
R. Meersman et al. (Eds.): OTM Workshops 2004, LNCS 3292, pp. 333–345, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Memory Management Based on Method Invocation in RTSJ

Jagun Kwon and Andy Wellings

Real-Time Systems Research Group
Department of Computer Science

University of York
York, England

{jagun, andy}@cs.york.ac.uk

Abstract. In this paper, we present a memory management model for the
Ravenscar-Java profile. Because of the complexity and run-time overheads in
verifying the proper use of the RTSJ’s scoped memory, it is unfavourable in the
area of high integrity systems where any unpredictability must be cast out. Our
approach maps one anonymous memory area to a user-specifiable method by
means of our Java 1.5 annotation types. This straightforward model eliminates
single parent rule checks and simplifies other run-time checks that are the main
cause of unpredictability and overheads. In fact, it also makes the programmer’s
job easier since he/she does not have to worry about creating and maintaining
memory areas. All the annotated methods will be automatically converted by a
transformer into an RTSJ/Ravenscar-Java compliant version. The semantics of
the RTSJ remains the same, meaning that any program in our model when
transformed is also a legal RTSJ program. Our key contribution is the definition
of a predictable memory model and guidelines that will reduce/eliminate run-
time overheads. A bonus to this is a less complicated programming model.

1 Introduction

Programmers do not want to be distracted by avoidable system-level activities, such
as memory allocation/de-allocation. The RTSJ has added the notion of scoped
memory that is intended for a more predictable execution of real-time Java programs.
This can become an unnecessary burden to the programmer as well as to the
underlying virtual machine. Every time an object in a memory area is assigned to a
different memory area, that assignment has to be checked at run-time to prevent any
dangling references. Programs are also more difficult to analyse with the additional
features since, for example, memory areas can be nested and thus illegal nestings may
result.

Moreover, programs can become inefficient in terms of their use of memory.
Because now memory management is up to the programmer, he/she may wrongly
decide to keep some unused memory areas active for a prolonged time, in which other
components may be starving for more memory space. Portability and maintainability
of RTSJ programs can also become problematic. On the whole, the new memory
management model can introduce more programming errors and reduce the run-time
performance of the whole system. However, we still want our programs to be
predictable, i.e., we would like to know when memory will be allocated/de-allocated,
and the overheads of such operations.

334 J. Kwon and A. Wellings

As a countermeasure to this problem, we propose here a programming utility that
makes use of the original RTSJ’s scoped memory to iron out some of the
aforementioned concerns of Java in real-time systems. Novel to this utility is a
memory model that matches one anonymous memory area to one user-decidable
registered method. Programmers need no knowledge about what and how memory
areas are used. The utility will automatically create a memory area for a registered
method and execute that method as well as all other non-registered subsequent
method calls that the method invokes in the memory area. Only when the registered
method returns, the memory area will be reclaimed and freed (this acts as if each
registered method has its own stack for all objects it creates). For this reason, the
single-parent rule of the RTSJ no longer needs to be checked.

Programmers have the freedom to fine-tune memory usage of the program by
executing certain methods in a new memory area, others in an existing one (i.e.,
caller’s memory). For example, a small and infrequently invoked method can choose
not to have its own memory area, but to depend on its caller’s memory, so that the
overhead of creating and finalizing a memory area is kept to a minimum at the
expense of some additional memory space in the caller’s memory area.

Assignment checks can also be reduced or completely eliminated if the
programmer follows our guidelines presented in this paper. With an extensive
analysis, however, such guidelines can be relieved. An analysis tool may be
developed such that it checks escapement of references through method calls, local
objects, and returned objects. References to outside objects1 can be passed to the
current method as parameters to that method, or as internal objects defined within the
enclosing object that the method belongs to. Class objects or any other shared objects
can also be assigned with a local reference. All these cases can be checked by
syntactically analysing the logic of each method. Yet, this can be greatly simplified if
our guidelines are in position. As outlined above, our key contribution is the
definition of a predictable memory model and guidelines that will reduce/eliminate
run-time overheads. A bonus to this is a less complicated programming model.

This paper is structured as follows: Section 2 will briefly review the Ravenscar-
Java profile and issues related to the RTSJ. Next, we will introduce our proposed
approach in detail in Section 3. This section will cover the key features, our
annotations and an example. Issues on the implementation and design of our tool will
be discussed in Section 4, before we briefly review some related works. Conclusions
will be drawn at the end.

