
Predictable Memory Utilization in the Ravenscar-Java Profile

Jagun Kwon, Andy Wellings, and Steve King
Department of Computer Science

University of York, UK
{jagun, andy, king}@cs.york.ac.uk

Abstract

In this paper, we present the Ravenscar-Java profile
from the perspective of memory utilization. This restricted
programming model removes language features with high
overheads and complex semantics, on which it is hard to
perform various static analyses. Several classes in the
RTSJ are refined, and a few new classes are added, which
all result in a compact, yet powerful and predictable
computational model for the development of software-
intensive high integrity real-time systems. We provide
rationales behind the decisions we have made on the use
of memory areas and other language features that can
have an effect on the predictability of memory utilization.
After that, some analysis approaches are discussed in
terms of how they can be developed and beneficially used.

1. Introduction

Memory is an important resource in any computer-
based systems; improper use of it can cause system failure
or malicious errors that can be hard to detect and correct.
This is more so in high integrity systems or other
embedded applications because, as a result of the complex
computational models of today’s programming languages,
it has become more challenging to verify that a
multithreaded program correctly utilizes its allocated
memory space.

This paper reviews the Ravenscar-Java profile [21] in
terms of how it facilitates predictable memory utilization,
and gives rationales behind the decisions we have made.
We then demonstrate some ways in which the profile
eases various program analyses (e.g. memory
consumption analysis) on Java programs. This will
undoubtedly help produce safer Java software that should
satisfy the demands of high integrity applications.

1.1. High Integr ity Systems and Java

Computers are increasingly used in high integrity
systems, where failure can cause loss of life,
environmental harm, or significant financial penalties.
Examples of such systems include space shuttles, nuclear
power plants, automatic fund transfers and medical

instruments. They typically have hard real-time
requirements, implying any missed deadlines will have a
direct impact on the safety of the systems. Within such
systems, there has been a growing trend of using software,
because it provides improved functionality, increased
flexibility in design and implementation, reduced
production cost, and enhanced management of complexity
in application areas [23, 24, 27, 8].

Java, equipped with an automatic garbage collection
mechanism, has proved to be an appropriate vehicle for a
diverse range of applications thanks to its relatively
simple linguistic semantics, the adoption of well-
understood approaches to managing software complexity,
and support for concurrency. Initially designed with
embedded systems in mind, Java’s main goal was to
provide engineers with a reliable and cost-effective
platform-independent environment.
 However, despite all these valuable features, Java has
been criticised for its unpredictable performance as well
as some security concerns [2, 4, 1]. The automatic
garbage collection and dynamic class loading mechanisms
are often considered problematic, especially under time or
performance-critical situations. Moreover, a number of
security bugs in the Java virtual machine have been
discovered since its first appearance, especially in the
bytecode verifiers and Just-in-Time (JIT) compilers [13,
2]. These fears make the full Java language and its
associated technology unsuitable for high integrity
systems [22].

1.2. RTSJ and Ravenscar-Java Profile

In recent years, there has been a major international
activity, initiated by Sun, to address the limitations of
Java for real-time and embedded systems. The Real-Time
Specification for Java (RTSJ) [7] attempts to minimise
any modification to the original Java semantics and yet to
define many additional classes that must be implemented
in a supporting virtual machine. The goal is to provide a
predictable and expressive real-time environment. This,
however, ironically leads to a language and run-time
system that are complex to implement and have high

overheads at run-time 1 . Software produced in this
framework is also difficult to analyse with all the complex
features, such as the asynchronous transfer of control
(ATC), dynamic class loading, and scoped memory areas.
 Following the philosophy of the Ravenscar profile for
Ada [9], we have proposed a high integrity profile for
real-time Java (called Ravenscar-Java [21]) along the
lines of the set of software guidelines produced by the
U.S. Nuclear Regulatory Commission (NRC) [15]. This
restricted programming model (or a subset of Java and
RTSJ) offers a more reliable and predictable
programming environment by preventing or restricting the
use of language features with high overheads and
complex semantics. Hence, programs become more
analysable in terms of timing and safety and, ultimately,
become more dependable. The profile is intended for use
within single processor systems.

