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Abstract. In this paper, we present a memory management model for the 
Ravenscar-Java profile. Because of the complexity and run-time overheads in 
verifying the proper use of the RTSJ’s scoped memory, it is unfavourable in the 
area of high integrity systems where any unpredictability must be cast out. Our 
approach maps one anonymous memory area to a user-specifiable method by 
means of our Java 1.5 annotation types. This straightforward model eliminates 
single parent rule checks and simplifies other run-time checks that are the main 
cause of unpredictability and overheads. In fact, it also makes the programmer’s 
job easier since he/she does not have to worry about creating and maintaining 
memory areas. All the annotated methods will be automatically converted by a 
transformer into an RTSJ/Ravenscar-Java compliant version. The semantics of 
the RTSJ remains the same, meaning that any program in our model when 
transformed is also a legal RTSJ program. Our key contribution is the definition 
of a predictable memory model and guidelines that will reduce/eliminate run-
time overheads. A bonus to this is a less complicated programming model. 

1 Introduction 

Programmers do not want to be distracted by avoidable system-level activities, such 
as memory allocation/de-allocation. The RTSJ has added the notion of scoped 
memory that is intended for a more predictable execution of real-time Java programs. 
This can become an unnecessary burden to the programmer as well as to the 
underlying virtual machine. Every time an object in a memory area is assigned to a 
different memory area, that assignment has to be checked at run-time to prevent any 
dangling references. Programs are also more difficult to analyse with the additional 
features since, for example, memory areas can be nested and thus illegal nestings may 
result. 

Moreover, programs can become inefficient in terms of their use of memory. 
Because now memory management is up to the programmer, he/she may wrongly 
decide to keep some unused memory areas active for a prolonged time, in which other 
components may be starving for more memory space. Portability and maintainability 
of RTSJ programs can also become problematic. On the whole, the new memory 
management model can introduce more programming errors and reduce the run-time 
performance of the whole system. However, we still want our programs to be 
predictable, i.e., we would like to know when memory will be allocated/de-allocated, 
and the overheads of such operations. 
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As a countermeasure to this problem, we propose here a programming utility that 
makes use of the original RTSJ’s scoped memory to iron out some of the 
aforementioned concerns of Java in real-time systems. Novel to this utility is a 
memory model that matches one anonymous memory area to one user-decidable 
registered method. Programmers need no knowledge about what and how memory 
areas are used. The utility will automatically create a memory area for a registered 
method and execute that method as well as all other non-registered subsequent 
method calls that the method invokes in the memory area. Only when the registered 
method returns, the memory area will be reclaimed and freed (this acts as if each 
registered method has its own stack for all objects it creates). For this reason, the 
single-parent rule of the RTSJ no longer needs to be checked. 

Programmers have the freedom to fine-tune memory usage of the program by 
executing certain methods in a new memory area, others in an existing one (i.e., 
caller’s memory). For example, a small and infrequently invoked method can choose 
not to have its own memory area, but to depend on its caller’s memory, so that the 
overhead of creating and finalizing a memory area is kept to a minimum at the 
expense of some additional memory space in the caller’s memory area. 

Assignment checks can also be reduced or completely eliminated if the 
programmer follows our guidelines presented in this paper. With an extensive 
analysis, however, such guidelines can be relieved. An analysis tool may be 
developed such that it checks escapement of references through method calls, local 
objects, and returned objects. References to outside objects1 can be passed to the 
current method as parameters to that method, or as internal objects defined within the 
enclosing object that the method belongs to. Class objects or any other shared objects 
can also be assigned with a local reference. All these cases can be checked by 
syntactically analysing the logic of each method. Yet, this can be greatly simplified if 
our guidelines are in position. As outlined above, our key contribution is the 
definition of a predictable memory model and guidelines that will reduce/eliminate 
run-time overheads. A bonus to this is a less complicated programming model. 

This paper is structured as follows: Section 2 will briefly review the Ravenscar-
Java profile and issues related to the RTSJ. Next, we will introduce our proposed 
approach in detail in Section 3. This section will cover the key features, our 
annotations and an example. Issues on the implementation and design of our tool will 
be discussed in Section 4, before we briefly review some related works. Conclusions 
will be drawn at the end. 

