java programs. This will 
undoubtedly help produce safer Java software that should 
satisfy the demands of high integrity applications. 
 
1.1. High Integr ity Systems and Java 
 

Computers are increasingly used in high integrity 
systems, where failure can cause loss of life, 
environmental harm, or significant financial penalties. 
Examples of such systems include space shuttles, nuclear 
power plants, automatic fund transfers and medical 

instruments. They typically have hard real-time 
requirements, implying any missed deadlines will have a 
direct impact on the safety of the systems. Within such 
systems, there has been a growing trend of using software, 
because it provides improved functionality, increased 
flexibility in design and implementation, reduced 
production cost, and enhanced management of complexity 
in application areas [23, 24, 27, 8]. 

Java, equipped with an automatic garbage collection 
mechanism, has proved to be an appropriate vehicle for a 
diverse range of applications thanks to its relatively 
simple linguistic semantics, the adoption of well-
understood approaches to managing software complexity, 
and support for concurrency. Initially designed with 
embedded systems in mind, Java’s main goal was to 
provide engineers with a reliable and cost-effective 
platform-independent environment. 
 However, despite all these valuable features, Java has 
been criticised for its unpredictable performance as well 
as some security concerns [2, 4, 1]. The automatic 
garbage collection and dynamic class loading mechanisms 
are often considered problematic, especially under time or 
performance-critical situations. Moreover, a number of 
security bugs in the Java virtual machine have been 
discovered since its first appearance, especially in the 
bytecode verifiers and Just-in-Time (JIT) compilers [13, 
2]. These fears make the full Java language and its 
associated technology unsuitable for high integrity 
systems [22]. 
 
1.2. RTSJ and Ravenscar-Java Profile 
 

In recent years, there has been a major international 
activity, initiated by Sun, to address the limitations of 
Java for real-time and embedded systems. The Real-Time 
Specification for Java (RTSJ) [7] attempts to minimise 
any modification to the original Java semantics and yet to 
define many additional classes that must be implemented 
in a supporting virtual machine. The goal is to provide a 
predictable and expressive real-time environment. This, 
however, ironically leads to a language and run-time 
system that are complex to implement and have high 



 

overheads at run-time 1 . Software produced in this 
framework is also difficult to analyse with all the complex 
features, such as the asynchronous transfer of control 
(ATC), dynamic class loading, and scoped memory areas. 
 Following the philosophy of the Ravenscar profile for 
Ada [9], we have proposed a high integrity profile for 
real-time Java (called Ravenscar-Java [21]) along the 
lines of the set of software guidelines produced by the 
U.S. Nuclear Regulatory Commission (NRC) [15]. This 
restricted programming model (or a subset of Java and 
RTSJ) offers a more reliable and predictable 
programming environment by preventing or restricting the 
use of language features with high overheads and 
complex semantics. Hence, programs become more 
analysable in terms of timing and safety and, ultimately, 
become more dependable. The profile is intended for use 
within single processor systems. 

The computational model of the profile defines two 
execution phases, i.e. initialisation and mission phase. In 
the initialisation phase of an application, all necessary 
threads and memory objects are created by a special 
thread Initializer, whereas in the mission phase the 
application is executed and multithreading is allowed 
based on the imposed scheduling policy. There are several 
new classes that will enable safer construction of Java 
programs (for example, Initializer, PeriodicThread, and 
SporadicEventHandler), and the use of some existing 
classes in Java and RTSJ is restricted or simplified due to 
their problematic features in static analysis. For instance, 
the use of any class loader is not permitted in the mission 
phase, and the size of a scoped memory area, once set, 
cannot be altered. Further restrictions include the 
following (see [21] for details). 

 
• No nested scoped memory areas are allowed, 
• Priority Ceiling Emulation must be implemented and 

used for all synchronized methods/blocks, 
• Processing groups, overrun and deadline-miss  

handlers are not supported, 
• Asynchronous Transfer of Control (ATC) mechanism 

is not allowed, 
• Object queues are not allowed (i.e. no wait, notify, 

and notifyAll operations), 
• continue and break statements in loops are not  

permitted, and 
• Expressions with possible side effects are not 

allowed. 
 