The computational model of the profile defines two
execution phases, i.e. initialisation and mission phase. In
the initialisation phase of an application, all necessary
threads and memory objects are created by a special
thread Initializer, whereas in the mission phase the
application is executed and multithreading is allowed
based on the imposed scheduling policy. There are several
new classes that will enable safer construction of Java
programs (for example, Initializer, PeriodicThread, and
SporadicEventHandler), and the use of some existing
classes in Java and RTSJ is restricted or simplified due to
their problematic features in static analysis. For instance,
the use of any class loader is not permitted in the mission
phase, and the size of a scoped memory area, once set,
cannot be altered. Further restrictions include the
following (see [21] for details).

• No nested scoped memory areas are allowed,
• Priority Ceiling Emulation must be implemented and

used for all synchronized methods/blocks,
• Processing groups, overrun and deadline-miss

handlers are not supported,
• Asynchronous Transfer of Control (ATC) mechanism

is not allowed,
• Object queues are not allowed (i.e. no wait, notify,

and notifyAll operations),
• continue and break statements in loops are not

permitted, and
• Expressions with possible side effects are not

allowed.

1.3. Outline of the Paper

1 Sources of run-time overhead in RTSJ include interactions between the
garbage collector and real-time threads, assignment rule/single-parent
rule checks for objects in different memory areas, and asynchronous
operations.

This paper is structured as follows: the next section
describes the general computational model of the profile,
while Section 3 deals with memory utilization issues in
detail, giving rationales for the rules and guidelines
proposed in the profile. Section 4 shows how various
analysis techniques can be applied on Ravenscar-Java
programs, followed by some related works in Section 5.
Conclusions as well as future work are given in the final
section.

2. Computational Model of the Profile

The key aim of the Ravenscar-Java profile is to

develop a concurrent Java programming model that
supports predictable and reliable execution of application
programs, thus benefiting the construction of modern high
integrity software. Particularly, we follow the philosophy
of the Ravenscar profile [9] and emphasise the reliability
attribute of the NRC guidelines[15]. This means that some
language features with high overheads and complex
semantics are removed for the sake of reliability, and
programs are statically analysable in terms of
functionality and timeliness before execution. Similarly,
the Java virtual machine is also restricted to ensure
predictability and efficiency. For example, a Ravenscar-
Java VM (RVM) does not support garbage collection.

As in the RTSJ, the Ravenscar-Java profile allows
concurrent execution of schedulable objects (threads and
event handlers) based on pre-emptive priority-based
scheduling. Schedulable objects have to be either periodic
or sporadic with minimum inter-arrival times, and the
priority ceiling protocol is required to be implemented in
the runtime system. This profile facilitates the use of off-
line schedulability analysis, which is associated with fixed
priority scheduling (e.g. deadline monotonic or rate
monotonic analysis [3, 25]).

Allocatable Memory

Mission Phase

Initialisation Phase

main() invoked

Create Initializer
thread

main() terminates

Initialise all necessary
objects and real-time

threads

Start all
threads

New Thread

New Thread

New Thread

Immortal MemoryHeap Memory Scoped Memory

 Figure 1. Two execution phases

We assume two execution phases as suggested in [29],
i.e. initialisation and mission phase, shown above in
Figure 1. In the initialisation phase of an application (i.e.
the main() method and one RealtimeThread), all non-
time-critical activities and initialisations that are required
before the mission phase are carried out. This includes
initialisation of all real-time threads, memory objects,
event handlers, events, and scheduling parameters2. In the
mission phase, the application is executed and
multithreading is allowed based on the imposed
scheduling policy.

3. Memory Utilization in the Ravenscar -Java
Profile

One of the main goals of the profile is to ensure that
the utilization of memory space will always be predictable
and statically bounded. To achieve this goal, a number of
restrictions have been developed and placed on the use of
the problematic features and classes of the language and
RTSJ. In addition to this, we define several new classes
that will smooth the way of coding high integrity real-
time Java programs. Below we provide rationales and
clarification to the restrictions and classes concerning
memory utilization.