2 Brief Review of the RTSJ and Ravenscar-Java Profile 

2.1 Ravenscar-Java Profile 

In recent years, there has been a major international activity, initiated by Sun, to 
address the limitations of Java for real-time and embedded systems. The Real-Time 
Specification for Java (RTSJ) [2] attempts to minimise any modification to the 

                                                           
1  By outside objects, we mean objects that are not created within the current method and 

memory area pair. 
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original Java semantics and yet to define many additional classes that must be 
implemented in a supporting virtual machine. The goal is to provide a predictable and 
expressive real-time environment. This, however, ironically leads to a language and 
run-time system that are complex to implement and have high overheads at run-time 
(Sources of run-time overhead include interactions between the garbage collector and 
real-time threads, assignment rule/single-parent rule checks for objects in different 
memory areas, and asynchronous operations). Software produced in this framework is 
also difficult to analyse with all the complex features, such as the asynchronous 
transfer of control (ATC), dynamic class loading, and scoped memory areas. 

Following the philosophy of the Ravenscar profile for Ada [4], we have proposed a 
high integrity profile for real-time Java (called Ravenscar-Java [8]) along the lines of 
the set of software guidelines produced by the U.S. Nuclear Regulatory Commission 
(NRC) [6]. This restricted programming model (or a subset of Java and RTSJ) offers a 
more reliable and predictable programming environment by preventing or restricting 
the use of language features with high overheads and complex semantics. Hence, 
programs become more analysable in terms of timing and safety and, ultimately, 
become more dependable. The profile is intended for use within single processor 
systems. 

The computational model of the profile defines two execution phases, i.e. 
initialisation and mission phase. In the initialisation phase of an application, all 
necessary threads and memory objects are created by a special thread Initializer, 
whereas in the mission phase the application is executed and multithreading is 
allowed based on the imposed scheduling policy. There are several new classes that 
will enable safer construction of Java programs (for example, Initializer, 
PeriodicThread, and SporadicEventHandler), and the use of some existing classes in 
Java and RTSJ is restricted or simplified due to their problematic features in static 
analysis. For instance, the use of any class loader is not permitted in the mission 
phase, and the size of a scoped memory area, once set, cannot be altered. Objects that 
do not need reclaiming should be allocated in the immortal memory (thus in the 
initialization phase). For further restrictions, see [8]. 

2.2 RTSJ’s Memory Model 

There is one major concern with the use of the RTSJ’s memory model in high 
integrity applications, that is, the runtime overheads of checking the single parent and 
assignment rules are often unpredictable and thus undesirable. A number of 
approaches have been proposed to reduce the overheads of dynamic checks, but we 
claim in this paper that such expensive operations can be completely eliminated by a 
few well-defined programming guidelines and a program transformer or virtual 
machine support. 

2.3 Relationship to the Profile 

The work presented in this paper should be regarded as an optional extension to the 
Ravenscar-Java Profile. In particular, it relaxes one of the rules, i.e., “no nested 
scoped memory areas” constraint. 
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3 Scoped Memory Method Invocation 

3.1 Motivation 

Because in Java every object is allocated in the heap and reclaimed by the garbage 
collector, one does not have to care about allocating and freeing memory space for 
new objects. However, its unpredictability and possible interferences with real-time 
threads means that it is not a convincing option for hard real-time applications. 
The RTSJ has added the notion of scoped memory to solve this problem. Due to the 
vast amount of additional features, however, a very complex programming model can 
be created and, especially, memory areas can be utilized in an erratic way. That means 
the virtual machine must check for misuses of memory areas at run-time, i.e., single-
parent rule and assignment rule checks. The overheads incurred by such operations 
are high and unpredictable, and extremely undesirable in resource-sensitive 
applications. This may also hinder portability, maintainability, and analysability of 
RTSJ programs. 

3.2 The Idea in a Nutshell 

In many imperative and procedural languages, programs are organized into blocks of 
code that are called functions, procedures, or methods in the case of Java. Each 
method has a functional purpose, such that it takes an input, processes it, and returns a 
result. A chain of method calls is constructed at runtime that can be represented as a 
stack, as shown below. In most cases, parameters that are passed to a method are only 
read and used in the production of the result. Each method has its own stack to store 
parameters, immediate results, and any local/temporary variables. Any other objects 
are allocated in the heap in Java by default. 

This model can be extended to take on board scoped memory in a way that the 
program becomes simpler to analyse and run-time checks are minimized. A method 
can be associated with an anonymous memory area created by the run-time, and that 
memory area is entered whenever that method is invoked. All objects will be created 
within the current memory area, and the area will be reclaimed when the method 
returns, in the same way as the method stack is allocated and freed.  
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Fig. 3.1. Scoped Memory and Method Invocation Stack 
 

Programmers can have the freedom to fine-tune memory usage of the program by 
executing certain methods in a new memory area, others in an existing memory area 
(i.e., caller’s memory area). For example, a small and infrequently invoked method 
can choose not to have its own memory area, but depend on its caller’s memory, so 
that the overheads of creating and finalizing a memory area is kept to a minimum at 
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the expense of some additional memory space in the caller’s memory area (see Figure 
3.1 above). 