1.3. Outline of the Paper  
 

                                                 
1 Sources of run-time overhead in RTSJ include interactions between the 
garbage collector and real-time threads, assignment rule/single-parent 
rule checks for objects in different memory areas, and asynchronous 
operations. 

This paper is structured as follows: the next section 
describes the general computational model of the profile, 
while Section 3 deals with memory utilization issues in 
detail, giving rationales for the rules and guidelines 
proposed in the profile. Section 4 shows how various 
analysis techniques can be applied on Ravenscar-Java 
programs, followed by some related works in Section 5. 
Conclusions as well as future work are given in the final 
section. 
 
2. Computational Model of the Profile 

 
The key aim of the Ravenscar-Java profile is to 

develop a concurrent Java programming model that 
supports predictable and reliable execution of application 
programs, thus benefiting the construction of modern high 
integrity software. Particularly, we follow the philosophy 
of the Ravenscar profile [9] and emphasise the reliability 
attribute of the NRC guidelines[15]. This means that some 
language features with high overheads and complex 
semantics are removed for the sake of reliability, and 
programs are statically analysable in terms of 
functionality and timeliness before execution. Similarly, 
the Java virtual machine is also restricted to ensure 
predictability and efficiency. For example, a Ravenscar-
Java VM  (RVM) does not support garbage collection. 

As in the RTSJ, the Ravenscar-Java profile allows 
concurrent execution of  schedulable objects (threads and 
event handlers) based on pre-emptive priority-based 
scheduling. Schedulable objects have to be either periodic 
or sporadic with minimum inter-arrival times, and the 
priority ceiling protocol is required to be implemented in 
the runtime system. This profile facilitates the use of off-
line schedulability analysis, which is associated with fixed 
priority scheduling (e.g. deadline monotonic or rate 
monotonic analysis [3, 25]). 
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We assume two execution phases as suggested in [29], 
i.e. initialisation and mission phase, shown above in 
Figure 1. In the initialisation phase of an application (i.e. 
the main() method and one RealtimeThread), all non-
time-critical activities and initialisations that are required 
before the mission phase are carried out. This includes 
initialisation of all real-time threads, memory objects, 
event handlers, events, and scheduling parameters2. In the 
mission phase, the application is executed and 
multithreading is allowed based on the imposed 
scheduling policy.  
 
3. Memory Utilization in the Ravenscar -Java 
Profile 
 

One of the main goals of the profile is to ensure that 
the utilization of memory space will always be predictable 
and statically bounded. To achieve this goal, a number of 
restrictions have been developed and placed on the use of 
the problematic features and classes of the language and 
RTSJ. In addition to this, we define several new classes 
that will smooth the way of coding high integrity real-
time Java programs. Below we provide rationales and 
clarification to the restrictions and classes concerning 
memory utilization. 
 
3.1. Two Execution Phases 
 

By having two execution phases (i.e. initialisation and 
mission phase), we can be certain that application threads 
will not be interfered with by system-level activities, 
which include setting up memory areas and scheduling 
parameters, loading classes, and creating new threads. 
These activities not only hinder an accurate timing 
analysis of the application, but also make it difficult to 
perform a precise memory utilization analysis. This is 
because, in an ordinary Java program, classes may be 
loaded while the program is running and new memory 
area objects can be created, thus requesting more memory 
space from the underlying system at run-time. If such 
events are blended with complex program logic, it will 
become infeasible to obtain even the worst-case memory 
consumption bounds. Therefore, in the profile we define 
two execution phases with two different roles to play: the 
initialisation phase must create all required memory area 
objects, create all schedulable objects, and load all 
necessary classes, whereas the mission phase simply 
executes the schedulable objects according to the imposed 
scheduling policy (i.e. fixed priority scheduling in the 
profile). 

                                                 
2 This includes loading all the classes needed in the application. In a JIT 
(Just-In-Time) compilation environment, all loaded classes will be 
compiled. 