3.1. Two Execution Phases

By having two execution phases (i.e. initialisation and
mission phase), we can be certain that application threads
will not be interfered with by system-level activities,
which include setting up memory areas and scheduling
parameters, loading classes, and creating new threads.
These activities not only hinder an accurate timing
analysis of the application, but also make it difficult to
perform a precise memory utilization analysis. This is
because, in an ordinary Java program, classes may be
loaded while the program is running and new memory
area objects can be created, thus requesting more memory
space from the underlying system at run-time. If such
events are blended with complex program logic, it will
become infeasible to obtain even the worst-case memory
consumption bounds. Therefore, in the profile we define
two execution phases with two different roles to play: the
initialisation phase must create all required memory area
objects, create all schedulable objects, and load all
necessary classes, whereas the mission phase simply
executes the schedulable objects according to the imposed
scheduling policy (i.e. fixed priority scheduling in the
profile).

2 This includes loading all the classes needed in the application. In a JIT
(Just-In-Time) compilation environment, all loaded classes will be
compiled.

The newly defined Initializer class encapsulates the
basic procedures of the initialisation phase of an
application, which extends the RealtimeThread class of
RTSJ, and runs with the highest priority, so that the
Initializer thread will not be interrupted by any other
thread. A typical application will be created by extending
the Initializer class, as illustrated below.

i mpor t r avenscar . * ;
publ i c cl ass MyAppl i cat i on ext ends I ni t i al i zer
{
 publ i c voi d r un()
 {
 / / Logi c f or i ni t i al i zat i on: i . e.
 / / Cr eat e memor y ar eas (LTMemor y ar eas)
 / / Cr eat e per i odi c t hr eads or spor adi c event -
 / / handl er s
 / / Al l obj ect s r equi r ed by appl i cat i on shoul d
 / / be cr eat ed her e or i n t he const r uct or s of
 / / obj ect s cr eat ed.
 / / St ar t al l t hr eads.
 }

 publ i c st at i c voi d mai n (St r i ng [] ar gs)
 {
 MyAppl i cat i on myApp = new MyAppl i cat i on() ;
 myApp. st ar t () ;
 }
}

The mission phase begins as soon as the highest

priority thread (i.e. Initializer thread) terminates. From
this moment, the application threads will not be allowed
to alter the properties of the memory areas, scheduling
parameters, and so on. Threads may only utilise immortal
and linear-time scoped memory areas in this phase, unless
their logics require access to physical or raw memory
areas3.

3.2. Use of Memory Areas

Although real-time garbage collection has made
significant advances in recent years [16, 32], there is still
a reluctance to rely on it for high integrity systems.
Instead, the profile only allows the immortal memory area
and linear-time scoped memory areas. Any heap memory
usage needed to start the main Java program is not
collected and is considered to be part of immortal memory.

3.2.1. Immortal memory area. By definition, objects in
an immortal memory area cannot be freed or moved, and
all schedulable objects in an application share the same
memory area [7] 4 . Hence, in an attempt to prevent

3 In this paper, we do not attempt to restrict the use of physical or raw
memory other than what is implied by our restrictions on scoped
memory areas. However, a potential implementation of a RVM might
apply restrictions for security reasons.
4 In practice, this may be too strong a definition. What is required is that
the allocating and freeing of immortal memory is not subject to
interference by the garbage collector [11]

memory exhaustion or corruption, objects (including
memory area objects) that are needed for the lifetime of
the application should be allocated in the area only in the
initialisation phase.

3.2.2. L inear-time scoped memory areas. All memory
area objects must be created during the initialisation phase
(thus, in the immortal memory area), and schedulable
objects during the mission phase should make use of their
allocated linear-time scoped memory areas (LTMemory
areas). Scoped memory areas will not be shared by more
than one schedulable object as it is difficult to cost-
effectively validate if a given scoped memory area is
exploited correctly when different schedulable objects
share it. In other words, one schedulable object must have
only one active LTMemory area dedicated to it, and
should use the immortal memory area when sharing data
with another schedulable object. With this rule enforced,
additional overheads of dynamic memory access checking
can be potentially eliminated, and the virtual machine
design and implementation will be significantly simplified.

