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varying behaviour in dynamic environments, and are subject to a variety of possible anomalies. The focus
within our work is on specific faults in individual robots that can affect the global performance of the

robotic swarm. We argue that classical approaches for achieving tolerance through implicit redundancy is
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lightweight computation.

insufficient in some cases and additional measures should be explored. Our contribution is to demonstrate
that tolerance through explicit detection with statistical techniques works well and is suitable due to its
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1. Introduction

A swarm robotic system (SRS) consists of a collection of simple
and homogenous miniature robots interacting with each other
and the environment to perform some tasks without a centralised
control [1]. It is inspired by observations in social insects which
demonstrate emergent behaviour such as robustness to the lost of
individuals, flexibility in carrying out tasks of different nature, and
scalability in continuous operation with different group sizes [2,3].
These characteristics, together with distributed autonomy, make
swarm robotics particularly useful for a variety of task domains
such as tasks with a bounded spatial coverage, tasks that are too
dangerous for human operators, tasks with dynamic scales, and
tasks that require redundancy [1].

To translate research in swarm robotics from laboratory to
real-world implementation, there is a need to unsure the SRSs
exhibit a high level of safety and reliability [4]. SRSs in the physical
world, as with any physical system, are bound to experience
undesirable behaviours because of a variety of reasons such as
random hardware failures, design errors, and even deliberate
sabotage [4]. Therefore, the SRSs need to be fault-tolerant to ensure
continuous operation in the event of failures to some individuals.

One might expect, that implicit fault-tolerance by redundancy
with the large number of robots in the system should be sufficient
and that tasks not completed by certain robots will be completed
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by other robots. This indirectly implies the independence of fail-
ures in which faulty robots do not interfere with other robots and
thus the completion of tasks. However, it has been demonstrated
that this is not always the case and that a number of failing robots
can significantly affect the swarm and the task [4] and thus should
be repaired [5]. For a swarm aggregation task, a (partial) motor
failure in a single robot or a small number of robots (simultane-
ously) causes physical anchoring of the swarm by either impeding
or even preventing the swarm from reaching its target [4]. In this
case, having redundancy alone is insufficient and it would be use-
ful to have additional fault tolerance measures and explicit error
detection and recovery (ERD) is such a measure commonly applied
in engineering.

ERD involves three stages: error detection, fault diagnosis, and
recovery [6] (Fig. 1). Error detection identifies erroneous states and
fault diagnosis determines the causes of an error including the
nature and the exact location of the faults. When a fault has been
identified, recovery measures can then be carried out to prevent
the faults from reoccurring. This can be done by disabling the faulty
components from being invoked again. If a fault still persists after
recovery measures have been carried out, that information may be
used as a form of feedback to the error detection and fault diagnosis
mechanism for tuning and maintenance purposes.

Error detection in SRSs is interesting and challenging, particu-
larly when the SRSs are deployed in uncertain environments where
the changes in the environment also affect behaviours of the sys-
tems. In a robot foraging example, the performance of a robot may
be determined by some task-related-measures such as the quan-
tity of objects collected. If there is a fault to the wheels or grip-
pers of a robot, the number of objects collected over a fixed period
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Fig. 1. Stagesin an explicit error detection and recovery (EDR) mechanism for fault
tolerance.

by that robot will be less and likely to deviate significantly from a
fault-free condition. However, in this example, the quantity of ob-
jects collected is also influenced by environmental conditions such
as the availability of objects and physical distribution of objects in
the arena, which likely to change as time progresses. From the per-
spective of a data-driven approach to error detection [7] in which
the presence of a fault is inferred from the operational data, this is
challenging as the task is to figure out whether the change in the
data is due to the presence of a fault or an artefact of the changes
in the environment. Thus any error detection approach needs to be
adaptive in order to differentiate between changes in data due to
faults and environment. As SRSs are generally deployed to oper-
ate over an extended period, and possibly with limited resources
(e.g. computational power, memory, and storage) there is a need
for the EDR to be lightweight and inexpensive to run. These con-
straints impose restrictions on the complexity of the error detec-
tion method. Our task was to implement and if necessary adapt
existing methods to address the aspect of adaptive error detection.

