
Assessment of the Java Programming Language for Use in
High Integrity Systems*

Jagun Kwon, Andy Wellings, and Steve King

Department of Computer Science
University of York, UK

{ jagun, andy, king} @cs.york.ac.uk

ABSTRACT
This paper sets a goal of investigating the use of Java in the development of high integrity

systems. Based on previous studies, guidelines, and standards, we develop 23 criteria that are used for
the following assessment of Java. A summary of the assessment is provided before we go on to review
a few existing subsets of the language.

1. Introduction
Increasingly computers are being used in high integrity real-time systems; that is, systems where failure
can cause loss of life, environmental harm, or significant financial penalties. Examples include space
shuttles, nuclear power plants and medical instruments, and they typically have high development and
maintenance costs due to the customised nature of their components. There are many general and
sector-specific standards produced to assist in building such important systems, for example, U.S.
DO178B, and MISRA guidelines.

Within high integrity systems, there has been a growing trend to use software, because it
provides [25, 26, 38, 10]

• improved functionality
• increased flexibility in design and implementation
• reduced production cost
• enhanced management of complexity in application areas.

Over the recent years, Java has proved to be an appropriate vehicle for a diverse range of applications
including web based intranets and embedded systems. Its relatively simple linguistic semantics, the
adoption of well-understood approaches to managing software complexity, and support for concurrency
seem to have contributed towards its popularity. Initially designed with embedded systems in mind,
Java’s main goal was to provide engineers with a reliable and cost-effective platform-independent
environment. The burden of learning a new language is kept to the minimum for many existing C and
C++ programmers, while helping them to discover errors earlier by means of strong type checking,
array-bound checking, null-pointer checking, and so on [20]. Further, its support for concurrency, i.e.
multi-threading and synchronisation mechanisms, together with the use of portable code (or bytecode)
opens up a huge number of possibilities for many other applications, including high integrity systems.

However, despite all these valuable features, Java has been criticised for its unpredictable
performance as well as some security concerns [4, 5, 3]. The automatic garbage collection and dynamic
class loading mechanisms are often considered problematic, especially under time or performance-
critical situations. Moreover, a number of security bugs in the Java virtual machine have been
discovered since its first appearance, especially in the bytecode verifiers and Just-in-Time (JIT)
compilers [19, 4]. These fears make the use of Java and its associated technology problematic for the
development of high integrity systems.

Upon the realisation of such primary drawbacks of Java, many researchers have attempted to
improve the situation, particularly in search of predictable real-time performance. For instance, the
Real-Time Specification for Java [9, 8] and its reference implementation [46] have proved that Java can
be a capable framework for concurrent real-time applications. The specification attempts to minimise
any modification to the original language semantics and defines many additional classes that should be
implemented in a supporting virtual machine. This, however, ironically leads to a language and run-
time system that are complex to implement and have high overheads at run-time. Software produced in

* This work has been funded by the EPSRC under award number GR/M94113.
This paper is to appear in the April/2003 issue of the ACM SIGPLAN Notices.

that framework is also difficult to analyse with all the complex features, such as the asynchronous
transfer of control (ATC) and dynamic class loading.

Bearing in mind the positive developments and drawbacks of Java, this paper investigates the
use of the language in the development of high integrity systems. Based on the requirements gathered
from several relevant standards and guidelines, we develop 23 criteria that are used for the following
assessment of Java. A summary of the assessment is provided before we move on to review a few
existing subsets of the language. Finally, a brief conclusion is drawn.

2. Requirements of Programming Language
A study by Bentley [7] summarises some of the well-known requirements of programming language
for the development of high integrity systems including works by [14], [16], [48], [49] and [21]. It
carries out an assessment on Java against all the requirements, producing a series of rationales. A
subset of the language is also proposed, but unfortunately only sequential features are included. The
outcome of the study is compatible to a large extent with our objective in this paper as the requirements
are still of significant importance these days, and the chosen language is Java. Therefore we consider it
as our starting point for a more complete and up-to-date assessment of the language.

In addition to Bentley’s work, we have also considered more recent guidelines and standards,
such as the Ada95 Trustworthiness study [15, 42, 43], ISO/IEC DTR 15942 [22], software guidelines
from the U.S. Nuclear Regulatory Commission (NRC) [37], and a series of reports produced by the
Motor Industry Software Reliability Association (MISRA) [27, 28-35].

3. Assessment Criteria
Since many of the requirements are redundant and even ambiguous in some cases, we inclusively
categorise them into relevant assessment criteria along with appropriate references. However, it is
important to note that this collection of criteria is neither complete1 nor authoritative, but it attempts to
amalgamate many different requirements into a balanced and informative framework for the
assessment of programming languages. As in [21] we propose two levels of criteria, namely Mandatory
requirements (Level 1) and Desirable requirements (Level 2).

3.1. Level 1 – Mandatory requirements
In Level 1 we identify compulsory requirements that a programming language must satisfy in order to
be considered for use in implementing high integrity software. Appropriate justifications are made
regarding each requirement. Readers are encouraged to refer to the references if in any doubt about
rationales and specifics.