In order to associate a method to a memory area, we use annotation types that take 
advantage of the Java 1.5’s annotation facility [10] (See Figure 3.2 below for an 
illustration). Memory areas are created anonymously, so that programmers cannot 
gain a direct access to them. This prevents misuses of memory areas; especially, the 
single parent rule check is no longer required at run-time by the virtual machine. 
Illegal assignments can also be checked using a static Escape analysis technique [1]. 
We will explore these matters further in section 3.4 and 3.5. 
 
… 
    @ScopedMemoryMethod(   size = 10000, 
        isAssignmentCheckRequired = false, 
        allocateCalleesReturnedObject = true, 
        allocateCalleesExceptionObject = true 
        reuseMA = false) 
    public anObject complexCalculation(int param) { 
        @ReturnedObject(type = anObject) 
        anObject rtn = new anObject(…); 
        … 
        for (int j = 0; j>param; j++) { 
            rtn.result = method1(j)); 
        } 
        return rtn; 
      } 

Fig. 3.2. Annotating a method to associate with an anonymous memory area 
 

Objects that are to be returned to the caller can be allocated in the caller’s mem- 
ory area, if such objects are identified and annotated in advance 2  (see 
@ReturnedObject annotation in the above example). That way, when the current 
method returns, the returned object need not be copied back to the caller’s memory 
area, saving valuable computation time. 

3.3 Key Features 

In this model, threads have no knowledge about memory areas (except the immortal 
memory). Each method that has an associated memory area acts as if every object 
created in that method is stored in the method’s local stack, and they are freed after 
the method returns. Below are the key features of our model. 
 

• One to one matching between a scoped memory area (MA in short hereafter) and 
a user-specifiable method. There is no thread-oriented memory area stack. 

• An MA object can be reused after the method returns or simply be reclaimed. 
Programmers can specify this requirement in the annotation. When the same 

                                                           
2  Programmers have the knowledge on which object is to be returned to the caller method. 

Such objects can be annotated, so that they will be allocated within the caller’s memory area. 
This saves copying objects between memory areas. But, of course, the size of a returnable 
object must be bound. 
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method is invoked next time, it will be given the same anonymous MA if its 
reuse flag is set to true; otherwise, the MA object itself will be reclaimed. 

• A method can have its own MA to use, or choose to be dependent on its 
outer/caller method’s MA. E.g., an infrequently called method can choose not to 
have its own memory area. 

• MAs are all independent of each other and invisible at the source code level. No 
MAs will be entered by more than one thread/method at the same time. In fact, 
threads do not know which MAs they enter (i.e., they are invisible and 
anonymous!). For this reason, the single-parent rule in RTSJ is no longer 
required. 

• Programs can either be transformed into a RTSJ compliant version that utilizes 
scoped memory, or a virtual machine can be developed, so that it takes care of 
creation, allocation, and reclamation of MAs at run-time. 

• Referencing objects in the same method (this MA) does not cause any concern. 
• Any references to objects created in the caller methods (thus outside this MA) is 

allowed. Such references can be passed as parameters to the method or as local 
objects of the enclosing object that the method belongs to. However, references 
to objects in a callee method are not allowed. This must be analysed. 

• Illegal references can be checked by a method oriented analysis tool that 
incorporates the escape analysis. 

• Objects in the immortal memory can always be referenced, whereas those in the 
heap cannot. This is to prevent any interactions between the garbage collector 
and real-time threads. 

3.4 Single Parent Rule Checks 

In the RTSJ, it must be checked that a thread does not enter a scoped memory area 
that is already active. In other words, if a thread has entered memory area A, B, and C 
in sequence, it cannot enter A again and allocate some objects that can refer to objects 
created in B and C, because the lifetime of A is in fact longer than B and C, and 
dangling references can be created. 

In our model, threads simply cannot obtain references to memory areas, and all 
memory areas are anonymous. Even if a thread wants to enter the same memory area 
twice, there is no way it can do that! All the memory areas will be created internally 
by the virtual machine when a registered method is invoked. This will completely 
eliminate runtime overheads for checking the single parent rule. 