2 Brief Review of the RTSJ and Ravenscar-Java Profile

2.1 Ravenscar-Java Profile

In recent years, there has been a major international activity, initiated by Sun, to
address the limitations of Java for real-time and embedded systems. The Real-Time
Specification for Java (RTSJ) [2] attempts to minimise any modification to the

1 By outside objects, we mean objects that are not created within the current method and

memory area pair.

Memory Management Based on Method Invocation in RTSJ 335

original Java semantics and yet to define many additional classes that must be
implemented in a supporting virtual machine. The goal is to provide a predictable and
expressive real-time environment. This, however, ironically leads to a language and
run-time system that are complex to implement and have high overheads at run-time
(Sources of run-time overhead include interactions between the garbage collector and
real-time threads, assignment rule/single-parent rule checks for objects in different
memory areas, and asynchronous operations). Software produced in this framework is
also difficult to analyse with all the complex features, such as the asynchronous
transfer of control (ATC), dynamic class loading, and scoped memory areas.

Following the philosophy of the Ravenscar profile for Ada [4], we have proposed a
high integrity profile for real-time Java (called Ravenscar-Java [8]) along the lines of
the set of software guidelines produced by the U.S. Nuclear Regulatory Commission
(NRC) [6]. This restricted programming model (or a subset of Java and RTSJ) offers a
more reliable and predictable programming environment by preventing or restricting
the use of language features with high overheads and complex semantics. Hence,
programs become more analysable in terms of timing and safety and, ultimately,
become more dependable. The profile is intended for use within single processor
systems.

The computational model of the profile defines two execution phases, i.e.
initialisation and mission phase. In the initialisation phase of an application, all
necessary threads and memory objects are created by a special thread Initializer,
whereas in the mission phase the application is executed and multithreading is
allowed based on the imposed scheduling policy. There are several new classes that
will enable safer construction of Java programs (for example, Initializer,
PeriodicThread, and SporadicEventHandler), and the use of some existing classes in
Java and RTSJ is restricted or simplified due to their problematic features in static
analysis. For instance, the use of any class loader is not permitted in the mission
phase, and the size of a scoped memory area, once set, cannot be altered. Objects that
do not need reclaiming should be allocated in the immortal memory (thus in the
initialization phase). For further restrictions, see [8].

2.2 RTSJ’s Memory Model

There is one major concern with the use of the RTSJ’s memory model in high
integrity applications, that is, the runtime overheads of checking the single parent and
assignment rules are often unpredictable and thus undesirable. A number of
approaches have been proposed to reduce the overheads of dynamic checks, but we
claim in this paper that such expensive operations can be completely eliminated by a
few well-defined programming guidelines and a program transformer or virtual
machine support.

2.3 Relationship to the Profile

The work presented in this paper should be regarded as an optional extension to the
Ravenscar-Java Profile. In particular, it relaxes one of the rules, i.e., “no nested
scoped memory areas” constraint.

336 J. Kwon and A. Wellings

3 Scoped Memory Method Invocation

3.1 Motivation

Because in Java every object is allocated in the heap and reclaimed by the garbage
collector, one does not have to care about allocating and freeing memory space for
new objects. However, its unpredictability and possible interferences with real-time
threads means that it is not a convincing option for hard real-time applications.
The RTSJ has added the notion of scoped memory to solve this problem. Due to the
vast amount of additional features, however, a very complex programming model can
be created and, especially, memory areas can be utilized in an erratic way. That means
the virtual machine must check for misuses of memory areas at run-time, i.e., single-
parent rule and assignment rule checks. The overheads incurred by such operations
are high and unpredictable, and extremely undesirable in resource-sensitive
applications. This may also hinder portability, maintainability, and analysability of
RTSJ programs.

3.2 The Idea in a Nutshell

In many imperative and procedural languages, programs are organized into blocks of
code that are called functions, procedures, or methods in the case of Java. Each
method has a functional purpose, such that it takes an input, processes it, and returns a
result. A chain of method calls is constructed at runtime that can be represented as a
stack, as shown below. In most cases, parameters that are passed to a method are only
read and used in the production of the result. Each method has its own stack to store
parameters, immediate results, and any local/temporary variables. Any other objects
are allocated in the heap in Java by default.

