
Collective Self-detection Scheme for Adaptive

Error Detection in a Foraging Swarm of Robots

HuiKeng Lau1,3, Jon Timmis1,2, and Iain Bate1

1 Department of Computer Science, University of York
2 Department of Electronics, University of York,

Heslington, YO10 5DD, UK
3 School of Engineering and IT, Universiti Malaysia Sabah,

88999 Kota Kinabalu, Sabah, Malaysia
{hklau,iain.bate,jtimmis}@cs.york.ac.uk

Abstract. In this paper we present a collective detection scheme using
receptor density algorithm to self-detect certain types of failure in swarm
robotic systems. Key to any fault-tolerant system, is its ability to be
robust to failure and have appropriate mechanisms to cope with a variety
of such failures. In this work we present an error detection scheme based
on T-cell signalling in which robots in a swarm collaborate by exchanging
information with respect to performance on a given task, and self-detect
errors within an individual. While this study is focused on deployment in
a swarm robotic context, it is possible that our approach could possibly
be generalized to a wider variety of multi-agent systems.

Keywords: swarm robotics, error detection, receptor density algorithm,
collective detection scheme, self-detection.

1 Introduction

Swarm robotic systems (SRS) refer to systems with a large number of simple and
physically homogeneous robots interacting with each other and the environment
to achieve certain tasks [3]. In order to allow a swarm of robots to perform its
task over extended periods of time, the swarm needs to be tolerant to failures
that can occur within the swarm. Distributed autonomous systems, such as SRS,
are susceptible to failure, and as recently shown by [11] the assumption that SRS
are immune to such issues is not necessarily the case. In this paper, we focus
on producing a fault-tolerant swarm of robots, but rather than having a central
point of control for the identification of errors within the swarm, the swarm itself
is responsible for the detection. Therefore the swarm collectively self-monitors
and identifies errors within the swarm, which in principle would allow for a
greater degree of fault tolerance.

Implicit redundancy and explicit error detection-and-recovery are two ways to
address fault tolerance in swarm robotics. With redundancy, uncompleted tasks
by a failed agent is taken over by a redundant agent in the system. This approach
has typically been preferable as it is straightforward to implement [11]. It works

P. Liò, G. Nicosia, and T. Stibor (Eds.): ICARIS 2011, LNCS 6825, pp. 254–267, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Self-detection of Errors with RDA 255

well when a minimal number of healthy robots are still available to complete
a given task and also that failures are independent, i.e., faulty robots do not
have undesirable effects on the overall swarm. However, these conditions do not
always hold. Winfield and Nembrini [11] showed that a few failing robots can
significantly affect the overall swarm and should (if possible) be repaired. Initial
work into such a self-repairing approach has been outlined in [10], but assumes
that an effective error detection system is in place. To activate any recovery
measure, we need to first detect the error and identify the faults. This is the
second approach to achieve a fault-tolerant system. These two approaches do
not have to be used in isolation but rather are used together to complement
each other for an improved overall performance.

With respect to error detection in swarm robotics, limited work is available
especially when dealing with dynamically changing environmental conditions.
There are many challenges in developing an error detection system in swarm
robotics. First we require an accurate detection of errors, second we require an
adaptive and low resource solution due to potential limitations of the hardware
platform. Third, a quick response time coupled with robustness in detection are
desirable, it is no use to detect an error in a time frame that makes it impossible
to do any form of recovery or response.

In this work, we make use of an immune-inspired solution that has many of
the properties we require for a detection system: it is lightweight in terms of
computational overhead, it is adaptive and superior in performance to more tra-
ditional statistical approaches (such as quartile- and T-test based algorithms).
We employ a T-cell signaling inspired algorithm called the Receptor Density Al-
gorithm (RDA) [7] as part of a collective self-detection scheme and in this paper,
we analyze the approach with respect to accuracy, adaptivity, responsiveness,and
robustness in detection.

The rest of the paper is structured as follows. Section 2 briefly describes error
detection in swarm robotics and the use of RDA as an error detection method.
Section 3 provides details on the experimental set up. The results and discussions
are presented in Section 4 and conclusions in Section 5.