L1.1. Syntactical / Semantic Requirements
L.1.1.1 Type safety / Strong typing rules
References [48], [16], [49], [21], [15], [22], [37], [33]

Rationale

Strongly typed languages help reduce errors in programs at compile-time. Moreover,
type safety is often considered to be sufficient for ensuring the minimum nontrivial
level of program safety, i.e. control flow safety, memory safety, and stack safety [24].
Thus it is strongly encouraged to use a type safe or strongly typed language,
enhancing the integrity and security of software.

Specifics

Implicit type conversions must not be allowed.
All data types should be statically analysable before program execution.
Explicit type conversion rules should be clearly stated in the language standard or
definition.
There should be some ways to avoid access types or pointers.

Ratings

1. Strongly typed / Statically analysable.
2. Strongly typed, but some types are analysable only at run-time, mainly due

to the use of polymorphism in the language.
3. Not strongly typed and implicit type conversions are allowed.

1 Some requirements or guidelines are deliberately missed out because they are either not relevant with respect to
high integrity systems, or considered not reasonable in the context of modern programming languages. Examples
include requirements on the use of a particular character set [USDoD1978], and improvements in wording or
program presentation (of Ada83) [USDoD1990].

L.1.1.2 Side effects in expressions / Operator precedence levels / Initial values
References [48], [37]

Rationale

Side effects in expressions can cause programs to behave in an ambiguous, or,
possibly, unpredictable way, thus are not desirable. The precedence levels of all
operators must be specified in the language definition; otherwise evaluation orders
may vary from system to system.

Specifics
There should not be any time-dependent side effects in expressions.
Operator precedence levels must clearly be defined in the standard.
There should be no implicit initial values for variables.

Ratings

1. All the above specifics are satisfied.
2. Not all the above specifics are satisfied, but there may be a subset of the

language that meets the specifics.
3. The above specifics are not satisfied, and there is no reasonable way to

improve the language.

L.1.1.3 Modular ity / Structures
References [48], [16], [21], [15], [37], [33]

Rationale

It must be straightforward to code and maintain programs in a high integrity
programming language, so that the complexity of software becomes manageable.
This is often achieved by means of visibility control (or scopes), functions, and
objects in many modern languages, in which the integrity and security of software are
generally improved.

Specifics

There should be sound mechanisms to structure and modularise program code both
syntactically (in some form of determinable blocks or scopes) and semantically with
clear interfaces.
There should be no wild/unbounded jumps between different modules.
Separate compilation of modules should be possible.

Ratings

1. The language provides rich and precise means of structuring programs, and
programs can be maintained in terms of modules or objects.

2. Such mechanisms are provided, but not cost-effective or efficient.
3. There is no reasonable approach.

L.1.1.4 Formal semantics / International standards
References [48], [16], [49], [21], [15], [22], [33]

Rationale
A standardised language benefits the development of compilers and tools, and user
training. Verification techniques can also be applied to a language with formally
defined semantics.

Specifics
There should be a (international) standard definition of the language.
There should be formally defined semantics of the language, or at least a subset of the
language.

Ratings
1. An internationally standardised formal definition exists.
2. The language or high integrity subset of it can be formally defined.
3. Unknown.

L.1.1.5 Well-understood
References [16], [48], [21], [49], [33]

Rationale
A language with well-understood semantics and syntaxes will help to produce quality
software, often cost-effectively.

Specifics
The language should be simple, well understood, easy to adopt, and easy to
implement.

Ratings

1. The language is well understood, and there are many trained developers and
designers.

2. The language is well understood only by a limited number of people.
3. Unknown.

L.1.1.6 Suppor t for domain specific or embedded applications
References [48], [21]

Rationale
High integrity systems are often embedded systems that need to interface or control
physical resources or (non-standard) peripheral devices. Therefore, a programming

language designed with such applications in mind should be used.

Specifics
Robust mechanisms for controlling memory, I/O devices or other hardware are
required.

Ratings

1. The language naturally supports embedded applications.
2. There is a limited support, but external libraries or language extensions can

be utilised.
3. No support provided or Unknown.

L.1.1.7 Concurrency / Parallel processing
References [48], [21]

Rationale

Although concurrency is one of the main sources of complication in program
analysis and verification (classified as only a desirable – not mandatory - feature in
[21]), it is invaluable in modelling or capturing real-world problems. Thus, we
believe this has to be an essential requirement for modern high integrity language.

Specifics

The following features should be included:
Language-level support for multitasking or multithreading.
Control over scheduling policy.
Straightforward communication and synchronisation mechanism(s), plus facility to
bound blocking.

Ratings

1. All the above specifics are satisfied.
2. Only limited support is provided at the language-level, but external libraries

or run-time systems can be utilised.
3. No reasonable support provided or Unknown.

L1.2. Application of verification techniques / Predictability
L.1.2.1 Functional predictability
References [21], [15], [22], [37], [33]

Rationale
High integrity software must be proven to be predictable in terms of its functional
behaviours.