This model can be extended to take on board scoped memory in a way that the
program becomes simpler to analyse and run-time checks are minimized. A method
can be associated with an anonymous memory area created by the run-time, and that
memory area is entered whenever that method is invoked. All objects will be created
within the current memory area, and the area will be reclaimed when the method
returns, in the same way as the method stack is allocated and freed.

Scoped Memory and
Method Invocation Stack

...

Thread1

MethodC(…)

MethodB(…)

MethodA(…)

C
al

l w
ith

/
w

ith
ou

t
pa

ra
m

et
er

s R
eturn

objects

...

MemoryAreaBC

MemoryAreaA

Fig. 3.1. Scoped Memory and Method Invocation Stack

Programmers can have the freedom to fine-tune memory usage of the program by
executing certain methods in a new memory area, others in an existing memory area
(i.e., caller’s memory area). For example, a small and infrequently invoked method
can choose not to have its own memory area, but depend on its caller’s memory, so
that the overheads of creating and finalizing a memory area is kept to a minimum at

Memory Management Based on Method Invocation in RTSJ 337

the expense of some additional memory space in the caller’s memory area (see Figure
3.1 above).

In order to associate a method to a memory area, we use annotation types that take
advantage of the Java 1.5’s annotation facility [10] (See Figure 3.2 below for an
illustration). Memory areas are created anonymously, so that programmers cannot
gain a direct access to them. This prevents misuses of memory areas; especially, the
single parent rule check is no longer required at run-time by the virtual machine.
Illegal assignments can also be checked using a static Escape analysis technique [1].
We will explore these matters further in section 3.4 and 3.5.

…
 @ScopedMemoryMethod(size = 10000,
 isAssignmentCheckRequired = false,
 allocateCalleesReturnedObject = true,
 allocateCalleesExceptionObject = true
 reuseMA = false)
 public anObject complexCalculation(int param) {
 @ReturnedObject(type = anObject)
 anObject rtn = new anObject(…);
 …
 for (int j = 0; j>param; j++) {
 rtn.result = method1(j));
 }
 return rtn;
 }

Fig. 3.2. Annotating a method to associate with an anonymous memory area

Objects that are to be returned to the caller can be allocated in the caller’s mem-
ory area, if such objects are identified and annotated in advance 2 (see
@ReturnedObject annotation in the above example). That way, when the current
method returns, the returned object need not be copied back to the caller’s memory
area, saving valuable computation time.

3.3 Key Features

In this model, threads have no knowledge about memory areas (except the immortal
memory). Each method that has an associated memory area acts as if every object
created in that method is stored in the method’s local stack, and they are freed after
the method returns. Below are the key features of our model.

• One to one matching between a scoped memory area (MA in short hereafter) and
a user-specifiable method. There is no thread-oriented memory area stack.

• An MA object can be reused after the method returns or simply be reclaimed.
Programmers can specify this requirement in the annotation. When the same

2 Programmers have the knowledge on which object is to be returned to the caller method.

Such objects can be annotated, so that they will be allocated within the caller’s memory area.
This saves copying objects between memory areas. But, of course, the size of a returnable
object must be bound.

338 J. Kwon and A. Wellings

method is invoked next time, it will be given the same anonymous MA if its
reuse flag is set to true; otherwise, the MA object itself will be reclaimed.

• A method can have its own MA to use, or choose to be dependent on its
outer/caller method’s MA. E.g., an infrequently called method can choose not to
have its own memory area.

• MAs are all independent of each other and invisible at the source code level. No
MAs will be entered by more than one thread/method at the same time. In fact,
threads do not know which MAs they enter (i.e., they are invisible and
anonymous!). For this reason, the single-parent rule in RTSJ is no longer
required.

• Programs can either be transformed into a RTSJ compliant version that utilizes
scoped memory, or a virtual machine can be developed, so that it takes care of
creation, allocation, and reclamation of MAs at run-time.

• Referencing objects in the same method (this MA) does not cause any concern.
• Any references to objects created in the caller methods (thus outside this MA) is

allowed. Such references can be passed as parameters to the method or as local
objects of the enclosing object that the method belongs to. However, references
to objects in a callee method are not allowed. This must be analysed.