2 Background and Related Work

2.1 Error Detection in Swarm Robotics

SRS are subject to anomalies due to reasons such as faulty hardware components,
design errors, or deliberate sabotage [11]. To ensure dependability, these faults
need to be dealt with to avoid more faults and errors. The error detection-
and-recovery involves a 3-stage process: error detection, fault diagnosis, and
recovery. Error detection examines the system’s behaviour for errors. If an error
has been detected, fault diagnosis is activated to identify the faults followed by
corresponding recovery measures.

In swarm robotics, the work on error detection is limited. However, in robotics
in general, neural networks and its variations have been used to detect faults in
the joints of the robotic manipulator [9], wheels of a Robuter [8], and treels



256 H.K. Lau, J. Timmis, and I. Bate

(combined tracks and wheels) [1]. These techniques work very well with the
system behaviour being non-dynamic, i.e., not affected by the changes in the op-
erational environment. Otherwise, re-training is required. This is undesirable as
prior knowledge of changes might not be available. With SRS normally deployed
in a dynamic environment, it is crucial for the detection to be adaptive. This is
the focus of our work.

Mokhtar et al. [5] implemented a dendritic cell inspired error detection in a
resource limited micro-controller as part of an integrated homeostatic system
in SYMBRION project1. Their focus is on single individual detection utilizing
only individual’s own sensor data, i.e., standalone detection. The drawback with
standalone detection is that a change in the behaviour of a robot could be
caused either by faults or the external effects, e.g., change in the environment.
Our work with collective detection scheme takes advantage of local interactions
among individuals to exchange information for self-detection of errors. By cross-
referencing one robot’s behaviour with others, a more accurate detection can
be achieved (Fig. 1). In Fig. 1, robot R1 exchanges its data with other robots
within its communication range namely robot R2, R3 and R5. Note that the
neighbourhood at different time instance varies as the robots move around in
the environment.

2.2 Receptor Density Algorithm

Robots in SRS are typically simple with limited communication ability, process-
ing and memory. For example, the e-puck robot is equipped with 64 MHz CPU
with 16 MIPS peak processing power, 4kB RAM and 144kB flash memory [6].
Therefore, the error detection mechanism has to be lightweight and statistical
methods such as the RDA offer a potential solution.

Owens et al. introduced the RDA in [7] an algorithm developed through the
study of T Cell receptors’ signaling mechanisms in the immune system. By ex-
tracting features of these receptors, a mapping was made onto kernel density
estimation, a technique from statistical machine learning. Assuming the RDA is
on R1 in Fig 1, it works as follows (illustrated in Fig. 2):

Step 1: Training
1. Calculate total stimulation S(x) on each receptor x by input xi from nb

robots in a communication range of a robot (Fig. 2(a)). For R1 at T7, nb
= 3, n = 4, and considering only variable a as input, x1=R2a7, x2=R3a7,
and x3=R5a7.

S(x) =
nb∑

i=1

1
n × h

Ks(
x − xi

h
) (1)

where Ks(x) is the kernel, h is the kernel width, and n is total number
of robots in a robot’s communication range including itself.

1 SYMBRION - Symbiotic Evolutionary Robot Organisms project
(http://www.symbrion.eu)

(http://www.symbrion.eu)


Self-detection of Errors with RDA 257

Fig. 1. Collective self-detection with exchanges of data between robots. The commu-
nication range of robot R1 is indicated by a dotted circle, and periodically R1 com-
municates (exchange data) with other robots within this range as indicated by dotted
arrows. Rx <at, bt, ct > is the data vector for robot Rx at time t. At current time
T7, R1 exchanges data with robot R2, R3, and R5 and thus has input data from four
robots (including itself) as highlighted in the diagram.

2. Calculate negative feedback neg(x) for each receptor x (Fig. 2(b)).

neg(x) =

{
S(x) − β, if S(x) ≥ β

0, otherwise
(2)

where β is the base negative barrier.
Step 2: Testing

1. Set the receptor position rp(x)=0 for all receptors.
2. Set receptor length l to the maximum height of the stimulation kernel

Ks scaled by n and h, l = 1
n×h(

√
2π)

.

3. Calculate updated receptor position r∗p(x) with input v (R1a7) from the
robot (Fig. 2(c)).

r∗p(x) = b × S(x) + gb × Ks(
x − v

h
) − α × neg(x) (3)

where b is receptor position’s decay rate, gb is current input stimulation
rate,

α is negative feedback’s stimulation rate.