3.5 Assignment Violation Checks 

Assignment checks fail if and only if the following condition is satisfied in our model. 
 

“A reference to an object within the current MA-registered method is assigned to 
another object that resides in a MA-registered caller.” 

Assignment Violation Condition 
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More specifically, there are the following two cases. 
Case 1. Direct Assignment of a method-local object to outside objects. It is fine if 

the enclosing object and the method share the same memory area; there is no need for 
any check. But if the method has entered a new memory area, then this is an illegal 
operation and a dangling reference can result when the method returns. The following 
example illustrates this point. 
 
 
public class aClass { 
    private anObject outsider; 
    @ScopedMemoryMethod( … ) 
    public anObject aMethod(int param) { 
        anObject insider = new anObject(); 
        outsider = insider;    // *** Assignment violation *** 
        … 
      } 
     
    public anObject methodCaller(int param) { 
        outsider = aMethod(param); 
        … 
    } 
} 

Fig. 3.3. Direct Assignment of a method-local object to an outside object 
 

As shown above in aMethod(), when insider is assigned to outsider, an assignment 
violation occurs. This can be avoided if outsider is declared as final, so that the 
reference cannot be modified in methods. Alternatively, the method can create a local 
copy of the object, use it, and return it as a ReturnedObject mentioned earlier. If 
annotated by the ReturnedObject type, that object will be created in the parent MA. 
This means that the returned object shares the same memory scope as the object-local 
object. However, this is only possible when the parent method (the one that invokes 
aMethod in the first place, i.e., methodCaller()) and the object outsider are in the 
same scope. 

Case 2. Indirect Assignment/Escapement as a parameter to a method call. If this 
callee method does not have its own memory area, then assignments are allowed 
unless that method invokes another one with a memory area associated with it, and 
passes the object to that method. The passed object and its members must only be 
read or ‘used’ by all the callees, but not any member objects to be ‘re-defined’ or 
assigned a new local reference by invoking a member method – this is an assignment 
violation. All subsequent method calls must be checked until the object in question is 
not passed any more to other methods and objects. Therefore, if an object can change 
any of its member objects’ references by invoking a method, that method must share 
the same memory area as that of the enclosing object. Otherwise, an illegal reference 
can be created. 

In short, it is best to declare any escapable objects as final. However, this seems 
too restrictive in some cases. Therefore, a static escape analysis can be performed to 
identify only those that are indeed assigned with references to method-local objects in 
different memory areas. The Static Single Assignment (SSA) form [5] is useful here 
since a program in that form can reveal whether a variable or object is defined (or 
assigned to a new value). So, first we need a graph of method invocations by 
conducting an escape analysis, and the SSA form representation of code for each of 
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public class aClass { 
    private anObject outsider; 
 
    @ScopedMemoryMethod( … ) 
    public void aMethod(anObject param) {  
       anotherMethod(param); 
        … 
      } 
 
    @ScopedMemoryMethod( … ) 
    public void anotherMethod(anObject param) { 
        anotherObject x = new anotherObject(); 
        … 
        param.xSet(x);       // *** Assignment violation *** 
    } 
} 

Fig. 3.4. Indirect Assignment/Escapement as a parameter to a method call 
 
the methods. Going through each method, a tool can examine whether the parameter’s 
assignment counter, as well as the parameter’s member objects’ counters, ever 
becomes greater than 0. If the counter goes up to 1, it means that the parameter or 
some member object is modified and the assignment will raise an exception at 
runtime. Therefore, a method-level static escape analysis can identify illegal 
assignments statically. 

3.6 Dealing with Returned Objects 

There are situations where an object must be returned to a distant caller in a series of 
method invocations. When the methods do not share a memory area, such a returned 
object has to be relayed back to the original caller’s memory area and its reference  
to become available for the original caller method. When the chain of methods is  
long, and there are more than two memory areas involved, overheads can be high  
due to copying the returned object from area to area. In order to resolve this, we  
propose an additional parameter that can specify where to store a returned  
object from the beginning of a method call (this parameter is added in the 
@ScopedMemoryMethod annotation; see the next section for details). 
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Fig. 3.5. Returned objects can be stored in one of parents’ memory areas 
 

As an illustration, assume that a thread has invoked a number of methods, say A, 
B, C, and D, which all have their own memory areas (see Figure 3.5 above). The 
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returned object from D can be relayed back to A, and in which case that object can be 
stored in A’s memory area from the very beginning of D. This means that the object 
will not be copied back to C, B, and then A at run-time, reducing the overheads of 
copying objects. All returned objects must be annotated with @ReturnedObject 
to take advantage of this feature. Assignment checks are still required since a returned 
object can acquire a reference to an outside object, e.g., an object in D, C or B. Since 
the returned object is identified by the programmer, it can be checked by our tool that 
such objects are not allocated with any method local references. 