• Illegal references can be checked by a method oriented analysis tool that
incorporates the escape analysis.

• Objects in the immortal memory can always be referenced, whereas those in the
heap cannot. This is to prevent any interactions between the garbage collector
and real-time threads.

3.4 Single Parent Rule Checks

In the RTSJ, it must be checked that a thread does not enter a scoped memory area
that is already active. In other words, if a thread has entered memory area A, B, and C
in sequence, it cannot enter A again and allocate some objects that can refer to objects
created in B and C, because the lifetime of A is in fact longer than B and C, and
dangling references can be created.

In our model, threads simply cannot obtain references to memory areas, and all
memory areas are anonymous. Even if a thread wants to enter the same memory area
twice, there is no way it can do that! All the memory areas will be created internally
by the virtual machine when a registered method is invoked. This will completely
eliminate runtime overheads for checking the single parent rule.

3.5 Assignment Violation Checks

Assignment checks fail if and only if the following condition is satisfied in our model.

“A reference to an object within the current MA-registered method is assigned to
another object that resides in a MA-registered caller.”

Assignment Violation Condition

Memory Management Based on Method Invocation in RTSJ 339

More specifically, there are the following two cases.
Case 1. Direct Assignment of a method-local object to outside objects. It is fine if

the enclosing object and the method share the same memory area; there is no need for
any check. But if the method has entered a new memory area, then this is an illegal
operation and a dangling reference can result when the method returns. The following
example illustrates this point.

public class aClass {
 private anObject outsider;
 @ScopedMemoryMethod(…)
 public anObject aMethod(int param) {
 anObject insider = new anObject();
 outsider = insider; // *** Assignment violation ***
 …
 }

 public anObject methodCaller(int param) {
 outsider = aMethod(param);
 …
 }
}

Fig. 3.3. Direct Assignment of a method-local object to an outside object

As shown above in aMethod(), when insider is assigned to outsider, an assignment
violation occurs. This can be avoided if outsider is declared as final, so that the
reference cannot be modified in methods. Alternatively, the method can create a local
copy of the object, use it, and return it as a ReturnedObject mentioned earlier. If
annotated by the ReturnedObject type, that object will be created in the parent MA.
This means that the returned object shares the same memory scope as the object-local
object. However, this is only possible when the parent method (the one that invokes
aMethod in the first place, i.e., methodCaller()) and the object outsider are in the
same scope.

Case 2. Indirect Assignment/Escapement as a parameter to a method call. If this
callee method does not have its own memory area, then assignments are allowed
unless that method invokes another one with a memory area associated with it, and
passes the object to that method. The passed object and its members must only be
read or ‘used’ by all the callees, but not any member objects to be ‘re-defined’ or
assigned a new local reference by invoking a member method – this is an assignment
violation. All subsequent method calls must be checked until the object in question is
not passed any more to other methods and objects. Therefore, if an object can change
any of its member objects’ references by invoking a method, that method must share
the same memory area as that of the enclosing object. Otherwise, an illegal reference
can be created.

In short, it is best to declare any escapable objects as final. However, this seems
too restrictive in some cases. Therefore, a static escape analysis can be performed to
identify only those that are indeed assigned with references to method-local objects in
different memory areas. The Static Single Assignment (SSA) form [5] is useful here
since a program in that form can reveal whether a variable or object is defined (or
assigned to a new value). So, first we need a graph of method invocations by
conducting an escape analysis, and the SSA form representation of code for each of

340 J. Kwon and A. Wellings

public class aClass {
 private anObject outsider;

 @ScopedMemoryMethod(…)
 public void aMethod(anObject param) {
 anotherMethod(param);
 …
 }

 @ScopedMemoryMethod(…)
 public void anotherMethod(anObject param) {
 anotherObject x = new anotherObject();
 …
 param.xSet(x); // *** Assignment violation ***
 }
}

Fig. 3.4. Indirect Assignment/Escapement as a parameter to a method call

the methods. Going through each method, a tool can examine whether the parameter’s
assignment counter, as well as the parameter’s member objects’ counters, ever
becomes greater than 0. If the counter goes up to 1, it means that the parameter or
some member object is modified and the assignment will raise an exception at
runtime. Therefore, a method-level static escape analysis can identify illegal
assignments statically.