Specifics

All or most of the following analysis techniques should be applicable.
 Control flow analysis
 Data flow analysis
 Information flow analysis
 Symbolic execution
 Formal code verification

Ratings

1. All techniques in the above specifics or feasible alternatives can be utilised.
2. Not all techniques can be utilised due to the complex features of the

language, but sub-setting the language may improve such analyses.
3. Unknown or there is no cost-effective way of utilising such analysis

techniques.

L.1.2.2 Temporal predictability / Timing analysis
References [21], [15], [37], [33]

Rationale
In addition to the functional predictability, timely behaviours of such software and
systems must also be guaranteed.

Specifics
Worst Case Execution Time (WCET) of each process must be obtainable, so that
schedulibility analysis can be performed.

Ratings
1. Tightly bounded execution time(s) can be obtained.
2. Loosely bounded execution time(s) can be obtained.
3. Unpredictable or there is no known way to obtain WCET.

L.1.2.3 Resource usage analysis
References [16], [21], [15], [37], [33]

Rationale
It is important to identify what resources are needed and how they are utilised, so
that errors such as stack overflow may not occur, and system implementations may
be kept economical.

Specifics
The following properties should be analysable.
 Memory (or heap) usage
 Stack usage

 Any other resources to be utilised in the application area.

Ratings
1. Exact prediction of the above specifics is possible.
2. Worst-case analysis is possible, but not practical.
3. Unpredictable.

L1.3. Language Processors / Run-time environment / Tools
L.1.3.1 Cer tified language translators / Run-time environments
References [48], [21], [22], [33]
Rationale There must be a high level of assurance in language processors, especially compilers.

Specifics
A formally certified compiler by an authoritative or trusted body should be used.
Low-level code should be traceable in accordance with source code.
Run-time environments should also be certified if used.

Ratings

1. There are one or more certified language translators, and they are formally
proven to be flawless.

2. Language translators may contain several known errors or malfunctions that
are well documented, but they will not affect the development of high
integrity software.

3. Unknown.

L.1.3.2 Run-time suppor t / Environment issues
References [48], [21], [49], [15], [22], [37]

Rationale

Libraries (or any additional code) or run-time support may make it complex to
perform some analyses, such as WCET and control flow analyses. Hence, all such
additional code should be predictable and analysable in terms of safety and
timeliness. Minimising implementation dependencies is also encouraged.

Specifics
All the behaviours of additional code should be well understood.
All timing information of the underlying run-time system and libraries should be
known and accurate.

Ratings

1. There is concrete information on the functional and temporal behaviours of
all libraries and run-time system.

2. Only worst-case analysis is possible.
3. Unknown.

3.2. Level 2 – Desirable Requirements
The requirements at this level are not immediately necessary but beneficial in that they help produce
more efficient, comprehensible, and structured systems. Note that ratings are not provided at this level
because they are meant to be additional desirables.

L2.1. Syntactical / Semantic Requirements
L.2.1.1 Exception Handling / Failure behaviour
References [48], [16], [21], [15], [37], [33]

Rationale

Handling errors while a high integrity system is operating is sometimes seen as
undesirable on account of additional overheads and unpredictable behaviours.
However, if any sort of error can occur, then the system should gracefully degrade, or
recover after some corrections.

Specifics
Robust and analysable run-time error detection and handling mechanism should exist.
Failure behaviours should be programmable.

L.2.1.2 Model of Mathematics
References [16], [48]

Rationale
As often required in some high integrity systems, the language should have a
rigorous model of maths defined in the language standard.

Specifics
A model of both integer and floating point arithmetic should be defined within the
language standard.
Procedures for checking if operational arithmetic at run-time is correct should exist.

L.2.1.3 Suppor t for User documentation
References [48], [49], [37]

Rationale
Languages that allow user comments will undoubtedly improve program readability
and maintainability. Some language processors may make use of annotations to
detect subtle logical errors in programs or to obtain extra information.

Specifics
There should be some way of commenting programmer’s intentions within source
code.

L.2.1.4 Suppor t for a range of static types including subtypes and enumeration types
References [48], [49], [22], [33]

Rationale
It is easier to perform any analyses or checks on static types than on dynamic types.
Enumeration types with a limited number of values also help reduce errors.

Specifics None.

L.2.1.5 Coding style guidelines
References [21], [37], [33]

Rationale
Coding style guidelines may help reduce the gap between well-established Software
Engineering principles and the actual practice of programming in a particular
language.

Specifics None.

L.2.1.6 Suppor t for abstraction and information hiding
References [22], [21], [49], [33]

Rationale
Employing abstraction or information hiding techniques (e.g. object orientation) can
greatly decrease software complexity. Thus they are beneficial in program design,
development, and maintenance.

Specifics None.

L.2.1.7 Asser tion checking
References [48]

Rationale
It may sometimes be desirable to check for user specified assertions before or while
programs are executing.

Specifics None.

L2.2. Language Processors / Run-time environment / Tools
L.2.2.1 Cer tified (static/dynamic) analysis tools
References [21], [22], [33]

Rationale
In order to gain more confidence in high integrity software it is imperative to use
certified analysis tools, which may check for errors, such as, race conditions and
deadlocks.