The newly defined Initializer class encapsulates the 
basic procedures of the initialisation phase of an 
application, which extends the RealtimeThread class of 
RTSJ, and runs with the highest priority, so that the 
Initializer thread will not be interrupted by any other 
thread. A typical application will be created by extending 
the Initializer class, as illustrated below. 

 
i mpor t  r avenscar . * ;  
publ i c  cl ass  MyAppl i cat i on ext ends  I ni t i al i zer  
{  
  publ i c  voi d r un( )  
  {  
    / /  Logi c f or  i ni t i al i zat i on:  i . e.  
    / /  Cr eat e memor y ar eas ( LTMemor y ar eas)  
    / /  Cr eat e per i odi c t hr eads or  spor adi c event -  
    / /  handl er s 
    / /  Al l  obj ect s r equi r ed by appl i cat i on shoul d  
    / /  be cr eat ed her e or  i n t he const r uct or s of  
    / /  obj ect s cr eat ed.  
    / /  St ar t  al l  t hr eads.  
  }  
 
  publ i c  st at i c  voi d mai n ( St r i ng [ ]  ar gs)  
  {  
    MyAppl i cat i on myApp = new MyAppl i cat i on( ) ;  
    myApp. st ar t ( ) ;  
  }  
}  

 
The mission phase begins as soon as the highest 

priority thread (i.e. Initializer thread) terminates. From 
this moment, the application threads will not be allowed 
to alter the properties of the memory areas, scheduling 
parameters, and so on. Threads may only utilise immortal 
and linear-time scoped memory areas in this phase, unless 
their logics require access to physical or raw memory 
areas3. 
 
3.2. Use of Memory Areas 
 

Although real-time garbage collection has made 
significant advances in recent years [16, 32], there is still 
a reluctance to rely on it for high integrity systems. 
Instead, the profile only allows the immortal memory area 
and linear-time scoped memory areas. Any heap memory 
usage needed to start the main Java program is not 
collected and is considered to be part of immortal memory. 
 
3.2.1. Immortal memory area. By definition, objects in 
an immortal memory area cannot be freed or moved, and 
all schedulable objects in an application share the same 
memory area [7] 4 . Hence, in an attempt to prevent 

                                                 
3 In this paper, we do not attempt to restrict the use of physical or raw 
memory other than what is implied by our restrictions on scoped 
memory areas. However, a potential implementation of a RVM might 
apply restrictions for security reasons. 
4 In practice, this may be too strong a definition. What is required is that 
the allocating and freeing of immortal memory is not subject to 
interference by the garbage collector [11] 



 

memory exhaustion or corruption, objects (including 
memory area objects) that are needed for the lifetime of 
the application should be allocated in the area only in the 
initialisation phase. 
 
3.2.2. L inear-time scoped memory areas. All memory 
area objects must be created during the initialisation phase 
(thus, in the immortal memory area), and schedulable 
objects during the mission phase should make use of their 
allocated linear-time scoped memory areas (LTMemory 
areas). Scoped memory areas will not be shared by more 
than one schedulable object as it is difficult to cost-
effectively validate if a given scoped memory area is 
exploited correctly when different schedulable objects 
share it. In other words, one schedulable object must have 
only one active LTMemory area dedicated to it, and 
should use the immortal memory area when sharing data 
with another schedulable object. With this rule enforced, 
additional overheads of dynamic memory access checking 
can be potentially eliminated, and the virtual machine 
design and implementation will be significantly simplified. 

The size of all memory objects must be static and not 
be extended in the course of the program for the reasons 
mentioned above, i.e. the cost of extending the size at 
runtime5. Any other memory area objects defined in the 
RTSJ are disallowed, and the following simplified classes 
remain in the profile. 

 
package r avenscar ;  
 
publ i c abst r act  c l ass Memor yAr ea 
{  
  pr ot ect ed Memor yAr ea( l ong si zeI nByt es) ;  
  pr ot ect ed Memor yAr ea(  
             j avax. r eal t i me. Si zeEst i mat or  s i ze) ;  
 
  publ i c voi d ent er ( j ava. l ang. Runnabl e l ogi c) ;   
         / /  t hr ows ScopedCycl eExcept i on 

  publ i c st at i c  Memor yAr ea get Memor yAr ea(  
                 j ava. l ang. Obj ect  obj ect ) ;  