258 H.K. Lau, J. Timmis, and I. Bate

4. Classify v:

v =

{
Normal, if r∗p(x) < l

Anomaly, otherwise
(4)

Step 3: Repeat 1 and 2 for every control cycle

An receptor x is a point in the kernel density estimate. We normalized these
points to fall within an interval of expected values for each variable of interest.
For instance, if we choose to use 20 receptors to represent the kernel density
estimate and the minimum and maximum value for input data is 0 and 100.
By equally spacing the receptors to fall between 0 and 100, we have receptors
from 0 to 100 evenly spaced by 100−0

20−1 . The variable xi is input data from other
robots that are within a communication range from a robot running the detection
algorithm. Base negative feedback β, b, gb, and α is a constant to control the
level of stimulation and suppression on each receptor.

(a) calculate stimulation from input (b) calculate negative feedback

(c) calculate updated receptor posi-
tion

Fig. 2. An illustration on using the RDA for error detection in a foraging SRS. (a)
Calculate the stimulation level of each receptor from input data of neighbouring robots
of a communication range. (b) If the stimulation level of a receptor is higher than
the base negative barrier β, negative feedback is generated. (c) The stimulation level
(receptor position) is updated when input from current robot is added. If any resulting
receptor position is higher than a maximum stimulation level (receptor length) l, an
error is detected, as seen at receptor x=2.



Self-detection of Errors with RDA 259

3 Experimental Setting

3.1 Simulation Setting

The foraging SRS is simulated with Player/Stage2 [4]. Ten robots are placed
within a 10-metre x 10-metre bounded octagonal shaped arena with a circular
base at the centre. The task of the robots is to continuously search for, collect,
and deposit objects at the base, this is a typical foraging task used in SRS. New
objects are added to the arena at a rate referred to as the object placement rate
(OPR) with OPR=0.10 in a non-dynamic environment.

A simulation begins with 100 initial objects placed randomly in the arena
with a maximum of 200 objects at any time instance to avoid overcrowding. At
time 5000s, a fault is injected to one robot and the fault persists until the end
of simulation. Each simulation lasts for 20000s and this is further split into a
smaller interval called a control cycle of 250s. Thus, there are 20000/250 = 80
control cycles in each simulation. A control cycle of a smaller length is possible
and it is very much dependent on the specific task and input data. We chose
250s to reduce the amount of data to process and to smooth irregularities that
might otherwise exist in one of the input data, i.e., number of objects collected.
At each control cycle, robots exchange their behavioural data with others in
a communication range. The data consists of the number of objects collected
(V1), energy used (V2), and distance travelled (V3). We recorded the data3 as
comma separated variable (CSV) files and analyzed them off-line so that the
same data can be used for further analysis, fair comparisons with other methods
and parameters tuning. Each scenario is repeated 20 runs.

For the RDA, the initial setting was obtained from manual inspections: num-
ber of receptor = 20, β=0.01, b=0.1, gb=1.1, α=1, the interval for V1=[0,8],
V2=[0,300], V3=[0,40], and the kernel is Gaussian kernel with kernel width
hv1=1, hv2=12, and hv3=3. We discuss the tuning process of these parameters
in section 4.2.

3.2 Modes of Failure

Component faults on a robot can be due to wear-and-tear, power loss or damaged
circuitry connections. These faults can occur either instantaneously or gradually,
and can be either complete failure or partial failure. We simulate three failure
modes on the robot wheels: complete failure (PCP), partial failure (PPT), and
gradual failure (PGR). PCP and PPT occur instantaneously while PGR is gradual.

With PCP, robot wheels stop responding completely by moving in circles and
are unable to move to target objects. With PPT, the wheels suffer a sudden failure
and the speed is reduced instantaneously to x meter/s from normal speed of
0.15 meter/s, while with PGR the robot moves with gradually reducing speed
by y meter/s per second. These faults are highly possible due to power loss
2 Player 2.1 and a modified version of stage 2.1.0 from
http://www.brl.uwe.ac.uk/projects/swarm/index.html

3 Data online at http://sites.google.com/site/researchmaterialshkl/data

http://www.brl.uwe.ac.uk/projects/swarm/index.html
http://sites.google.com/site/researchmaterialshkl/data


260 H.K. Lau, J. Timmis, and I. Bate

or damaged circuitry connections. Unless specified otherwise, PPT is simulated
with an instantaneous motor speed reduction to 0.045 meter/s while PGR with a
gradual speed reduction of 100 x 10 −5 meter/s2. These values are appropriate
as they range from the easier to detect complete failure to more difficult gradual
failure that are still feasible to detect.