The size of all memory objects must be static and not
be extended in the course of the program for the reasons
mentioned above, i.e. the cost of extending the size at
runtime5. Any other memory area objects defined in the
RTSJ are disallowed, and the following simplified classes
remain in the profile.

package r avenscar ;

publ i c abst r act c l ass Memor yAr ea
{
 pr ot ect ed Memor yAr ea(l ong si zeI nByt es) ;
 pr ot ect ed Memor yAr ea(
 j avax. r eal t i me. Si zeEst i mat or s i ze) ;

 publ i c voi d ent er (j ava. l ang. Runnabl e l ogi c) ;
 / / t hr ows ScopedCycl eExcept i on

 publ i c st at i c Memor yAr ea get Memor yAr ea(
 j ava. l ang. Obj ect obj ect) ;

 publ i c l ong memor yConsumed() ;
 publ i c l ong memor yRemai ni ng() ;
 publ i c j ava. l ang. Obj ect newAr r ay(
 j ava. l ang. Cl ass t ype, i nt number)
 t hr ows I l l egal AccessExcept i on,
 I nst ant i at i onExcept i on;
 / / t hr ows Out Of Memor yEr r or
 publ i c j ava. l ang. Obj ect
 newI nst ance(j ava. l ang. Cl ass t ype)
 t hr ows I l l egal AccessExcept i on,
 I nst ant i at i onExcept i on;
 / / t hr ows Out Of Memor yEr r or
 publ i c j ava. l ang. Obj ect newI nst ance(
 j ava. l ang. r ef l ect . Const r uct or c,
 j ava. l ang. Obj ect [] ar gs)
 t hr ows I l l egal AccessExcept i on,
 I nst ant i at i onExcept i on;

5 Having statically analysed the program, memory shortage should never
occur. Therefore, some of the (unchecked) exceptions are not necessary
(thus are commented out as shown below).

 / / t hr ows Out Of Memor yEr r or ;
 publ i c l ong si ze() ;
}

publ i c f i nal c l ass I mmor t al Memor y ext ends
 Memor yAr ea
{
 publ i c st at i c I mmor t al Memor y i nst ance() ;
}

publ i c abst r act c l ass ScopedMemor y ext ends
 Memor yAr ea
{
 publ i c ScopedMemor y(l ong si ze) ;
 publ i c ScopedMemor y(Si zeEst i mat or s i ze) ;

 publ i c voi d ent er () ;
 publ i c i nt get Ref er enceCount () ;
}

publ i c c l ass LTMemor y ext ends ScopedMemor y
{
 publ i c LTMemor y(l ong si ze) ;
 publ i c LTMemor y(Si zeEst i mat or s i ze) ;
}

Figure 4. Simplified memory area classes

To aid in the production of an efficient virtual machine
and to simplify timing and memory usage analyses, access
to LTMemory areas must not be nested and LTMemory
areas must not be shared between Schedulable objects as
mentioned earlier. Otherwise, the virtual machine will
have to perform heavy assignment checks and enforce the
single parent rule at run-time [7], which will cause a
significant amount of overheads. This sort of runtime
check is not desirable, and may have ambiguous time or
memory requirements. With this restriction,

• any assignment to memory in an LTmemory area can
always be allowed without checks; this is because the
referenced object must always have the same scope
or be in immortal memory, and

• any assignment to memory in immortal (or heap)
must be checked to ensure the referenced object does
not reside in an LTmemory area (as this could
potentially result in a dangling reference); the goal is
to perform static analysis to validate this rule before
program execution (see section 4.3).

3.3. Other Restr ictions

There are further restrictions along with those

mentioned above, which include the following.

3.3.1. Dynamic class loading in the mission phase. Java
classes and methods that can be used to load additional
classes at run-time cannot be exploited in the mission
phase since dynamic class loading is one of the main
sources of delay and unpredictable use of memory. In
particular, the classes listed below must not be used in the
mission phase of any application.

• j ava. l ang. Cl assLoader
• j ava. l ang. Cl ass (f or Name() methods)
• j ava. net . URL. Cl assLoader
• j ava. secur i t y. Secur eCl assLoader

3.3.2. Simple finalizers. Object finalizers are invoked
when the virtual machine detects that there are no more
references to the objects. In the context of the scoped
memory area, this process should occur when a memory
scope is escaped (i.e. the reference count becomes zero),
and all the finalizers of the objects in the scope should be
invoked. Finalizers should not be associated with objects
created in immortal memory because Ravenscar-Java
applications are assumed not to terminate6.