This solution takes care of conditional invocations of methods. When there is an 
‘if’ statement and two different sets of methods to call with different requirements on 
returned objects, we have a way of specifying that a returned object from one 
conditional branch will be stored in which method’s memory area. Consider Figure 
3.6 for a basic mode of operations. 
 

Method1
allocateCalleesReturnedObject(True)

MemoryArea1

Method1
allocateCalleesReturnedObject(True)

Memory Area1 Method3
allocateCalleesReturnedObject(...)

MemoryArea3

Method2
allocateCalleesReturnedObject(False)

MemoryArea2

Call

Call

ReturnedObj1

ReturnedObj2

Method1
allocateCalleesReturnedObject(True)

MemoryArea1

Method1
allocateCalleesReturnedObject(True)

Memory Area1 Method3
allocateCalleesReturnedObject(...)

MemoryArea3

Method2
allocateCalleesReturnedObject(True)

MemoryArea2

Call

Call

ReturnedObj1

ReturnedObj2

(a)
(b)

Fig. 3.6. Different ways of dealing with returned objects 
 
 

The new attribute allocateCalleesReturnedObject is by default set to true (b), 
meaning that any returned object from a callee will be stored in the direct caller 
method’s memory area. If it is set to false (a), any returned object will not be stored 
here, but in a memory area up in the chain where this attribute is set to true. 

An interesting problem occurs, however, if both branches invoke a number of 
different methods, and eventually one common method that returns an object, as 
illustrated in Figure 3.7 below. When one branch requires the returned object to be 
stored in somewhere other than the memory area that the original conditional branch 
instruction belongs to, an appropriate allocateCalleesReturnedObject attribute can be 
set to true or false, depending on where we want the object to be stored. In case 1 in 
Figure 3.7, the returned object will be created in MA1 from the beginning, whereas in 
case 2, it will be Method5’s memory area that the object will be created and stored. 

The size of every returned object must be bound in order for our model to work. It 
becomes impossible to analyse and specify the size of a memory area if an arbitrarily 
sized object can be returned. Returned objects must be annotated, so that the 
transformer or an analyser can check the type and the caller memory area’s size. It 
also has to be checked that a returned object does not take any method local 
references with it. This can cause an assignment check violation as explained in the 
previous section. 
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Fig. 3.7. Dealing with returned objects: conditional branches with a common method call 
 

In some cases, although an object is not syntactically returned to a caller (with a 
return statement), it can eventually have the same effect. If a MA-associated method 
needs to allocate an object in one of the callers’ MAs, then that object should also be 
annotated with @ReturnedObject annotation. This can prevent illegal assignments. 

3.7 Dealing with User Exceptions 

Exceptions are represented as objects in Java. A new exception object is created at 
runtime when a particular exception is raised. Similar to returned objects in the 
previous section, exception objects should be treated in the same way, so that we can 
save copying exception objects between memory areas when exceptions can be 
propagated or relayed. We have added a new attribute in @ScopedMemoryMethod 
annotation type, allocateCalleesExceptionObject, to cater for such situations. 
Exception objects should also be annotated with @PropagatedException 
annotation to take advantage of this feature, which is defined in the next section. 

An analyser or the transformer will have to check if an annotated exception is 
indeed handled in the method whose allocateCalleesExceptionObject is set to true. 

3.8 Annotation Types and Programming Procedures 

We make use of the annotation facility of Java 1.5. Our annotation types are declared 
in the following way and illustrated below with an example. 

ScopedMemoryMethod 
This annotation type is used to declare that the subject method will be invoked with 
an associated memory area. The size of a memory area must be specified; all other 
properties have default values. 
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@Retention(RetentionPolicy.RUNTIME) 
@Target({ElementType.METHOD}) 
public @interface ScopedMemoryMethod { 
 long size();   // Required size of memory area 
 boolean isAssignmentCheckRequired()  default true;  
 boolean allocateCalleesReturnedObject() default true; 
 boolean allocateCalleesExceptionObject() default false; 
 Boolean reuseMA() default false; 

 // Force to keep this MA object and reuse 
} 

 
We can tell the runtime that whether dynamic assignment checks are required or 

not. If we can be certain that such checks are not necessary by means of static 
analysis, then isAssignmentCheckRequired() field should be set to false. 