3.3 Dynamic Environment

We simulate scenarios in which the concentration (or the availability) of target
objects change with time. Three conditions for our SRS: non-dynamic (CST),
varying object placement rate (VOPR), and varying object distribution (VODS). In
CST, the OPR is fixed at 0.1 with homogeneous object distribution. In VOPR, the OPR
in the arena changes between 0.1 and 0.025, and in VODS the spatial distribution
of objects in the arena is biased between top right and bottom left regions in the
arena. Dynamic scenarios are simulated with a 2-cycle configuration in which
dynamic changes occur at control cycle 20-40 and 60-80.

3.4 Performance Metrics

The performance of detection is evaluated based on the false positive rate (FP),
the responsiveness (Latency), and true positive rate (TP). The Latency is time
elapsed from the moment of fault injection until the moment of detection. For
our problem, we are not only interested whether an error is detected but also how
fast it can be detected. This is to prevent faulty robots being a cause of further
disruptions to the rest of the swarm. Note that the Latency is also dependent
on the control cycle length, a smaller control cycle may results in faster respond.

Given,
N(pos) = Number of positives,
N(tpos) = Number of true positives,
N(neg) = Number of negatives,
N(fpos) = Number of false positives,
Tpd = Fault detection time (in control cycle),
Tft = Fault injection time (in control cycle),

Then, FP = N(fpos)
N(neg) , and Latency = Tpd − Tft, TP = N(tpos)

N(pos) .

4 Results and Discussion

4.1 Performance

Boxplots of the FP from the 20 evaluation runs are shown in Fig. 3(a). In each
box, the centre line is the median, the upper edge is the third quartile, and the
lower edge is the first quartile. The whiskers extend to cover data points within
1.5 times interquartile range. Outliers are plotted individually. In the figure, the
results are plotted according to the operational environment with the first 3



Self-detection of Errors with RDA 261

0

0.05

0.1

0.15

0.2

C
S

T
−

P
C

P

C
S

T
−

P
P

T

C
S

T
−

P
G

R

V
O

P
R

−
P

C
P

V
O

P
R

−
P

P
T

V
O

P
R

−
P

G
R

V
O

D
S

−
P

C
P

V
O

D
S

−
P

P
T

V
O

D
S

−
P

G
R

F
P

(a) FP

0

1

2

3

4

C
S

T
−

P
C

P

C
S

T
−

P
P

T

C
S

T
−

P
G

R

V
O

P
R

−
P

C
P

V
O

P
R

−
P

P
T

V
O

P
R

−
P

G
R

V
O

D
S

−
P

C
P

V
O

D
S

−
P

P
T

V
O

D
S

−
P

G
R

C
o

n
tr

o
l c

yc
le

s

(b) Latency

Fig. 3. Boxplots of the FP and Latency for collective self-detection of errors with the
RDA

boxplots for CST followed by VOPR, and finally VODS. The median FP is approxi-
mately 0.1 in all scenarios. Two important observations on the results. Firstly,
the collective scheme with RDA produces a low FP. Secondly, the FP is consistent
across all scenarios including those in dynamic environments. This shows that
the proposed method is adaptive to environmental changes. Otherwise, the FP
would be much higher (≥0.5) in both VOPR and VODS. We also note that in every
trial, the error was detected (TP=1).

The results for Latency are shown in Fig. 3(b). The median response time is
1 control cycle for all scenarios. Since an evaluation is at every control cycle, this
response is immediate. Similarly, the consistency in the Latency for all scenarios
signify the ability to adapt accordingly.

We compared the results of proposed method using the RDA with two other
detection algorithms based on quartiles and T-test. Results for quartile-based
algorithm in Fig. 4 and T-test in Fig. 5. The RDA outperforms the other methods
with a lower FP and a lower and more consistent Latency. These results are very
encouraging. They indicate that through collective detection scheme with the
RDA, an error within a robot can be self-detected within a short time even
under dynamic environments. These results provide motivation to investigate
other aspects such as fine-tuning the system (section 4.2) and the robustness of
detection (section 4.3).