  publ i c l ong memor yConsumed( ) ;  
  publ i c l ong memor yRemai ni ng( ) ;  
  publ i c j ava. l ang. Obj ect  newAr r ay(  
        j ava. l ang. Cl ass  t ype,  i nt  number )  
         t hr ows  I l l egal AccessExcept i on,  
                I nst ant i at i onExcept i on;  
         / /  t hr ows Out Of Memor yEr r or  
  publ i c j ava. l ang. Obj ect  
               newI nst ance( j ava. l ang. Cl ass  t ype)  
         t hr ows  I l l egal AccessExcept i on,  
                I nst ant i at i onExcept i on;  
         / /  t hr ows  Out Of Memor yEr r or  
  publ i c j ava. l ang. Obj ect  newI nst ance(  
               j ava. l ang. r ef l ect . Const r uct or  c,  
               j ava. l ang. Obj ect [ ]  ar gs)  
         t hr ows  I l l egal AccessExcept i on,  
                I nst ant i at i onExcept i on;  

                                                 
5 Having statically analysed the program, memory shortage should never 
occur. Therefore, some of the (unchecked) exceptions are not necessary 
(thus are commented out as shown below). 

         / /  t hr ows  Out Of Memor yEr r or ;  
  publ i c l ong si ze( ) ;  
}  
 
publ i c  f i nal  c l ass  I mmor t al Memor y ext ends 
                                     Memor yAr ea 
{  
  publ i c st at i c  I mmor t al Memor y i nst ance( ) ;  
}  
 
publ i c abst r act  c l ass ScopedMemor y ext ends 
                                     Memor yAr ea 
{  
  publ i c ScopedMemor y( l ong si ze) ;  
  publ i c ScopedMemor y( Si zeEst i mat or  s i ze) ;   

  publ i c voi d ent er ( ) ;    
  publ i c i nt  get Ref er enceCount ( ) ;  
}  
 
publ i c c l ass LTMemor y ext ends ScopedMemor y 
{  
  publ i c LTMemor y( l ong si ze) ;    
  publ i c LTMemor y( Si zeEst i mat or  s i ze) ;  
}  

Figure 4. Simplified memory area classes 
 

To aid in the production of an efficient virtual machine 
and to simplify timing and memory usage analyses, access 
to LTMemory areas must not be nested and LTMemory 
areas must not be shared between Schedulable objects as 
mentioned earlier. Otherwise, the virtual machine will 
have to perform heavy assignment checks and enforce the 
single parent rule at run-time [7], which will cause a 
significant amount of overheads. This sort of runtime 
check is not desirable, and may have ambiguous time or 
memory requirements. With this restriction, 

• any assignment to memory in an LTmemory area can 
always be allowed without checks; this is because the 
referenced object must always have the same scope 
or be in immortal memory, and 

• any assignment to memory in immortal (or heap) 
must be checked to ensure the referenced object does 
not reside in an LTmemory area (as this could 
potentially result in a dangling reference); the goal is 
to perform static analysis to validate this rule before 
program execution (see section 4.3). 

 
3.3. Other  Restr ictions 

 
There are further restrictions along with those 

mentioned above, which include the following. 
 
3.3.1. Dynamic class loading in the mission phase. Java 
classes and methods that can be used to load additional 
classes at run-time cannot be exploited in the mission 
phase since dynamic class loading is one of the main 
sources of delay and unpredictable use of memory. In 
particular, the classes listed below must not be used in the 
mission phase of any application. 
 



 

• j ava. l ang. Cl assLoader  
• j ava. l ang. Cl ass ( f or Name( )  methods)  
• j ava. net . URL. Cl assLoader  
• j ava. secur i t y. Secur eCl assLoader  

 
3.3.2. Simple finalizers. Object finalizers are invoked 
when the virtual machine detects that there are no more 
references to the objects. In the context of the scoped 
memory area, this process should occur when a memory 
scope is escaped (i.e. the reference count becomes zero), 
and all the finalizers of the objects in the scope should be 
invoked. Finalizers should not be associated with objects 
created in immortal memory because Ravenscar-Java 
applications are assumed not to terminate6. 