Specifics None.

L.2.2.2 Inter face to other languages
References [48]

Rationale

There are some situations where a program written in a high-level language needs to
interact with existing libraries or other low-level routines that are written in different
languages. In such cases there should be a means of interfacing our program with
such routines.

Specifics None.

L.2.2.3 Code optimisation
References [48]

Rationale
It is always advantageous to improve the efficiency of programs by means of
optimising them. However, optimisation should not alter the semantics of correct
programs, nor compromise the application of analysis techniques.

Specifics None.

L.2.2.4 Code por tability
References [21], [37]

Rationale
Since there exists a diverse range of code-executing platforms, it is often considered
beneficial to have a portable program representation, so that all necessary analyses
may be applied once for all.

Specifics None.

4. Assessment of the Java programming language
In this section, Java is assessed against the criteria developed earlier. A summary is provided at the end.

4.1. Assessment of Java against Level 1
L.1.1. Syntactical / Semantic Requirements
L.1.1.1. Type safety / Strong typing rules
Java is a strongly typed language. For all primitive types, implicit type conversions are not allowed (all
possible conversions are stated in the language specification), and programs are analysable before
running them. But for dynamic reference types, it is not always straightforward to statically analyse
code, but is generally possible only at run-time because of the use of, for example, inherited interfaces
and local classes within different scopes.
Rating: 2. Strongly typed, but some types are analysable only at run-time, mainly due to the use of
polymorphism in the language.

L .1.1.2. Side effects in expressions / Operator precedence levels / Initial values
Side effects can occur in Java if expressions contain embedded assignments, sub-operators, and method
invocations. Many side effects, however, can be eliminated via the use of a code checker or analyser,
and a subset of Java. Operator precedence levels are defined in the specification [20], but the large
number is at times seen undesirable as it becomes more difficult for programmers to learn [7, 48]. All
types in Java have default initial values, but compilers issue warnings if any variables are used before
initialisation. It should also be noted that some returned values of a method can be quietly discarded
without any warning [20], i.e. when there is no assignment expression for a method call that returns a
value.
Rating: 2. Not all the above specifics are satisfied, but there may be a subset of the language that meets
the specifics.

L.1.1.3. Modular ity / Structures
In Java, programs are organised as objects that normally consists of visible and non-visible data fields
and methods. Abstraction and encapsulation mechanisms are also provided through classes and
interfaces, and packages (into which related classes are organised) also enhance modularity and
structure of software. In addition to this, the language includes various means of controlling program
flows, including the exception-handling mechanism. Separate compilation is always possible.
Rating: 1. The language provides rich and precise means of structuring programs, and programs can be
maintained in terms of modules or objects.

L .1.1.4. Formal semantics / International standards
There are no stable standards for Java although the language specification [20] serves as an informal
standard for the time being. There are some formal semantics of Java, for example, in Action semantics
[50, 12], in Denotational Semantics [2], and in other BNF-like notations [1], most of which are based
on parts of the language. Drossopoulou and Eisenbach [18] have also defined a series of subsets of Java
and proved their type soundness.
Rating: 2. The language or a high integrity subset of it can be formally defined.

L .1.1.5. Well-understood
Java is a familiar programming language to many existing C/C++ programmers, which means that no
extensive training is usually required and there may well be many trained engineers. In addition, some
of the problematic features in C/C++ (such as pointer operations) are removed, which all results in a
dramatic increase in productivity. However, the excessive number of APIs and other additional
mechanisms can be hard to master.
Rating: 1. The language is well understood, and there are many trained developers and designers.

L .1.1.6. Suppor t for domain specific or embedded applications

One of the main application areas for which Java was first developed was embedded systems. In pure
Java, however, it is not possible to control underlying hardware without appropriate native methods
implemented in different languages. Even then, it is still difficult to implement systems with rigorous
safety and real-time requirements, thanks mostly to the overheads incurred by the garbage collection
mechanism, and virtual machines per se. There has been much research on scheduling the garbage
collector and improving the efficiency of code transformation, even though it has not proven
particularly effective so far. In the recent years, the Real-Time Specification for Java [8] and Real-Time
Core Extensions [23] have been defined, so that real-time applications will certainly benefit from
reference implementations of such specifications.
Rating: 2. There is a limited support, but external libraries or language extensions can be utilised.

L .1.1.7. Concurrency / Parallel processing
Java supports concurrent execution of multiple threads, as well as some key synchronisation
mechanisms, for example, the monitor and synchronized blocks/methods. Programmers can also
allocate a priority to threads, which nevertheless is not of any significant value, as they have no control
over scheduling mechanisms implemented in the virtual machine and underlying kernel. Recently, two
of the specifications for real-time Java, i.e. one from Sun Microsystems [8] and the other J Consortium
[23], define various features that real-time systems require, especially with regard to scheduling,
memory management, synchronisation, time, and exceptions.
Rating: 1. All the above specifics are satisfied.