Some of these challenges have been addressed in previous
work such as detection capabilities [8], flexible detectors [9],
resource usage [10] and data-driven detection [7]. However, the
aspect of adapting to dynamically changing environments has
largely being ignored. In this paper, we address this through social
comparison [11] (which is essentially a neighbourhood scheme) in
which a robot cross-referencing its behaviour (data) with others
within its communication range (local neighbourhood) to self-
detect whether an error has occurred within itself. In this case,
there is no central point for the identification of errors within the
swarm but rather distributed over all robots. This, in principle,
would allow for a greater degree of fault tolerance.

The main contributions of this work, therefore, are (1) an inves-
tigation on the detection of errors due to faults on wheels in a for-
aging SRS with four classical statistical classifiers, (2) deployment
of the statistical classifiers for dynamic environments, (3) augmen-
tation and deployment of a novel statistical based technique that
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has previously not been applied in an practical setting, and (4) two
communication strategies to reduce communication overhead in
the context of proposed implementation. It should be noted that
fault diagnosis and recovery will not be addressed in this paper but
interested readers can refer to [12,10].

The rest of the paper is organised as follows: Section 2 describes
the foraging SRS in the context of our work. Section 3 describes
the statistical classifiers with the application of those classifiers
for adaptive error detection in Section 4. Results are presented
in Sections 5 and 6 provides suggestions to reduce false positive
rate and communication overhead. Conclusions are followed by a
discussion of future work in Section 7.

2. Case study: a foraging swarm robotic system

2.1. Foraging

Typically, robot foraging involves a group of robots deployed
in an arena to search for specific objects and transport collected
objects to a specific location [13]. At any time these robots might
experience faults, (i.e. faulty motor) and the task is to detect it and
recover if possible. Faults on wheels (as well as grippers) directly
affect the ability of robots to forage, and we propose that the
presence of these faults can be inferred, e.g. through the number
of objects collected (obj € Zf{), energy used (eng € ]R(T), and
distance travelled (dist € Rg) over a duration (control cycle).
Unfortunately, these data are also influenced by the environment
in which the SRS operates, (e.g. the availability of objects, obstacles,
spatial distribution of objects). Thus, the challenge is to determine
whether a change in data is due to faults or changes in the
environment.

2.2. Forager robot

The foraging behaviour of the robots in our study is coded based
on a subsumption architecture [14], by decomposing foraging be-
haviour into smaller behavioural modules of obstacles avoidance,
moving to an object, grabbing an object, moving to a base, follow,
deposit, scan arena and random walk. These behaviours are ex-
pressed as a finite state machine, as illustrated in Fig. 2. The energy
consumption for each decomposed behavioural task per second as
in [15]: avoidance 0.9, searching 0.8, MovingToObject 0.8, grabbing
1.2, departing 0.8, homing 1.2, following 0.8, and depositing 1.2 unit.
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Fig. 2. Finite state machine for robot foraging.
Source: Adapted from [15].
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Table 1
Summary of fixed simulation parameters.
Parameter Value Parameter Value
No. of robots 10 units Component fault Wheels
Default OPR 0.10 unit/s No. faulty robot 1 unit
Initial object 100 units Fault injection at Control cycle 20
Maximum object 200 units Default speed 0.15 m/s
Simulation 80 control cycles Comm. range 2 m radius
Control cycle 250s
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Fig. 3. Histograms on the distribution of obj for different control cycle lengths.

A simulation begins with ten robots dispatched from the base
and then follow the state behaviours as shown in Fig. 2. The arena
is a 10-m by 10-m bounded octangular shaped with a 1-m radius
circular base located in the middle. The robots are dispatched from
the base in all direction and the heading for each robot is calculated
assuming the robots start from a single point. With n robots, the
direction for robot Ri = i x ZXT” For example, in a SRS with ten
robots, the heading for robot R1 is %, robot R2 is 2?” and so on.
Red-coloured square objects are placed randomly in the arena.

The foraging task is normally completed when all objects in the
arena have been collected. However, since we are interested in
the detection of errors in the presence of changing environmental
conditions, collected objects are replaced continuously at an object
replenishing rate (OPR). The OPR is the probability of adding
one object in one second, which default value is 0.10. To avoid
overcrowding, the maximum number of objects in the arena at one
time is set to 200 units. Table 1 is the setting for other parameters
in this study.