The overheads of finalizers of LTmemory objects must 
be taken into account when performing schedulability 
analysis because the virtual machine can take some time 
to free up used memory areas. Further, finalizers should 
not attempt to acquire object locks that other threads or 
event handlers can use; there could be some possibilities 
of execution delay and even a deadlock when a thread 
holds a lock and attempts to enter a scoped memory area 
in which the finalizer of an object is attempting to acquire 
the same lock [5]. The thread will have to wait until all 
the finalizers of objects in the memory area run to 
completion while one of the finalizers is waiting for the 
lock to be available. On the whole, finalizers should be as 
compact as possible and must not block. 
 
3.3.3. M ethod recursion. Recursive method calls 
(including mutually recursive calls, and loops in some 
cases) can dramatically consume available memory space 
at runtime, and an erroneous termination condition can 
cause unbounded recursion. Thus, programmers must 
avoid method recursion. However, this rule may be 
relaxed if the memory consumption for each method and 
termination conditions can be formally verified and 
bounded. 
 
4. Analysis of Ravenscar-Java Programs 
 

The inherent complexity in the verification of non-
trivial software means that unsafe programs could be 
produced and used under critical situations. This is more 
so as today’s programming models become more 
complex. Our Ravenscar-Java profile [21] has been 
developed with such concerns in mind, so that programs 
may become easily analysable, and the run-time platform 
will also be simpler to implement. 

By statically analysing a program, we obtain a high 
degree of assurance that a program will behave according 
to its functional (and temporal) specification, and not 

                                                 
6 Any extension to Ravenscar-Java to allow termination should also 
address the issues of daemon schedulable objects, which currently are 
absent from the RTSJ definition. 

exhibit any erroneous actions throughout its lifetime. 
Erroneous actions include data races, deadlocks, and 
memory overflows. However, in the context of real-time 
Java and the Ravenscar-Java profile, we also need to 
ensure that the rules defined in the profile and RTSJ are 
observed, for example: 

 
• scoped memory areas are not nested, 
• classes are not dynamically loaded in the mission  

phase, 
• methods are not recursively invoked, 
• periodic and sporadic threads are programmed using 

the given classes (i.e. PeriodicThread and 
SporadicEventHandler), and 

• object queues are not used. 
 
These rules are checked when programs are compiled 

and tested for conformance to the profile. This 
conformance test alone will remove many possible errors 
in the program. For example, deadlocks, and side effects 
in expressions can be prevented.  

A conformance test can only be performed once the 
main application class has been defined. This allows the 
schedulable objects and all objects they access to be 
identified. The control and data flow graphs can then be 
generated. If two or more schedulable objects, for 
example, attempt to enter the same LTmemory area, an 
error can be flagged7. 

However, along the lines of the conformance test, a 
number of other useful memory analyses can be 
conducted on Ravenscar-Java programs, and we show 
some of the ways briefly in the following subsections, 
although there may be many other possibilities. 
 
4.1. Ver ification of the Java Memory Model’s 
Effect 

 
As reported in [28] and [30], the Java memory model 

(JMM) in [14] is a weaker model of execution than ones 
supporting sequential consistency. It allows more 
behaviours than simple interleaving of the operations of 
the individual threads. Therefore, verification tools that 
simply examine Java source code or even bytecode can be 
prone to produce false results [30]. Because the semantics 
of the JMM can lead to different implementations, some 
virtual machines may support sequential consistency, 
while others may not for performance reasons. This does 
not match the Java’s write once, run everywhere 8 
philosophy. 

                                                 
7 This may be overly restrictive as the profile requires that no two 
schedulable objects attempt to enter the same memory area at the same 
time. 
8 Programs may still run everywhere, but possibly with different or 
unsafe behaviours. 



 

Roychoudhury and Mitra suggest that there are three 
approaches to tackle this problem [30], i.e. 

 
1. Develop restricted fragments of Java programs for 

which the JMM guarantees sequential consistency, 
2. Change the JMM altogether, or 
3. Develop an executable formal description of the 

JMM and incorporate it into program verification. 
 