4.2 Parameter Tuning

We adopted the hill-climbing method in tuning the RDA’s parameters. A chosen
starting value is gradually increased or decreased by a small constant amount
to observe its effect on the performance metrics. One parameter is tuned at a
time, and a found optimal value is then used for subsequent tuning of other
parameters.

Fig. 6 shows results for the tuning of V1’s kernel width (hv1) with a starting
value of 0.0 and an increment of 0.2. The results of FP and Latency are plotted



262 H.K. Lau, J. Timmis, and I. Bate

(a) FP (b) Latency

Fig. 4. Results of (a) FP and (b) Latency with quartile-based detection

(a) FP (b) Latency

Fig. 5. Results of the (a) FP and (b) Latency with T-test based detection

0

0.01

0.02

0.03

0.04

0.05

0.06

F
P

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

2

4

6

8

10

12

14

16

18

kernel width for V1

C
o

n
tr

o
l c

yc
le

s

CST P
CP

CST P
PT

CST P
GR

V
OPR

 P
CP

V
OPR

 P
PT

V
OPR

 P
GR

V
ODS

 P
CP

V
ODS

 P
PT

V
ODS

 P
GR

Fig. 6. Graphs of the median FP and Latency with different values of hv1



Self-detection of Errors with RDA 263

Fig. 7. Boxplots of the FP in detecting injected faults with the tuned RDA

0

0.01

0.02

0.03

0.04

0.05

0.06

F
P

 

 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

2

4

6

8

10

12

14

16

18

20

gb

C
o

n
tr

o
l c

yc
le

s

CST P
CP

CST P
PT

CST P
GR

V
OPR

 P
CP

V
OPR

 P
PT

V
OPR

 P
GR

V
ODS

 P
CP

V
ODS

 P
PT

V
ODS

 P
GR

Fig. 8. Graphs for the median FP and Latency with different values of gb

side-by-side to show the effect of different hv1 on the performance. On the top
figure, a sharp drop of FP is seen at hv1=0.4 until hv1=1.2 where the decrease
became more subtle. On the bottom figure, a small drop in Latency is seen
at hv1=0.4 until hv1=0.6 where it starts to rise. At hv1=1.0, the latency rises
sharply with PPT errors and eventually followed by PCP and PGR at hv1=1.4. Here,
a suitable value for hv1 can be selected depending on the preference of the
performance metrics. For example, if a requirement of FP≤0.04 and Latency≤5
is given, hv1 within the range of 0.6 and 1.0 can be used.

By analyzing the results for each RDA parameter through hill-climbing, we
have found a set of optimal value for our problem with hv1=1.0, hv2=12, hv3=2.5,
b=0.02, gb=1.1, α=1.7. FP results in Fig. 7 with these values showed that a lower
FP is obtained in all scenarios compared to initial results in Fig. 3(a), significantly



264 H.K. Lau, J. Timmis, and I. Bate

0

0.05

0.1

0.15

0.2

C
S

T
−

P
C

P

C
S

T
−

P
P

T

C
S

T
−

P
G

R

V
O

P
R

−
P

C
P

V
O

P
R

−
P

P
T

V
O

P
R

−
P

G
R

V
O

D
S

−
P

C
P

V
O

D
S

−
P

P
T

V
O

D
S

−
P

G
R

F
P

(a) FP

0

1

2

3

4

C
S

T
−

P
C

P

C
S

T
−

P
P

T

C
S

T
−

P
G

R

V
O

P
R

−
P

C
P

V
O

P
R

−
P

P
T

V
O

P
R

−
P

G
R

V
O

D
S

−
P

C
P

V
O

D
S

−
P

P
T

V
O

D
S

−
P

G
R

C
o

n
tr

o
l c

yc
le

s

(b) Latency

Fig. 9. Boxplots of the FP and Latency detecting injected faults with a size 2 detection
window

better in VOPR. The results for the median Latency and TP, on the other hand,
are exactly the same (as in Fig. 3(b)) and are thus omitted here. These results
show that through parameter tuning, the performance can be improved.