Our current work focuses on the error detection in the case
of a single robot failure for the reason that if the failure modes
for a single fault are sufficiently complex that current state of
the art approaches do not work well, then they are unlikely to
deal with more complex ones. In addition, by only considering a
single failure, it is possible to provide a set of results more easily
comprehensible such that a more accurate understanding of the

1 The random number generator used is gsl_rng_mt19937 in GSL-GNU
Scientific Library initialised with seed value 999. The library can be found on
www.gnu.org/software/gsl.

problem domain is gained. Therefore, the single failure case is a
good place to begin for our investigation on the aspect of dynamic
environments for adaptive detection.

2.3. Operational data

Data-driven approach to error detection is preferable for our
work instead of model-based approach (i.e. build analytical models
of how a system should behave at design-time, and compared
with run-time behaviour for the detection of errors) because
analytical models are often not feasible due to uncertainties in the
environment [7]. Thus, data (in our case obj, eng, and dist) at
each control cycle is recorded? during the simulations. We then
evaluate the error-detection ability of various statistical classifier
in terms of the true positive rate (TPR), false positive rate (FPR),
and the time it takes to detect the errors (Latency).

The granularity or the length of a control cycle affects the
magnitude of data values and also the time to detect the errors.
If a control cycle is too short, the data values are likely to be small
and not meaningful for the detection. Similarly, if a control cycle
is too long, by the time an error is detected it might be too late
for any recovery actions. Fig. 3 is an example of obj values for
control cycles of 50, 100, 200, and 250 s. For a control cycle of
50 s the value of obj is between 0 and 2 with an arithmetic mean
of 1; whereas for a control cycle of 250 s it is between values of
0 and 6 with a arithmetic mean of 4. If the presence of a fault is
inferred through the difference between a data instance and the

2 Thedataisavailable at https://sites.google.com/site/researchmaterialshkl/data.


http://www.gnu.org/software/gsl
https://sites.google.com/site/researchmaterialshkl/data

1024 H. Lau et al. / Robotics and Autonomous Systems 59 (2011) 1021-1035

arithmetic mean, then the difference between a value 0 (faulty) and
the arithmetic mean for control cycle of 250 s is more ‘significant’
for error detection compared with a control cycle of 50 s. However,
it also means that up to 250 s has passed before an error is detected.
Therefore, there is a tradeoff of Latency and the TPR. Results in
this paper are based on a control cycle of 250 s.

Summarising the data from a simulation run of the SRS in non-
dynamic environment with all robots in fault-free condition, Fig. 3
shows histograms on the distribution of obj over the different
control cycle lengths. From the histograms, the distribution of
the data values is somewhat normal. A similar bell-shape pattern
is also seen in the distribution of eng (Fig. A.12) and dist
(Fig. A.13). Hence, error detection with statistical classifiers seems
a reasonable starting point.

2.4. Operational environment

This work addresses the aspect of adaptive data-driven error
detection in which the operational data used to infer the presence
of faults are also influenced by changes in the environment. Three
conditions in which the SRS operates: CST (non-dynamic), Vgpg
(varying OPR), and Vgpg (varying objects distribution). In CST, the
OPR is constant at 0.100 with homogeneous object distribution;
whereas in Vgpg and Vgps, the concentration and the spatial
distribution of objects changes over time, and this has a direct
effect on the operational data. In simulation, the OPR changes
between 0.100 and 0.025 at specific intervals in Vgpg whilst in Vgpg
the placement of a new object was biased between top left and
bottom right regions in the arena.

The foraging SRS was simulated with Player/Stage [16],> a free
open source robotic simulation tool. It comprises of Player which
communicates with hardware through the source code and a plug-
in called Stage which receives instructions from Player and moves
robots in a simulated world and passes data to the Player. We
work with simulation as it allows us to collect data easily in a
controlled manner and allows for large numbers of experiments to
be undertaken. Of course, ultimately any system developed should
be deployed in an actual robotic system, but insight gained from
this simulation process will allow for a more principled design and
hence reduce the risk associated with premature deployment in
real robots.