They opt for the third approach because the first one 

can suffer from performance overheads when there are 
unnecessary synchronizations for every shared object, and 
foreign libraries may not follow such restricted fragments 
or rules. The second approach is seriously considered by 
the Java Community Process (JCP) 133 [20], but it is 
unrealistic to expect that all Java virtual machines will 
support one of the two proposed models soon. 

However, we can still settle on the first approach, 
developing restricted fragments of Java programs for 
which the JMM guarantees sequential consistency, so that 
programs in the fragments will not have any unsafe 
effects of the problematic Java memory model. This 
approach may require a means to statically analyse Java 
bytecode to locate only necessary synchronizations, and 
libraries will still be considered because it can operate at 
the bytecode level. 

The underlying assumption of this possible approach is 
that any reads and writes on a shared object in a method 
must be enclosed within the same synchronized block (or 
method) in order not to have any data races9. In other 
words, any syntactical gap between a read and write that 
are not covered by a single synchronized block will cause 
possible data races in a multithreaded environment 
because either a read or write action can be lost. This is 
true even when a shared object is indirectly read and 
updated using a local object because, for example, an 
interleaving of another thread that may update the shared 
object can occur in between the indirect read and a 
(synchronized) write in the method, resulting in a lost 
write. Thus, any indirect reads and writes should also be 
treated in a similar manner to direct ones on a shared 
object. The figure below shows an example case (see the 
incBy1 method). 

Another similar case is that even when both a read and 
write are synchronized, there still can be data races if the 
two blocks are guarded by two different synchronized 
blocks and can be interleaved by other threads in between 
(see the incBy2 method in the figure). 

An efficient algorithm can be developed that is capable 
of analysing all such conditions above, thus detecting 
problematic data races by tracing all shared objects and 
checking whether they are properly guarded by 

                                                 
9 Essentially, data races are the most obvious outcome that the Java 
memory model could have on any multithreaded Java programs. 

synchronized blocks or methods. The point-to and escape 
analysis [10, 31] can be used to trace escaping and 
possibly shared objects, as well as improving overall 
performance by allocating non-escaping objects in the 
stack of a method. 

The Ravenscar-Java profile should simplify this task, 
since the algorithm will not have to deal with some of the 
language’s complex features, such as the object queue. 

 

Shar ed var i abl e:  i nt  Svar 

voi d i ncBy1( i nt  val )  
{  
  i nt  t mp1;  
  i nt  t mp2;  
 
  t mp1 = Svar;  
 
 / / i ndi r ect  r ead   
  t mp2 = t mp1 + val ;  
   
 / / synchr oni zed wr i t e 
  synchr oni zed( t hi s) {  
    Svar = t mp2;  
  }  
}  

voi d i ncBy2( i nt  val )  
{  
  i nt  t mp;  
 
 / / synchr oni zed r ead 
  synchr oni zed( t hi s) {  
    t mp = Svar;  
  }  
 
 / / synchr oni zed wr i t e 
  synchr oni zed( t hi s) {  
    Svar = t mp + val ;  
  }  
}  

Figure 4.1. Two methods illustrating possible data races 
 
4.2. Memory Consumption Analysis 

 
Overflow or shortage of memory space at run-time can 

be devastating in high integrity systems, but at the same 
time, oversupply of it will be costly. Considering the new 
memory areas introduced in the RTSJ, we need a different 
means of estimating the worst-case memory space that a 
program requires at run-time, so that only the required 
amount of memory for each area will be allocated. For 
this purpose the RTSJ defines the SizeEstimator class. 
However, the getEstimate() method of the class does not 
return the actual amount of memory that an object of a 
class and its methods dynamically use, but simply the 
total size of the class’s fields. In this sense, the class is not 
readily usable in estimating the required memory size for 
an RTSJ application.  
 The Ravenscar-Java profile places some restrictions on 
the use of RTSJ’s memory areas; for example, access to 
linear-time memory (LTMemory) areas must not be nested 
and such memory areas cannot be shared between 
Schedulable objects [21]. These restrictions should greatly 
ease the development of an algorithm that will inspect 
each thread’s logic to discover all classes it instantiates. 
After that, by making use of control and data flow 
information extracted from the code (such as loop 
bounds), the algorithm will be able to calculate how many 
instances of each class are created by a thread. This 
information can then be used to produce a tight upper 
bound of the amount of memory that a thread utilizes at 



 

run-time by applying reserve() and getEstimate() methods 
of the SizeEstimator class at the target platform before the 
system’s mission phase.  
 