3.6 Dealing with Returned Objects

There are situations where an object must be returned to a distant caller in a series of
method invocations. When the methods do not share a memory area, such a returned
object has to be relayed back to the original caller’s memory area and its reference
to become available for the original caller method. When the chain of methods is
long, and there are more than two memory areas involved, overheads can be high
due to copying the returned object from area to area. In order to resolve this, we
propose an additional parameter that can specify where to store a returned
object from the beginning of a method call (this parameter is added in the
@ScopedMemoryMethod annotation; see the next section for details).

A

B

C

Thread Ti

D

invokes

Object returned
by D is relayed

up to A

Number of MAs
Ti has entered,

i.e., 4

Fig. 3.5. Returned objects can be stored in one of parents’ memory areas

As an illustration, assume that a thread has invoked a number of methods, say A,
B, C, and D, which all have their own memory areas (see Figure 3.5 above). The

Memory Management Based on Method Invocation in RTSJ 341

returned object from D can be relayed back to A, and in which case that object can be
stored in A’s memory area from the very beginning of D. This means that the object
will not be copied back to C, B, and then A at run-time, reducing the overheads of
copying objects. All returned objects must be annotated with @ReturnedObject
to take advantage of this feature. Assignment checks are still required since a returned
object can acquire a reference to an outside object, e.g., an object in D, C or B. Since
the returned object is identified by the programmer, it can be checked by our tool that
such objects are not allocated with any method local references.

This solution takes care of conditional invocations of methods. When there is an
‘if’ statement and two different sets of methods to call with different requirements on
returned objects, we have a way of specifying that a returned object from one
conditional branch will be stored in which method’s memory area. Consider Figure
3.6 for a basic mode of operations.

Method1
allocateCalleesReturnedObject(True)

MemoryArea1

Method1
allocateCalleesReturnedObject(True)

Memory Area1 Method3
allocateCalleesReturnedObject(...)

MemoryArea3

Method2
allocateCalleesReturnedObject(False)

MemoryArea2

Call

Call

ReturnedObj1

ReturnedObj2

Method1
allocateCalleesReturnedObject(True)

MemoryArea1

Method1
allocateCalleesReturnedObject(True)

Memory Area1 Method3
allocateCalleesReturnedObject(...)

MemoryArea3

Method2
allocateCalleesReturnedObject(True)

MemoryArea2

Call

Call

ReturnedObj1

ReturnedObj2

(a)
(b)

Fig. 3.6. Different ways of dealing with returned objects

The new attribute allocateCalleesReturnedObject is by default set to true (b),
meaning that any returned object from a callee will be stored in the direct caller
method’s memory area. If it is set to false (a), any returned object will not be stored
here, but in a memory area up in the chain where this attribute is set to true.

An interesting problem occurs, however, if both branches invoke a number of
different methods, and eventually one common method that returns an object, as
illustrated in Figure 3.7 below. When one branch requires the returned object to be
stored in somewhere other than the memory area that the original conditional branch
instruction belongs to, an appropriate allocateCalleesReturnedObject attribute can be
set to true or false, depending on where we want the object to be stored. In case 1 in
Figure 3.7, the returned object will be created in MA1 from the beginning, whereas in
case 2, it will be Method5’s memory area that the object will be created and stored.

The size of every returned object must be bound in order for our model to work. It
becomes impossible to analyse and specify the size of a memory area if an arbitrarily
sized object can be returned. Returned objects must be annotated, so that the
transformer or an analyser can check the type and the caller memory area’s size. It
also has to be checked that a returned object does not take any method local
references with it. This can cause an assignment check violation as explained in the
previous section.

342 J. Kwon and A. Wellings

Method1
allocate...Object(True)

MA1

Method3
allocate...Object(False)

MA3

Method2
allocate...Object(False)

MA2

Call

Call

Method4
allocate...Object(False)

MA4

Method6
allocate...Object(True)

MA6

Method5
allocate...Object(True)

MA5

Call

Call

IF
Case1 Case2

Call

ReturnedObj1

ReturnedObj2

Fig. 3.7. Dealing with returned objects: conditional branches with a common method call

In some cases, although an object is not syntactically returned to a caller (with a
return statement), it can eventually have the same effect. If a MA-associated method
needs to allocate an object in one of the callers’ MAs, then that object should also be
annotated with @ReturnedObject annotation. This can prevent illegal assignments.