L.1.2. Application of verification techniques / Predictability
L.1.2.1. Functional predictability
Due to the recent development of sophisticated analysis algorithms and tools it is now possible, to
some extent, to analyse Java programs in terms of control and data flow. Nevertheless, some complex
features of Java, such as the exception handing mechanism and monitors, are still not considered, or at
least are immaturely handled. Formal verification is even harder for Java as there is no complete formal
semantics. However, a constant progress is made in this area, and especially Model-checking
technology is proving strong in the verification of Java programs. For example, the Java PathFinder 2
[11] developed by NASA can detect race conditions, deadlocks, and violations of user-specified
assertions.
Rating: 2. Not all techniques can be utilised due to the complex features of the language, but sub-
setting the language may improve such analyses.

L .1.2.2. Temporal predictability / Timing analysis
It is well known that with all the sometimes-superfluous features like the garbage collector and virtual
machine support, it is hard to obtain tight execution-time bounds for Java threads, and such timing
analyses are all dependent on eventual target architectures and base operating systems (if utilised).
Some techniques, however, have been suggested (e.g. [6, 41]), and the release of the specifications for
real-time Java [8] will certainly improve the current situation.
Rating: 2. Loosely bounded execution time(s) can be obtained.

L.1.2.3. Resource usage analysis
On account of the presence of the background garbage collector, it is generally difficult to predict how
much memory space will be in use at a given moment in time, or even deducing the worst case can
become impractical (and dependent on which garbage collection algorithms are employed). However,
subsets of Java or of the Real-Time Specification for Java [8], such as [40] in which garbage collection is
excluded, will ease this sort of analysis.
Rating: 2. Worst-case analysis is possible, but not practical.

L1.3. Language Processors / Run-time environment / Tools
L.1.3.1. Cer tified language translators / Run-time environments
To the best of our knowledge, Java compiler and virtual machine validation is still an on-going
research work. Whereas it may never be possible to formally exploit and validate such complex
software, some attempts have been made to conduct conformity assessment of Java or Java-like
language processors to the language specification and industry standards, for example see [39].
Reported errors are reasonably well documented and updated.
Rating: 2. Language translators may contain several known errors or malfunctions that are well
documented, but they will not affect the development of high integrity software.

L.1.3.2. Run-time suppor t / Environment issues
It is not easy to perform analyses on additional code, i.e. that of variable run-time systems, APIs, native
methods, unless a sound standard for such program entities is developed.
Rating: 3. Unknown.

4.2. Assessment of Java against Level 2
L.2.1. Syntactical / Semantic Requirements
L.2.1.1. Exception Handling / Failure behaviour
Java has a wide variety of predefined exception classes, and programmers are also allowed to define
customised (checked) exceptions and program’s behaviours. Uncaught exceptions, i.e. unchecked
exceptions or errors, can become problematic as they may simply result in the system halting.

L.2.1.2. Model of Mathematics
Java provides a rich set of integer and floating point data types, and the java.math package can be used
to assist in more rigorous mathematical applications. While the utilisation of the standard IEEE 754
arithmetic semantics is seen as universally beneficial in terms of compatibility, it is occasionally not
desirable as it hinders the utilisation of advanced hardware, for example, built-in co-processors [7].

L.2.1.3. Suppor t for User documentation
Java provides two ways of commenting source code. Furthermore, there is a facility for automatically
generating on-line documentation of user classes, i.e. javadoc tool.

L.2.1.4. Suppor t for a range of static types including subtypes and enumeration types
Subtypes and enumeration types are not supported in Java, but may possibly be emulated with
additional overheads.

L .2.1.5. Coding style guidelines
There are coding style documents available at the web site of Sun Microsystems [45]. However, none
of them specifically addresses high integrity or real-time applications.

L .2.1.6. Suppor t for abstraction and information hiding
As an object oriented language, Java offers abstraction by means of the abstract class type and
interface, where no implementation details are allowed. Information hiding is also naturally supported.

L .2.1.7. Asser tion checking
There was not any specific language construct for assertion checking in the previous releases of Java.
However, in the new release of Java, i.e. J2SE 1.4, a simple assertion facility is provided, so that
programs can be checked against assertions. See http://www.jcp.org/jsr/detail/41.jsp for more
information.

L.2.2. Language Processors / Run-time environment / Tools
L.2.2.1. Cer tified (static/dynamic) analysis tools
A large number of analysis tools have been developed to assist in debugging Java programs, but most
of them are not certified by reliable bodies or standards. However, as mentioned above, tools such as
Java PathFinder 2 (from NASA) and the Extended Static Checker for Java (from Compaq) appear to be
successful in detecting many known errors.

L.2.2.2. Inter face to other languages
Java cannot directly interface to programs written in other languages. But, it is possible to invoke
native methods, mostly written in C, of the run-time environment. This will result in poor portability.

L .2.2.3. Code optimisation
Most of the available optimisation techniques are not applied until Java programs reach their target or
virtual machine for security reasons. Different quality of code or performance may be generated
depending on how code is processed, i.e. bytecode can be interpreted, compiled Just-in-Time, or
compiled Ahead-of-Time. It is complex to statically analyse optimised native code in relation to high-
level bytecode. Optimisation will also make the complexity of compiler and tool validation more
difficult.