The overheads of finalizers of LTmemory objects must
be taken into account when performing schedulability
analysis because the virtual machine can take some time
to free up used memory areas. Further, finalizers should
not attempt to acquire object locks that other threads or
event handlers can use; there could be some possibilities
of execution delay and even a deadlock when a thread
holds a lock and attempts to enter a scoped memory area
in which the finalizer of an object is attempting to acquire
the same lock [5]. The thread will have to wait until all
the finalizers of objects in the memory area run to
completion while one of the finalizers is waiting for the
lock to be available. On the whole, finalizers should be as
compact as possible and must not block.

3.3.3. M ethod recursion. Recursive method calls
(including mutually recursive calls, and loops in some
cases) can dramatically consume available memory space
at runtime, and an erroneous termination condition can
cause unbounded recursion. Thus, programmers must
avoid method recursion. However, this rule may be
relaxed if the memory consumption for each method and
termination conditions can be formally verified and
bounded.

4. Analysis of Ravenscar-Java Programs

The inherent complexity in the verification of non-
trivial software means that unsafe programs could be
produced and used under critical situations. This is more
so as today’s programming models become more
complex. Our Ravenscar-Java profile [21] has been
developed with such concerns in mind, so that programs
may become easily analysable, and the run-time platform
will also be simpler to implement.

By statically analysing a program, we obtain a high
degree of assurance that a program will behave according
to its functional (and temporal) specification, and not

6 Any extension to Ravenscar-Java to allow termination should also
address the issues of daemon schedulable objects, which currently are
absent from the RTSJ definition.

exhibit any erroneous actions throughout its lifetime.
Erroneous actions include data races, deadlocks, and
memory overflows. However, in the context of real-time
Java and the Ravenscar-Java profile, we also need to
ensure that the rules defined in the profile and RTSJ are
observed, for example:

• scoped memory areas are not nested,
• classes are not dynamically loaded in the mission

phase,
• methods are not recursively invoked,
• periodic and sporadic threads are programmed using

the given classes (i.e. PeriodicThread and
SporadicEventHandler), and

• object queues are not used.

These rules are checked when programs are compiled

and tested for conformance to the profile. This
conformance test alone will remove many possible errors
in the program. For example, deadlocks, and side effects
in expressions can be prevented.

A conformance test can only be performed once the
main application class has been defined. This allows the
schedulable objects and all objects they access to be
identified. The control and data flow graphs can then be
generated. If two or more schedulable objects, for
example, attempt to enter the same LTmemory area, an
error can be flagged7.

However, along the lines of the conformance test, a
number of other useful memory analyses can be
conducted on Ravenscar-Java programs, and we show
some of the ways briefly in the following subsections,
although there may be many other possibilities.

4.1. Ver ification of the Java Memory Model’s
Effect

As reported in [28] and [30], the Java memory model

(JMM) in [14] is a weaker model of execution than ones
supporting sequential consistency. It allows more
behaviours than simple interleaving of the operations of
the individual threads. Therefore, verification tools that
simply examine Java source code or even bytecode can be
prone to produce false results [30]. Because the semantics
of the JMM can lead to different implementations, some
virtual machines may support sequential consistency,
while others may not for performance reasons. This does
not match the Java’s write once, run everywhere 8
philosophy.

7 This may be overly restrictive as the profile requires that no two
schedulable objects attempt to enter the same memory area at the same
time.
8 Programs may still run everywhere, but possibly with different or
unsafe behaviours.

Roychoudhury and Mitra suggest that there are three
approaches to tackle this problem [30], i.e.

1. Develop restricted fragments of Java programs for

which the JMM guarantees sequential consistency,
2. Change the JMM altogether, or
3. Develop an executable formal description of the

JMM and incorporate it into program verification.

They opt for the third approach because the first one

can suffer from performance overheads when there are
unnecessary synchronizations for every shared object, and
foreign libraries may not follow such restricted fragments
or rules. The second approach is seriously considered by
the Java Community Process (JCP) 133 [20], but it is
unrealistic to expect that all Java virtual machines will
support one of the two proposed models soon.

However, we can still settle on the first approach,
developing restricted fragments of Java programs for
which the JMM guarantees sequential consistency, so that
programs in the fragments will not have any unsafe
effects of the problematic Java memory model. This
approach may require a means to statically analyse Java
bytecode to locate only necessary synchronizations, and
libraries will still be considered because it can operate at
the bytecode level.