As explained previously, it is also possible to avoid copying returned objects 
between scoped memory method calls. allocateCalleesReturnedObject() field is 
supplied to specify where to store a returned object in a chain of method calls with 
memory areas. If set to true, the returned object of any calls made by this method will 
be stored in the current method’s memory area. This becomes useful when there are 
asymmetric method invocations with different requirements on where to keep 
returned objects.  

ReturnedObject 
This annotation is used to specify that a particular object is to be returned to the caller. 
 
@Retention(RetentionPolicy.RUNTIME) 
@Target({TYPE, FIELD, LOCAL_VARIABLE}) 
public @interface ReturnedObject 
{ Class type(); }  // Type of the returned object 

PropagatedException 
User-defined exception objects can also be pre-allocated in one of the parent memory 
areas. 
 
@Retention(RetentionPolicy.RUNTIME) 
@Target({TYPE, FIELD, LOCAL_VARIABLE}) 
public @interface PropagatedException 
{ Class type(); }  // Type of the exception object 

Example 
We present a trivial program illustrating the use of our annotations described above. 
In the program below, the run() method calls complexCalculation(), which then 
invokes method1(). Two memory areas are involved, and the returned object, rtn, will 
be created in run()’s memory area. 
 
public class Thread1 extends PeriodicThread { 
   @ScopedMemoryMethod(size()=1000,isAssignmentCheckRequired()=false) 
    public void run() { 
        Complex x = new Complex(…); 
        … 
        try { Complex i = complexCalculation(x); 
        } catch (Exception e) {   …   } 
        DoSomething(i); 
    } 
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    @ScopedMemoryMethod(size=10000, isAssignmentCheckRequired=false, 
        allocateCalleesReturnedObject = false) 
    public Complex complexCalculation(Complex param){ 
        @ReturnedObject(type() = Complex) 
        Complex rtn = new Complex(…); 
        … 
        for (int j = 0; j>5; j++) { 
            rtn.add(method1(j)); 
        } 
    } 
 
    // This method is dependent on complexCalculation’s MA 
    public Complex method1(int i) {…} 
} 

4 Implementation 

There are two possible implementations of the memory model we presented in this 
paper. One implementation would be a transformer that takes a class file, read all the 
annotations, analyse them, and convert the code into a RTSJ compatible version. The 
other way is to build a high integrity virtual machine that is aware of our annotations, 
and provides all the appropriate operations. In the former case, we can still keep using 
a RTSJ compliant virtual machine since our model does not require any changes in 
the semantics. This transformation will involve wrapping up annotated methods with 
an enter() method of a memory area. That way, when the method returns, the memory 
area will be reclaimed automatically. Annotated returned objects can be created in one 
of the callers’ memory areas using the RTSJ’s methods of MemoryArea. At the 
present time, we are implementing a transformer that can also analyse and verify class 
files.  

5 Related Work 

There are a number of different approaches to removing or optimizing runtime checks 
for RTSJ, for example [3, 9]. It is impossible to list all of them here. Most of them 
analyse RTSJ programs to locate non-escaping objects, and allocate such objects in a 
method’s stack or a memory region (see [1] for a comprehensive survey). 
Programmers can also specify stackable objects explicitly (see [7]). 

6 Conclusions and Future Work 

We have presented a memory management model for the Ravenscar-Java profile. Our 
approach maps one anonymous memory area to a user-specifiable method by means 
of our Java 1.5 annotation types. This straightforward model eliminates single parent 
rule checks and simplifies other run-time checks that are the main cause of 
unpredictability and overheads. In fact, it also makes the programmer’s job easier 
since he/she does not have to worry about creating and maintaining memory areas. 
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All the annotated methods will be automatically converted by a memory 
allocator/transformer into a RTSJ/Ravenscar-Java compliant version. The semantics 
of the RTSJ remains the same, meaning that any program in our model when 
compiled is also a legal RTSJ program. Benefits of using our model are obvious, i.e., 
a more straightforward programming model, reduced overheads caused by run-time 
checks, and use of existing/proven RTSJ virtual machines to our advantage. We 
believe that the idea presented in this paper will help facilitate the use of Java in the 
area of high integrity systems in the future. 

However, in order for our approach to work best, we need an analysis technique for 
determining the worst-case memory consumption for each method. This can become 
complex since objects can be created dynamically in Java. We hope that the 
restrictions in the Ravenscar-Java Profile will make this analysis easier. We will 
implement our transformer and evaluate the results in the future. 
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