L.2.2.4. Code por tability

Following the “ write once and run everywhere” motto, Java has become a truly portable programming
language for most of the well-known platforms. In addition, Java chips with an integrated virtual
machine and processor also start to appear. However, a problem can arise when non-standard
processors or operating systems are utilised, where the burden of developing a new virtual machine is
left to the system developer.

4.3. Summary of Assessment
Most of the Level 1 criteria are not, or loosely met by Java. Below is a summarising classification of
the strengths and weaknesses identified above.

Strengths
Java is a strongly typed object-oriented language that provides an excellent means of modularising and
structuring programs (L.1.1.3), and is well understood (L.1.1.5). It also supports concurrent execution
of multiple threads as well as some key synchronisation mechanisms (L.1.1.7).

Weaknesses
Reference types are not generally amenable to static checking (L.1.1.1). Furthermore, side effects can
occur in expressions, and some returned values may be quietly discarded (L.1.1.2). There are several
formal definitions and semantics of Java, but they are predominantly concerned with parts of the
language (L.1.1.4). Embedded applications, in which hardware control is essential, can only be
supported by means of native methods (L.1.1.6), although implementations of the specifications for
Real-Time Java are expected to solve this problem.

It is not straightforward to apply various analysis techniques directly to Java due to some of its
complex features (L.1.2.1), but there appear to be some evolving analysis tools. Timing analysis is also
difficult to perform on Java code (L.1.2.2), as is resource usage analysis (L.1.2.3).

There is no formally validated Java compiler and virtual machine, but conformity-checking tools do
exist (L.1.3.1). It is also complex to perform any analyses on additional code, such as that of APIs and
run-time systems (L.1.3.2).

Regarding Level 2 requirements, the following strengths and weaknesses have been identified.

Strengths
• Integrated exception handling mechanism (L.2.1.1)
• Rich set of integer and floating-point data types, and java.math package (L.2.1.2)
• Support for user documentation (L.2.1.3)
• General coding style guidelines (L.2.1.5)
• Support for abstraction and information hiding (L.2.1.6)
• Code portability (L.2.2.4)

Weaknesses
• Overhead and complexity of exception handling mechanism (L.2.1.1)
• The utilisation of the standard IEEE 754 arithmetic semantics can be overhead, and no exception is

generated for particular operations (L.2.1.2)
• No support for subtypes and enumeration types (L.2.1.4)
• No coding guidelines for high integrity applications (L.2.1.5)
• No assertion checking facility (L.2.1.8)
• Shortage of certified analysis tools (L.2.2.1)
• Difficulty in interfacing to programs written in other languages (L.2.2.2)
• Complexity of analysing optimised code (L.2.2.3)

5. Review of Subsets
Burns et al. [13] suggest that a restricted programming model or profile can help produce efficient and
predictable systems by removing language features with high overheads, and complex and erroneous
semantics. Along these lines, there have been a few subsets or profiles for Java suggested in the
literature2.

2 In fact, there are subsets of Java defined for other purposes than for use in high integrity systems. For example, in
[Drossopoulou+1999] the authors define a series of subsets in order to prove the type soundness of them.

Bentley [7] defines a sequential subset of Java after assessing the language. The subset
consists of 21 rules that are effectively derived from [21], [36] and his assessment. All the rules are
categorised into six groups, most of which are concerned with the use of some problematic features of
the language itself. However, while this subset will undoubtedly help produce analysable and
predictable sequential programs, it can be criticised for its restriction on multithreading, one of Java’s
inherent elements. Without the language-level support for multithreading and all the associated
synchronisation mechanisms, Java may not be considered as a great evolution from its predecessors. In
addition to this, the subset also fails to address issues on the object-oriented programming model of the
language, as well as real-time issues.

Puschner and Wellings [40] suggest a Ravenscar-like profile for the Real-Time Specification
for Java [8], and it is in fact a predecessor of the work presented in this paper. The profile is primarily
focused on leaving out complex features of the RTSJ. However, little attention is paid to Java’s
sequential language constructs (unlike [7]) and object-orientation features that can be problematic in
performing various static analyses. Furthermore, the profile is not consistent with the current version of
the RTSJ. Kwon et.al. [52], however, extend Puschner’s work to produce a more complete and up-to-
date version of the profile. It is based on important guidelines and standards, such as the software
guidelines from the U.S. Nuclear Regulatory Commission [37].

A sub-committee has been formed within the Real-Time Java Working Group of the J
Consortium to produce a high integrity profile based on the Real-Time Core Extensions [23]. The
profile has not publicly been released yet, but according to Dobbing [17] it will resemble the Ravenscar
profile for Ada95 [13]. It consists of four main themes: partitioning, memory management,
concurrency, and error recovery, respectively. Like the one proposed in [40], this profile is mainly
focused on sub-setting the Real-Time Core Extensions [23], but does not address issues on the use of
problematic language constructs and object-orientation features of Java.