The underlying assumption of this possible approach is
that any reads and writes on a shared object in a method
must be enclosed within the same synchronized block (or
method) in order not to have any data races9. In other
words, any syntactical gap between a read and write that
are not covered by a single synchronized block will cause
possible data races in a multithreaded environment
because either a read or write action can be lost. This is
true even when a shared object is indirectly read and
updated using a local object because, for example, an
interleaving of another thread that may update the shared
object can occur in between the indirect read and a
(synchronized) write in the method, resulting in a lost
write. Thus, any indirect reads and writes should also be
treated in a similar manner to direct ones on a shared
object. The figure below shows an example case (see the
incBy1 method).

Another similar case is that even when both a read and
write are synchronized, there still can be data races if the
two blocks are guarded by two different synchronized
blocks and can be interleaved by other threads in between
(see the incBy2 method in the figure).

An efficient algorithm can be developed that is capable
of analysing all such conditions above, thus detecting
problematic data races by tracing all shared objects and
checking whether they are properly guarded by

9 Essentially, data races are the most obvious outcome that the Java
memory model could have on any multithreaded Java programs.

synchronized blocks or methods. The point-to and escape
analysis [10, 31] can be used to trace escaping and
possibly shared objects, as well as improving overall
performance by allocating non-escaping objects in the
stack of a method.

The Ravenscar-Java profile should simplify this task,
since the algorithm will not have to deal with some of the
language’s complex features, such as the object queue.

Shar ed var i abl e: i nt Svar

voi d i ncBy1(i nt val)
{
 i nt t mp1;
 i nt t mp2;

 t mp1 = Svar;

 / / i ndi r ect r ead
 t mp2 = t mp1 + val ;

 / / synchr oni zed wr i t e
 synchr oni zed(t hi s) {
 Svar = t mp2;
 }
}

voi d i ncBy2(i nt val)
{
 i nt t mp;

 / / synchr oni zed r ead
 synchr oni zed(t hi s) {
 t mp = Svar;
 }

 / / synchr oni zed wr i t e
 synchr oni zed(t hi s) {
 Svar = t mp + val ;
 }
}

Figure 4.1. Two methods illustrating possible data races

4.2. Memory Consumption Analysis

Overflow or shortage of memory space at run-time can

be devastating in high integrity systems, but at the same
time, oversupply of it will be costly. Considering the new
memory areas introduced in the RTSJ, we need a different
means of estimating the worst-case memory space that a
program requires at run-time, so that only the required
amount of memory for each area will be allocated. For
this purpose the RTSJ defines the SizeEstimator class.
However, the getEstimate() method of the class does not
return the actual amount of memory that an object of a
class and its methods dynamically use, but simply the
total size of the class’s fields. In this sense, the class is not
readily usable in estimating the required memory size for
an RTSJ application.
 The Ravenscar-Java profile places some restrictions on
the use of RTSJ’s memory areas; for example, access to
linear-time memory (LTMemory) areas must not be nested
and such memory areas cannot be shared between
Schedulable objects [21]. These restrictions should greatly
ease the development of an algorithm that will inspect
each thread’s logic to discover all classes it instantiates.
After that, by making use of control and data flow
information extracted from the code (such as loop
bounds), the algorithm will be able to calculate how many
instances of each class are created by a thread. This
information can then be used to produce a tight upper
bound of the amount of memory that a thread utilizes at

run-time by applying reserve() and getEstimate() methods
of the SizeEstimator class at the target platform before the
system’s mission phase.

4.3. Dynamic Memory Access Check Analysis

This analysis is concerned with eliminating

unpredictable runtime overheads caused by dynamic
checks by the virtual machine. Because of the
characteristics of the memory areas defined in the RTSJ,
many assignment expressions are subject to a dynamic
check, which will determine the legality of such
assignment expressions. In other words, an object in a
long-term memory area cannot not reference another
object in a short-term memory area. However, dynamic
memory access checks can be prevented by means of
statically performing the point-to and escape analysis [10,
31].
 Objects that escape from their original memory areas
can first be identified using an escape analysis technique,
followed by a simple means to resolve which direction the
object is escaping in the memory area stack of a particular
thread. If the escaping object is referenced by another
object in a longer-term memory area, then the assignment
at run-time will fail and an exception will be raised. A
Ravenscar-compliant virtual machine will not need such
dynamic checks.