4.3. Dynamic Memory Access Check Analysis 

 
This analysis is concerned with eliminating 

unpredictable runtime overheads caused by dynamic 
checks by the virtual machine. Because of the 
characteristics of the memory areas defined in the RTSJ, 
many assignment expressions are subject to a dynamic 
check, which will determine the legality of such 
assignment expressions. In other words, an object in a 
long-term memory area cannot not reference another 
object in a short-term memory area. However, dynamic 
memory access checks can be prevented by means of 
statically performing the point-to and escape analysis [10, 
31]. 
 Objects that escape from their original memory areas 
can first be identified using an escape analysis technique, 
followed by a simple means to resolve which direction the 
object is escaping in the memory area stack of a particular 
thread. If the escaping object is referenced by another 
object in a longer-term memory area, then the assignment 
at run-time will fail and an exception will be raised. A 
Ravenscar-compliant virtual machine will not need such 
dynamic checks. 
 
5. Related Works 
 

There have been a few subsets or profiles for Java 
suggested in the literature10. None of them, however, is as 
complete or analytical as the Ravenscar-Java profile 
described in this paper and in [21]. 

Bentley [6] defines a sequential subset of Java after 
assessing the language. The subset consists of 21 rules 
that are effectively derived from [18], [26] and his 
assessment. All the rules are categorised into six groups, 
most of which are concerned with the use of some 
problematic features of the language itself. However, 
while this subset will undoubtedly help produce 
analysable and predictable sequential programs, it can be 
criticised for its restriction on multithreading, one of 
Java’s inherent elements. Without the language-level 
support for multithreading and all the associated 
synchronisation mechanisms, Java may not be considered 
as a great evolution from its predecessors. In addition to 
this, the subset also fails to address issues on the object-
oriented programming model of the language, as well as 
real-time issues. 

Puschner and Wellings [29] suggest a Ravenscar-like 
profile for the Real-Time Specification for Java [7], and it 

                                                 
10 In fact, there are subsets of Java defined for other purposes than for 
use in high integrity systems. They are not considered in this paper.  

is in fact a predecessor of the work presented in this 
paper. The profile is primarily focused on leaving out 
complex features of the RTSJ. However, little attention is 
paid to Java’s sequential language constructs (unlike [6]) 
and object-orientation features that can be problematic in 
performing various static analyses. Furthermore, the 
profile is not consistent with the current version of the 
RTSJ. 

A sub-committee has been formed within the Real-
Time Java Working Group of the J Consortium to produce 
a high integrity profile based on the Real-Time Core 
Extensions [19]. The profile has not publicly been 
released yet, but according to Dobbing [12] it will 
resemble the Ravenscar profile for Ada95 [9]. It consists 
of four main themes: partitioning, memory management, 
concurrency, and error recovery. Like the one proposed in 
[29], this profile is mainly focused on sub-setting the 
Real-Time Core Extensions [19], but does not address 
issues on the use of problematic language constructs and 
object-orientation features of Java. 
 
6. Conclusions and Future Work 
 

In this paper we have presented the Ravenscar-Java 
profile from the perspective of memory utilization. This 
restricted programming model removes language features 
with high overheads and complex semantics, on which it 
is hard to perform various static analyses. Several classes 
in the RTSJ are refined, and a few new classes are added, 
which all result in a compact, yet powerful and 
predictable computational model for the development of 
software-intensive high integrity real-time systems. 
 We have given the rationales behind the decisions we 
have made on the use of memory areas and other 
language features that can have an effect on the 
predictability of memory utilization. Then, some of the 
analysis approaches are discussed, in terms of how they 
can be developed and beneficially used. We intend to 
implement the approaches in our integrated analysis tool 
[17] in the near future. 

We believe that the profile is concise, yet expressive 
enough to use in high integrity real-time applications, 
especially with the restrictions placed on memory 
utilization that will significantly ease the analysis of 
Ravenscar-Java programs. 
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