6. Conclusions
We have reviewed important requirements of programming language for the development of high
integrity software, and defined 23 assessment criteria derived from the requirements. The criteria are
divided into two groups, namely, Mandatory requirements (Level 1) and Desirable requirements
(Level 2). Appropriate references and rationale for each criterion are given, and suitable ratings are also
provided for the Level 1 requirements.

The Java programming language and its associated environments are then assessed against the
two levels of criteria, and we conclude that Java is a good general language, yet not appropriate as a
whole for the development of high integrity systems that require rigorous and predictable language
features, compilation systems, and tools. However, Java may be able to qualify as a suitable vehicle in
the future with the help of sub-setting the language (e.g. [52]) and future developments of formal
mechanisms, although most of the currently proposed subsets do not address all the necessary areas
required for high-integrity real-time systems. There is perhaps some movement towards a
standardisation through the Java 2 Platform Micro Edition (J2ME) that introduces profiles for resource
constrained mobile devices. One could devise a profile for high-integrity real-time systems.

7. References
[1] J. Alves-Foss and D. Frincke, Formal Grammar for Java, in LNCS 1523 Formal Syntax and

semantics of Java (ed. J. Alves-Foss), Springer-Verlag, Berlin, 1999.
[2] J. Alves-Foss and F. S. Lam, Dynamic Denotational Semantics of Java, in LNCS 1523 Formal

Syntax and semantics of Java (ed. J. Alves-Foss), Springer-Verlag, Berlin, 1999.
[3] W. Amme, N. Dalton, M. Franz, and J. Von Ronne, SafeTSA: A Type Safe and Referentially Secure

Mobile-Code Representation Based on Static Single Assignment Form, Accepted for the 2001
ACM SIGPLAN Conference on Programming Language Design and Implementation 2001.

[4] Andrew W. Appel, Protection against untrusted code: The JIT compiler security hole, and what
you can do about it, http://www-106.ibm.com/developerworks/library/untrusted-code/, as of
January 2001.

[5] A. Azevedo, A. Nicolau, and J. Hummel, Java Annotation-Aware Just-In-Time (AJIT) Compilation
System, ACM 1999 Java Grande Conference, 1999.

[6] I. Bate, G. Bernat, G. Murphy, P. Puschner, Low-level analysis of a portable WCET analysis
framework, 6th IEEE Real-Time Computing Systems and Applications (RTCSA), 2000.

[7] S. Bentley, The Utilisation of the Java Language in Safety Critical System Development, MSc
dissertation, Department of Computer Science, University of York, 1999.

[8] G. Bollella, et al, The Real-Time Specification for Java, Addison-Wesley, 2000.

[9] G. Bollella and J. Gosling, The Real-Time Specification for Java, IEEE Computer, Vol. 33, No. 6,
June 2000.

[10] J. P. Bowen and M. G. Hinchey, High-Integrity System Specification and Design, Springer-Verlag
London, 1999.

[11] G. Brat, K. Havelund, S. Park, and W. Visser, Java PathFinder – Second Generation of a Java
Model Checker, In Proceedings of Post-CAV Workshop on Advances in Verification, Chicago,
July 2000.

[12] D. F. Brown and D. A. Watt, JAS: a Java Action Semantics, in Proc. of 2nd International
Workshop on Action Semantics (ed. Mosses, P.D., and Watt, D.A.), BRICS NS-99-3, University
of Aarhus, Denmark, 1999.

[13] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking Profile for High Integrity Real-Time
Programs, In L. Asplund, editor, Proceedings of Ada-Europe 98, LNCS, Vol. 1411, pages 263-275, Berlin
Heidelberg, Germany, Springer-Verlag 1998.

[14] B. A. Carré, T. J. Jennings, F. J. Maclennan, P. F. Farrow, and J. R. Garnsworthy, SPARK – The
SPADE Ada Kernel, 3rd ed, Program Validation Limited, 1990.

[15] D. Craigen, M. Saaltink and S. Michell, Ada 95 Trustworthiness Study; A Framework for Analysis,
ORA Canada, 29 November 1995.

[16] W. J. Cullyer, S. J. Goodenough, and B. A. Wichmann, The Choice of Computer Languages for use in Safety-
Critical Systems, Software Engineering Journal, March 1991.

[17] B. Dobbing, The Ravenscar Profile for High-Integrity Java Programs?, ACM Ada Letters, Vol.
21, Issue. 1, March 2001.

[18] S. Drossopoulou and S. Eisenbach, Describing the Semantics of Java and Proving Type
Soundness, in LNCS 1523 Formal Syntax and semantics of Java (ed. J. Alves-Foss), Springer-
Verlag, Berlin, 1999.

[19] Li Gong, Inside Java™ 2 Platform Security: Architecture, API Design, and Implementation,
Addison-Wesley, 1999.

[20] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specification, 2nd Edition,
Addison Wesley, 2000.

[21] A. Hutcheon, B. Jepson, D. Jordan, and I. Wand, A Study of High Integrity Ada: Language
Review, Technical Report SLS31c/73-1-D, Version 2, York Software Engineering, University of
York, July 1992.