From the same tuning exercise, we found some interesting observations. For
example, the parameter b and α has no obvious effect on the latency of detection,
i.e., irrespective of what value of b and α, the Latency remained constant at 2.
For these parameters, the selection for the optimal value is based solely on the
FP results.

For parameter gb, its influence on Latency appears to be one-sided (Fig.8).
From the figure, the Latency changes drastically as the value of gb approach-
ing 1.1. Beyond that point it remained constant and unchanged irrespective of
the value of gb. This is an interesting observation but can be explained as the
role of gb is to control the amount of stimulation from test data point. Higher
stimulation pushes the receptor position r∗p(x) beyond receptor length l and thus
an earlier detection. However, note that an earlier detection does not mean a
positive detection.

In order to further reduce the FP, we implemented a similar mechanism as in
[2] by increasing the size of detection window (DW) from 1 to 2. This means
that a positive detection requires a detection for two consecutive control cycles.
We call this RDA-DW2. The results (Fig. 9(a)) showed that a significantly lower
FP is produced. A bigger DW helps in reducing false alarms because a sudden
and drastic change in behaviour that last only one control cycle will be ignored.
On the contrary, by increasing the size of DW also meant that a longer response
time is involved. The Latency is directly related to the size of DW, Latency
≥ DW. With DW=2, the median Latency also increased to 2 control cycles
(Fig. 9(b)).

4.3 On Robustness

We view the robustness of an error detection method from 2 perspectives: scal-
ability in implementation and scalability in detection. Our implementation of



Self-detection of Errors with RDA 265

Fig. 10. The graphs of the median TP, FP and Latency in detecting various magnitudes
of PPT

Fig. 11. The graphs of the median TP, FP and Latency in detecting various magnitudes
of PGR



266 H.K. Lau, J. Timmis, and I. Bate

the RDA-DW2 is on every robot and thus it is distributed and should scale to a
larger swarm. To be aware of the magnitudes of faults detectable with our im-
plementation, we conducted further experiments by injecting PPT and PGR with a
range of magnitudes. If such a range can be established, we can then be aware of
the detection capability of our implementation for informed decision for recovery
actions.

We tested PPT with different magnitudes: 0.105, 0.095, 0.090, 0.085, 0.080,
0.075, 0.060 and 0.045 meter/s. With PPT, a bigger value signifies a more subtle
fault. Results for the median FP and median Latency are shown in Fig. 10. From
the figure, the median Latency is 2 for PPT ≤ 0.090 meter/s and starts to increase
sharply with PPT > 0.090 meter/s. On the other hand, the median FP does not
change much. From the results, we know that the critical point of an increase in
the Latency is at PPT=0.090 meter/s. This mean that for PPT > 0.090 meter/s,
the changes in behaviour of a faulty robot is too subtle, for this algorithm,
to indicate the presence of an error. If so desired, re-tuning of parameters can
be carried out to increase the sensitivity of detection. However, an increase in
detection sensitivity also increases the false alarm rate.

For PGR, we tested PGR with magnitudes from 5 x 10−5 to 100 x 10−5 meter/s2.
The interpretation of the magnitudes for PGR is the direct opposite with PPT.
With PGR, a smaller value signifies a more subtle fault. Results (Fig. 11) shows
four trends in the latency of detection: PGR < 30 x 10 −5 meter/s2 (T1), 30 x
10 −5 meter/s2 ≤ PGR ≤ 50 x 10 −5 meter/s2 (T2) , 50 x 10 −5 meter/s2 ≤ PGR
< 80 x 10 −5 meter/s2 (T3), and PGR ≥ 80 x 10 −5 meter/s2 (T4). The median
latency for T2 and T4 is constant with the Latency=3 in T2 and Latency=2
in T4. An increase is seen in the median Latency at T1 and T3. The increase
in T3 is gradual and much smaller compared to T1. If we consider T2, T3, and
T4 to be an acceptable Latency, then the critical point at which to expect a
drastic increase in the Latency is at PGR=30 x 10 −5 meter/s2. This mean that
with PGR < 30 x 10 −5 meter/s2, the fault is too subtle and only apparent after
a while.