3.7 Dealing with User Exceptions

Exceptions are represented as objects in Java. A new exception object is created at
runtime when a particular exception is raised. Similar to returned objects in the
previous section, exception objects should be treated in the same way, so that we can
save copying exception objects between memory areas when exceptions can be
propagated or relayed. We have added a new attribute in @ScopedMemoryMethod
annotation type, allocateCalleesExceptionObject, to cater for such situations.
Exception objects should also be annotated with @PropagatedException
annotation to take advantage of this feature, which is defined in the next section.

An analyser or the transformer will have to check if an annotated exception is
indeed handled in the method whose allocateCalleesExceptionObject is set to true.

3.8 Annotation Types and Programming Procedures

We make use of the annotation facility of Java 1.5. Our annotation types are declared
in the following way and illustrated below with an example.

ScopedMemoryMethod
This annotation type is used to declare that the subject method will be invoked with
an associated memory area. The size of a memory area must be specified; all other
properties have default values.

Memory Management Based on Method Invocation in RTSJ 343

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD})
public @interface ScopedMemoryMethod {
 long size(); // Required size of memory area
 boolean isAssignmentCheckRequired() default true;
 boolean allocateCalleesReturnedObject() default true;
 boolean allocateCalleesExceptionObject() default false;
 Boolean reuseMA() default false;

 // Force to keep this MA object and reuse
}

We can tell the runtime that whether dynamic assignment checks are required or

not. If we can be certain that such checks are not necessary by means of static
analysis, then isAssignmentCheckRequired() field should be set to false.

As explained previously, it is also possible to avoid copying returned objects
between scoped memory method calls. allocateCalleesReturnedObject() field is
supplied to specify where to store a returned object in a chain of method calls with
memory areas. If set to true, the returned object of any calls made by this method will
be stored in the current method’s memory area. This becomes useful when there are
asymmetric method invocations with different requirements on where to keep
returned objects.

ReturnedObject
This annotation is used to specify that a particular object is to be returned to the caller.

@Retention(RetentionPolicy.RUNTIME)
@Target({TYPE, FIELD, LOCAL_VARIABLE})
public @interface ReturnedObject
{ Class type(); } // Type of the returned object

PropagatedException
User-defined exception objects can also be pre-allocated in one of the parent memory
areas.

@Retention(RetentionPolicy.RUNTIME)
@Target({TYPE, FIELD, LOCAL_VARIABLE})
public @interface PropagatedException
{ Class type(); } // Type of the exception object

Example
We present a trivial program illustrating the use of our annotations described above.
In the program below, the run() method calls complexCalculation(), which then
invokes method1(). Two memory areas are involved, and the returned object, rtn, will
be created in run()’s memory area.

public class Thread1 extends PeriodicThread {
 @ScopedMemoryMethod(size()=1000,isAssignmentCheckRequired()=false)
 public void run() {
 Complex x = new Complex(…);
 …
 try { Complex i = complexCalculation(x);
 } catch (Exception e) { … }
 DoSomething(i);
 }

344 J. Kwon and A. Wellings

 @ScopedMemoryMethod(size=10000, isAssignmentCheckRequired=false,
 allocateCalleesReturnedObject = false)
 public Complex complexCalculation(Complex param){
 @ReturnedObject(type() = Complex)
 Complex rtn = new Complex(…);
 …
 for (int j = 0; j>5; j++) {
 rtn.add(method1(j));
 }
 }

 // This method is dependent on complexCalculation’s MA
 public Complex method1(int i) {…}
}

4 Implementation

There are two possible implementations of the memory model we presented in this
paper. One implementation would be a transformer that takes a class file, read all the
annotations, analyse them, and convert the code into a RTSJ compatible version. The
other way is to build a high integrity virtual machine that is aware of our annotations,
and provides all the appropriate operations. In the former case, we can still keep using
a RTSJ compliant virtual machine since our model does not require any changes in
the semantics. This transformation will involve wrapping up annotated methods with
an enter() method of a memory area. That way, when the method returns, the memory
area will be reclaimed automatically. Annotated returned objects can be created in one
of the callers’ memory areas using the RTSJ’s methods of MemoryArea. At the
present time, we are implementing a transformer that can also analyse and verify class
files.