3. Statistical error detection

Five statistical techniques were implemented in this work, two
of which are parametric and the remainder are non-parametric.
The mix of both parametric and non-parametric techniques
is for unbiased exploration of solutions. Extreme Studentised
Deviate (ESD), student’s T-test, box plot rules with quartiles,
and Dixon’s Q-test [17] are classical statistical techniques for
outliers detection, with ESD and T-test being parametric (assuming
the data belong to some distributions). In addition to classical
non-parametric techniques, a more recent nonparametric kernel-
based algorithm called The Receptor Density Algorithm (RDA) [18]
was also tested. The RDA was inspired by the T-cells signalling
mechanisms in the immune system [18], and it is particularly
interesting as it has been demonstrated to be suitable for dynamic
anomaly detection of different substances in a spectra [19]. These
techniques that have been used in our study are presented in the
following sections.

3 Latest version of Player/Stage can be found on http://playerstage.sourceforge.
net/. We used Player 2.1 and customised Stage 2.1.0 from www.brl.uwe.ac.uk/
projects/swarm/index.html.

3.1. Classical statistical techniques

ESD, also known as Grubbs’ test [20], calculates a Z value as the
difference between the mean w and a suspected outlier x divided
by the standard deviation o. If Z is larger than a certain threshold
k, x is classified as an outlier.

X — ul
g

The value of k is usually taken as 2 or 3 because if the data are
normally distributed, they are expected to be within two (three,
respectively) standard deviation from the mean [21].

For the T-test, a sliding window technique is used to provide a
running mean of a sample. Each robot produces a running mean
u which, if all robots are anomaly free, will come from the same
distribution. Hence p can be compared to the running means of
other robots v to see if it is outlying using a T-test. The formula for
the T-test is a ratio of the difference between the two means, and
the denominator is a measure of the variability or dispersion of the
scores (also referred to as the standard error of the difference) [22].

> k. (1

M < T(p, df) (2)
SE(u—v) =

where SE(u — v) = \/%, o, = standard deviation of the means,
p is the statistical significant threshold (usually 0.05 for a 95%
confidence level), df = N — 1 is the degrees of freedom, and
T(p, df) is the standard t-value that corresponds to given values
of p and df in the T-table.

In the box plot rule, an outlier is defined as an instance falling
outside 1.5 interquartile range (IQR) of either the first quartile,
25th percentile (Xg,s), or the third quartile, 75th percentile
(x0.75) [23]. The IQR is the range between the upper quartile and
lower quartile, i.e. IQR = Xg.75 — Xg.25. The multiplier of 1.5 is the
de facto value in statistics to define a mild outlier and a multiplier
of 3 is for extreme outlier [24].

X075 + KIQR > X > Xg25 — kIQR, IQR = Xo75 — X0.25. (3)

Dixon’s Q test, or simply the Q test, calculates a Q value as
the ratio between the absolute difference between a suspected
outlier and the closest value to it (gap), and the range, i.e. the
difference between the maximum and minimum value. If the Q
value is greater than corresponding value in Q -table, the suspected
outlier is classified as an outlier.

gap

Q= . (4)
range

3.2. Receptor density algorithm

The RDA was developed through the extraction of features of
the generalised T-cell receptor, and mapped onto kernel density
estimation [25], a technique from statistical machine learning. The
details of the development of the RDA [25] and related biology [26]
are beyond the scope of this paper but interested readers are
directed to relevant papers.

The RDA works as follows. The spectrum of input value is
divided into an s discretised location and a receptor X; is placed
at each of these locations. A receptor has a length £ = m a

position r, € [0, £], and a negative feedback barrier 8 € (0, £).
At each time step t, each receptor takes input x; and performs
a binary classification ¢; € 0,1 to determine whether that
location is considered anomalous. In general, the observation of
one anomalous location is sufficiently representative to indicate
the present of an anomaly at t.
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The classification decision is determined by the dynamics of r,
and negative feedback r, € (0, £). During training or initialisation,
after x; was presented, if the resulting r, > f then a negative
feedback r, is generated which acts to reverse the progression of
rp. If r, < B, no negative feedback will be generated, r, = 0.