5. Related Works

There have been a few subsets or profiles for Java
suggested in the literature10. None of them, however, is as
complete or analytical as the Ravenscar-Java profile
described in this paper and in [21].

Bentley [6] defines a sequential subset of Java after
assessing the language. The subset consists of 21 rules
that are effectively derived from [18], [26] and his
assessment. All the rules are categorised into six groups,
most of which are concerned with the use of some
problematic features of the language itself. However,
while this subset will undoubtedly help produce
analysable and predictable sequential programs, it can be
criticised for its restriction on multithreading, one of
Java’s inherent elements. Without the language-level
support for multithreading and all the associated
synchronisation mechanisms, Java may not be considered
as a great evolution from its predecessors. In addition to
this, the subset also fails to address issues on the object-
oriented programming model of the language, as well as
real-time issues.

Puschner and Wellings [29] suggest a Ravenscar-like
profile for the Real-Time Specification for Java [7], and it

10 In fact, there are subsets of Java defined for other purposes than for
use in high integrity systems. They are not considered in this paper.

is in fact a predecessor of the work presented in this
paper. The profile is primarily focused on leaving out
complex features of the RTSJ. However, little attention is
paid to Java’s sequential language constructs (unlike [6])
and object-orientation features that can be problematic in
performing various static analyses. Furthermore, the
profile is not consistent with the current version of the
RTSJ.

A sub-committee has been formed within the Real-
Time Java Working Group of the J Consortium to produce
a high integrity profile based on the Real-Time Core
Extensions [19]. The profile has not publicly been
released yet, but according to Dobbing [12] it will
resemble the Ravenscar profile for Ada95 [9]. It consists
of four main themes: partitioning, memory management,
concurrency, and error recovery. Like the one proposed in
[29], this profile is mainly focused on sub-setting the
Real-Time Core Extensions [19], but does not address
issues on the use of problematic language constructs and
object-orientation features of Java.

6. Conclusions and Future Work

In this paper we have presented the Ravenscar-Java
profile from the perspective of memory utilization. This
restricted programming model removes language features
with high overheads and complex semantics, on which it
is hard to perform various static analyses. Several classes
in the RTSJ are refined, and a few new classes are added,
which all result in a compact, yet powerful and
predictable computational model for the development of
software-intensive high integrity real-time systems.
 We have given the rationales behind the decisions we
have made on the use of memory areas and other
language features that can have an effect on the
predictability of memory utilization. Then, some of the
analysis approaches are discussed, in terms of how they
can be developed and beneficially used. We intend to
implement the approaches in our integrated analysis tool
[17] in the near future.

We believe that the profile is concise, yet expressive
enough to use in high integrity real-time applications,
especially with the restrictions placed on memory
utilization that will significantly ease the analysis of
Ravenscar-Java programs.

7. Acknowledgements

This work has been funded by the U.K. EPSRC under
award number GR/M94113.

8. References

[1] W. Amme, N. Dalton, M. Franz, and J. Von Ronne,

SafeTSA: A Type Safe and Referentially Secure Mobile-Code

Representation Based on Static Single Assignment Form,
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2001.

[2] Andrew W. Appel, Protection against untrusted code: The
JIT compiler security hole, and what you can do about it,
http://www-106.ibm.com/developerworks/library/untrusted-
code/, as of January 2001.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.
Wellings, Applying New Scheduling Theory to Static Priority
Pre-emptive Scheduling, Software Engineering Journal, 8(5),
284-92, 1993.

[4] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-
Aware Just-In-Time (AJIT) Compilation System, ACM
SIGPLAN Java Grande Conference, 1999.

[5] W. S. Beebee Jr., Region-based Memory Management for
Real-Time Java, Master’s thesis, Dept. of Electrical
Engineering and Computer Science, MIT, 2001.

[6] S. Bentley, The Utilisation of the Java Language in Safety
Critical System Development, MSc dissertation, Department
of Computer Science, University of York, 1999.

[7] G. Bollella, et al, The Real-Time Specification for Java,
Addison-Wesley, 2000.

[8] J. P. Bowen and M. G. Hinchey, High Integrity System
Specification and Design, Springer-Verlag London, 1998.