With these results, we have established the range of magnitudes of PPT and PGR
that can be effectively detected by collective RDA-DW2. These findings provide
us evidence that the proposed method with RDA is robust in detection.

5 Conclusions

In this paper, we presented an error detection approach with collective self-
detection scheme of errors using an immune-inspired algorithm, the RDA in the
context of a foraging SRS. Results show that our approach is able to produce
an accurate detection with a low rate false alarms and adaptive to dynamic
environments. To date, no approach (to our knowledge) has been proposed for
this specific problem in the context of SRS. We have also shown the tuning of
the RDA’s parameters for optimal performance. To assess the limitations of our
approach, we investigated the detection capability and established the critical
points that is useful for subsequent recovery measures.



Self-detection of Errors with RDA 267

References

1. Christensen, A.L., O’Grady, R., Birattari, M., Dorigo, M.: Automatic Synthesis
of Fault Detection Modules for Mobile Robots. In: Proc. 2nd NASA/ESA Conf.
Adaptive Hardware and Systems, pp. 693–700. IEEE Computer Society Press, Los
Alamitos (2007)

2. Christensen, A.L., O’Grady, R., Birattari, M., Dorigo, M.: Exogenous fault detec-
tion in a collective robotic task. In: Almeida e Costa, F., Rocha, L.M., Costa, E.,
Harvey, I., Coutinho, A. (eds.) ECAL 2007. LNCS (LNAI), vol. 4648, pp. 555–564.
Springer, Heidelberg (2007)

3. Şahin, E.: Swarm Robotics: From Sources of Inspiration to Domains of Application.
In: Şahin, E., Spears, W.M. (eds.) Swarm Robotics 2004. LNCS, vol. 3342, pp. 10–20.
Springer, Heidelberg (2005)

4. Gerkey, B., Vaughan, R.T., Howard, A.: The player/stage project: Tools for multi-
robot and distributed sensor systems. In: Proc. 11th International Conf. Advanced
Robotics, pp. 317–323 (2003)

5. Mokhtar, M., Timmis, J., Tyrrell, A., Bi, R.: In: Proc. Congress on Evolutionary
Computation, pp. 2055–2062. IEEE Press, New York (2009)

6. Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat,
S., Zufferey, J.-C., Floreano, D., Martinoli, A.: The e-puck, a Robot Designed for
Education in Engineering. In: Proc. 9th Conf. Autonomous Robot Systems and
Competitions, pp. 59–65 (2009)

7. Owens, N.D.L., Greensted, A., Timmis, J., Tyrrell, A.: T cell receptor signalling in-
spired kernel density estimation and anomaly detection. In: Andrews, P.S., Timmis,
J., Owens, N.D.L., Aickelin, U., Hart, E., Hone, A., Tyrrell, A.M. (eds.) ICARIS
2009. LNCS, vol. 5666, pp. 122–135. Springer, Heidelberg (2009)

8. Skoundrianos, E.N., Tzafestas, S.G.: Finding fault-fault diagnosis on the wheels of
a mobile robot using local model neural networks. IEEE Robotics and Automation
Magazine, 83–90 (2004)

9. Terra, M.H., Tinos, R.: Fault Detection and Isolation in Robotic Manipulators
via Neural Networks A Comparison Among Three Architectures for Residual
Analysis. Journal of Robotic Systems 18(7), 357–374

10. Timmis, J., Tyrrell, A., Mokhtar, M., Ismail, A., Owens, N., Bi, R.: An artifi-
cial immune system for robot organisms. In: Levi, P., Kernback, S. (eds.) Symbi-
otic Multi-Robot Organisms: Reliability, Adaptability and Evolution, pp. 268–288.
Springer, Heidelberg (2010)

11. Winfield, A.F.T., Nembrini, J.: Safety in Numbers Fault Tolerance in Robot
Swarms. International Journal on Modelling Identification and Control 1(1), 30–37
(2006)


	Collective Self-detection Scheme for Adaptive Error Detection in a Foraging Swarm of Robots
	Introduction
	Background and Related Work
	Error Detection in Swarm Robotics
	Receptor Density Algorithm

	Experimental Setting
	Simulation Setting
	Modes of Failure
	Dynamic Environment
	Performance Metrics

	Results and Discussion
	Performance
	Parameter Tuning
	On Robustness

	Conclusions
	References