5 Related Work

There are a number of different approaches to removing or optimizing runtime checks
for RTSJ, for example [3, 9]. It is impossible to list all of them here. Most of them
analyse RTSJ programs to locate non-escaping objects, and allocate such objects in a
method’s stack or a memory region (see [1] for a comprehensive survey).
Programmers can also specify stackable objects explicitly (see [7]).

6 Conclusions and Future Work

We have presented a memory management model for the Ravenscar-Java profile. Our
approach maps one anonymous memory area to a user-specifiable method by means
of our Java 1.5 annotation types. This straightforward model eliminates single parent
rule checks and simplifies other run-time checks that are the main cause of
unpredictability and overheads. In fact, it also makes the programmer’s job easier
since he/she does not have to worry about creating and maintaining memory areas.

Memory Management Based on Method Invocation in RTSJ 345

All the annotated methods will be automatically converted by a memory
allocator/transformer into a RTSJ/Ravenscar-Java compliant version. The semantics
of the RTSJ remains the same, meaning that any program in our model when
compiled is also a legal RTSJ program. Benefits of using our model are obvious, i.e.,
a more straightforward programming model, reduced overheads caused by run-time
checks, and use of existing/proven RTSJ virtual machines to our advantage. We
believe that the idea presented in this paper will help facilitate the use of Java in the
area of high integrity systems in the future.

However, in order for our approach to work best, we need an analysis technique for
determining the worst-case memory consumption for each method. This can become
complex since objects can be created dynamically in Java. We hope that the
restrictions in the Ravenscar-Java Profile will make this analysis easier. We will
implement our transformer and evaluate the results in the future.

References

[1] B. Blanchet, Escape Analysis for Java: Theory and Practice, ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 25, Issue 6, November 2003.

[2] G. Bollella, et al, The Real-Time Specification for Java, http://www.rtj.org.
[3] C. Boyapati, et al, Ownership types for safe region-based memory management in real-

time Java, Proceedings of the ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation, San Diego, CA, USA, 2003.

[4] A. Burns, B. Dobbing, and G. Romanski, The Ravenscar Tasking Profile for High
Integrity Real-Time Programs, In L. Asplund, editor, Proceedings of Ada-Europe 98,
LNCS, Vol. 1411, pages 263-275, Springer-Verlag 1998.

[5] R. Cytron et al, Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph, ACM Transactions on Programming Languages and Systems
(TOPLAS), Vol. 13, Issue 4, October 1991.

[6] H. Hetcht, et al, Review Guidelines for Software Languages for Use in Nuclear Power
Plant Systems, NUREG/CR-6463, U.S. Nuclear Regulatory Commission, 1997.

[7] J Consortium, International J Consortium Specification: Real-Time Core Extensions,
Revision 1.0.14, available at http://www.j-consortium.org.

[8] J. Kwon, A. Wellings, and S. King, Ravenscar-Java: A High Integrity Profile for Real-
Time Java, to appear in the Concurrency and Computation: Practice and Experience
Journal, Special Issue: ACM Java Grande-ISCOPE 2002 Conference, Wiley.

[9] F. Pizlo, et al, Real-Time Java Scoped Memory: Design Patterns and Semantics,
Proceedings of the 7th IEEE Intl., Symposium on Object-Oriented Real-Time Distribute
Computing (ISORC’04), Vienna, Austria, May 2004.

[10] Sun Microsystems, JSR 175: A Metadata Facility for the Java Programming Language,
available at http://www.jcp.org/en/jsr/detail?id=175.

	1 Introduction
	2 Brief Review of the RTSJ and Ravenscar-Java Profile
	2.1 Ravenscar-Java Profile
	2.2 RTSJ’s Memory Model
	2.3 Relationship to the Profile

	3 Scoped Memory Method Invocation
	3.1 Motivation
	3.2 The Idea in a Nutshell
	3.3 Key Features
	3.4 Single Parent Rule Checks
	3.5 Assignment Violation Checks
	3.6 Dealing with Returned Objects
	3.7 Dealing with User Exceptions
	3.8 Annotation Types and Programming Procedures

	4 Implementation
	5 Related Work
	6 Conclusions and Future Work