[9] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking
Profile for High Integrity Real-Time Programs, In L. Asplund,
editor, Proceedings of Ada-Europe 98, LNCS, Vol. 1411, pages
263-275, Berlin Heidelberg, Germany, Springer-Verlag 1998.

[10] J. D. Choi, M. Gupta, M. J. Serrano, V. C. Sreedhar, and S.
P. Midkiff, Escape Analysis for Java, Proceedings of the
Conference on Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA), 1999.

[11] P. Dibble, Personal communications, October 2002.
[12] B. Dobbing, The Ravenscar Profile for High Integrity Java

Programs?, ACM Ada Letters, Vol. 21, Issue. 1, March
2001.

[13] Li Gong, Inside Java™ 2 Platform Security: Architecture,
API Design, and Implementation, Addison-Wesley, 1999.

[14] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, 2nd Edition, Addison Wesley, 2000.

[15] H. Hetcht, M. Hecht, S. Graff, et al, Review Guidelines for
Software Languages for Use in Nuclear Power Plant
Systems, NUREG/CR-6463, U.S. Nuclear Regulatory
Commission, 1997, also available at http://fermi.sohar.com/
J1030/index.htm, last accessed in January 2002.

[16] R. Henriksson, Scheduling Garbage Collection in Embedded
Systems, Ph.D thesis, Department of Computer Science, Lund
University, 1998.

[17] E. Y-S. Hu, J. Kwon and A. Wellings, XRTJ: An Extensible
Distributed High-Integrity Real-Time Java Environment, To
appear in the Proceedings of the 9th International Conference
on Real-Time and Embedded Computing Systems and
Applications (RTCSA), 2003.

[18] A. Hutcheon, B. Jepson, D. Jordan, and I. Wand, A Study of
High Integrity Ada: Language Review, Technical Report
SLS31c/73-1-D, Version 2, York Software Engineering,
University of York, July 1992.

[19] J Consortium, International J Consortium Specification:
Real-Time Core Extensions, Revision 1.0.14, www.j-
consortium.org, September 2000.

[20] JSR 133: JavaTM Memory Model and Thread Specification
Revision, http://jcp.org/en/jsr/detail?id=133

[21] J. Kwon, A. Wellings, S. King, Ravenscar-Java: A High
Integrity Profile for Real-Time Java, Proceedings of the Joint
ACM Java Grande - ISCOPE 2002 Conference, Seattle,
Washington, 2002.

[22] J. Kwon, A. Wellings, and S. King, Assessment of the Java
Programming Language for Use in High Integrity Systems,
Technical Report YCS 341, Department of Computer
Science, University of York, 2002, available at
http://www.cs.york.ac.uk/ftpdir/reports/YCS-2002-341.pdf.

[23] N. G. Leveson, Software Safety: Why, What, and How,
Computing Surveys, Vol. 18, No. 2, ACM, June 1986.

[24] N. G. Leveson, Software Safety in Embedded Computer
Systems, Communications of the ACM, Vol. 34, No. 2,
February 1991.

[25] C. Liu and J. Layland, Scheduling Algorithms for
Multiprogramming in a Hard Real-time Environment,
Journal of ACM, 20(1), 46-61, 1973.

[26] The Motor Industry Software Reliability Association,
Guidelines for the use of the C language in vehicle based
software, The Motor Industry Research Association (MIRA),
1998.

[27] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan,
Evaluation of Safety-Critical Software, Communications of
the ACM, Vol. 33, No. 6, June 1990.

[28] W. Pugh, Fixing the Java Memory Model, Proceedings of
Java Grande Conference, 1999.

[29] P. Puschner and A. J. Wellings, A Profile for High Integrity Real-
Time Java Programs, In Proceedings of the 4th IEEE International
Symposium on Object-oriented Real-time distributed Computing
(ISORC), 2001.

[30] A. Roychoudhury and T. Mitra, Specifying Multithreaded
Java Semantics for Program Verification, Proceedings of the
International Conference on Software Engineering – ICSE,
2002.

[31] A. Salcianu and M. Rinard, Pointer and Escape Analysis
for Multithreaded Programs, Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2001.

[32] F. Siebert, Hard Realtime Garbage Collection in Modern Object
Oriented Programming Languages, aicas GmbH, available at
http://www.aicas.com/books.html, 2002.