[22] Programming Languages – Guide for the Use of the Ada Programming Language in High
Integrity Systems, ISO/IEC DTR 15942, ISO/IEC WG9, 1999.

[23] J Consortium, International J Consortium Specification: Real-Time Core Extensions, Revision
1.0.14, www.j-consortium.org, September 2000.

[24] D. Kozen, Language Based Security, Technical Report TR99-1751, Cornell University, 1999.
[25] N. G. Leveson, Software Safety: Why, What, and How, Computing Surveys, Vol. 18, No. 2, ACM,

June 1986.
[26] N. G. Leveson, Software Safety in Embedded Computer Systems, Communications of the ACM,

Vol. 34, No. 2, February 1991.
[27] The Motor Industry Software Reliability Association, Development Guidelines for Vehicle Based

Software, ISBN 0952415607, MIRA Ltd., November 1994.
[28] The Motor Industry Software Reliability Association, Report 1: Diagnostics and Integrated

Vehicle Systems, MIRA Ltd., February 1995.
[29] The Motor Industry Software Reliability Association, Report 2: Integrity, MIRA Ltd., February

1995.
[30] The Motor Industry Software Reliability Association, Report 3: Noise, EMC and Real-Time,

MIRA Ltd., February 1995.
[31] The Motor Industry Software Reliability Association, Report 4: Software in Control Systems,

MIRA Ltd., February 1995.
[32] The Motor Industry Software Reliability Association, Report 5: Software Metrics, MIRA Ltd.,

February 1995.
[33] The Motor Industry Software Reliability Association, Report 6: Verification and Validation,

MIRA Ltd., February 1995.
[34] The Motor Industry Software Reliability Association, Report 7: Subcontracting of Automotive

Software, MIRA Ltd., February 1995.
[35] The Motor Industry Software Reliability Association, Report 8: Human Factors in Software

Development, MIRA Ltd., February 1995.
[36] The Motor Industry Software Reliability Association, Guidelines for the use of the C language in

vehicle based software, The Motor Industry Research Association, 1998.

[37] H. Hetcht, M. Hecht, S. Graff, et at, Review Guidelines for Software Languages for Use in Nuclear
Power Plant Systems, NUREG/CR-6463, U.S. Nuclear Regulatory Commission, 1997, also
available at http://fermi.sohar.com/J1030/index.htm, last accessed in January 2002.

[38] D. L. Parnas, A. J. van Schouwen, and S. P. Kwan, Evaluation of Safety-Critical Software,
Communications of the ACM, Vol. 33, No. 6, June 1990.

[39] JETS, A Perennial Validation Suite for the Java language,
http://www.peren.com/pages/jets_set.htm, last accessed in December 2001.

[40] P. Puschner and A. J. Wellings, A Profile for High-Integrity Real-Time Java Programs, Proceedings of
ISORC 2001.

[41] P. Puschner, G. Bernat, WCET Analysis of Reusable Portable Code, Proceedings of the 13th
Euromicro International Conference on Real-Time Systems, 2001.

[42] M. Saaltink and S. Michell, Ada 95 Trustworthiness Study; Analysis of Ada 95 for Critical
Systems, V2.0, ORA Canada, 27 March 1997.

[43] M. Saaltink and S. Michell, Ada 95 Trustworthiness Study; Guidance on the Use of Ada95 in the
Development of High Integrity Systems, V2.0, ORA Canada, 27 March 1997.

[44] N. Storey, Safety-Critical Computer Systems, Addison Wesley Longman 1996.
[45] Sun Microsystems, Code Conventions for the Java Programming Language, available at

http://java.sun.com/docs/codeconv/html/ CodeConvTOC.doc.html, written in April 1999, last
accessed in December 2001.

[46] TimeSys™, Products and Services: Real-Time Java, available at
http://www.timesys.com/rtj/index.html, last accessed in January 2002.

[47] U.K. Ministry of Defence, The Procurement of Safety Critical Software in Defence Equipment,
INTERIM Defence Standard 00-55 (PART 1: REQUIREMENTS)/Issue 1, 5 April 1991.

[48] U.S. Department of Defence, Requirements for High Order Computer Programming Languages
“ STEELMAN” , U.S. Department of Defence, 1978.

[49] U.S. Department of Defence, Ada 9X Requirements, Office of the Under Secretary for Defence
Applications, Washington, D.C., December 1990.

[50] D. A. Watt and D. F. Brown, Formalising the Dynamic Semantics of Java, In Proceedings of the
Third International Workshop on Action Semantics (AS2000), Recife, Brazil, May 2000.

[51] D. A. Wheeler, Ada, C, C++, and Java vs. the Steelman, ACM Ada Letters, Vol. 17, Issue 4, July
1997.

[52] J. Kwon, A. Wellings and S. King, Ravenscar-Java Profile: A High Integrity Profile for Real-Time
Java, Proceedings of the ACM Java Grand-ISCOPE conference 2002, Seattle, WA, USA,
November 2002