"1 X —X;
rp(x)zz%l(< P )

i=1

_px =8, ifrpx) =8
() = {Op, otlferwise. ()

The receptor position and negative feedback decay over time.
During testing, for current input v if riﬁ > ¢, then the receptor
generates a anomaly classification ¢, = 1.

o0 = b x i) + gb x K <$> —axr(x) (6)

where b € R is receptor position’s decay rate,
gb € R* is current input stimulation rate,
a € RY is negative feedback’s stimulation rate.

1, ifrix)>¢
_ 1L p(X) =
c(v) {0, otherwise.

The specific value for various parameters of the RDA is
application-specific and also depending on specific performance
metrics of interest. For readers interested on optimising the RDA
parameters, refer to [27]. In this paper, the number of receptors
is=20,8 = 0.01,b = 0.1,gb = 1.1, ¢ = 1, and the kernel is
Gaussian kernel is defined as

_ xxp?

X (x—xi) 1 %
= ——e¢e
h V2

4. Application of statistical classifiers for adaptive error detec-
tion

(7)

As mentioned previously in Section 1, data-driven error
detection approaches infer the presence of a fault through the
analysis on the operational data. In our foraging SRS, data regarding
the obj, eng, and dist of each robot are collected in each control
cycle. The values of these variables differ from one control cycle
to another depending on factors such as the quantity of objects in
the arena, and whether the robot is fault-free. Fig. 4 is a snapshot
of the obj on a fault-free robot operates in an environment with
time-varying amount of objects (a change occurred at control cycle
10). Given such data, one way to determine whether an error has
occurred with statistical techniques is to use a sliding time window
on the data to calculate some descriptive values (depending
on the statistical technique) of the sample and compare these
values against those from the previous time window. If the
calculated values exceed defined thresholds, an error is reported.
For example, assuming a Q-test at 95% confidence is used with a
sliding time window of size 5 on data in Fig. 4. At control cycle
10, the calculated Q-value = g = 0.800 and corresponding
Q-value from the Q-table is 0.710. Since Qcaculate(0.800) >
Q:table (0.710), an error is reported. Note that we analyse each
variable separately and an error is detected if it was detected in
any of the three variables.

However, since the ‘significant’ change in obj at control cycle
10 is an artefact of a change in the operational environment that
affects all robots in the system, then classifying the data instance
as an error is a false positive. In this case, detecting errors with
data from a single robot is insufficient to differentiate between
changes in data due to faults and those of dynamic environments.
An alternative approach is to also include data from other robots
within a local neighbourhood for cross-referencing and validation,

10 1

1 12 13 14 ... control cycle
3 0

567809
87888 0 0 0 ... obj

Fig. 4. An example of the obj on a robot at control cycle 5 to 14.

cc R1

5 8 7 8

6 7 8 8 7 8
7 8 7

8 8 7 5 5

9 8 8 6

10 3 4 4 3 2
11 0 1 0 1

12 0 1 1

13 0 2 1 0 1
14 0 0

Fig.5. R1’sown data together with data from other robots within a communication
range of R1. The label cc and R1 are placed for clarity and not in the input files.

this is the approach we advocate. With this approach, false
detection, i.e. false positives and false negatives, can be reduced
because a change in the environment is likely to affect all robots
within the local proximity. Through cross-referencing, a robot can
validate whether a similar change in behaviour is also experienced
by surrounding robots. If it is, then it is likely to be an artefact
of a change in the environment and can be safety ignored. With
this, the detection is considered to be adaptive to environmental
changes because the environmental effects are not miss-classified
as a manifestation of a fault.

To obtain data from other robots, some form of communication
is required. For the purpose of this work, we make use of
a wireless communication network. During each control cycle,
robots exchange data with other robots (neighbour) within a
communication range of 2 m radius. Since the robots are mobile,
there is a probability that a robot might not interact with another
robot during a control cycle. Fig. 5 is a snapshot of aggregated ob j
forR1 showing the number of robots that interact with R1. The data
is arranged in such a way that the first datum is from R1. Notice
that the amount of data from other robots (neighbourhood) differs
from one control cycle to another and the sources of data were not
specified.

Data-driven error detection with neighbourhood data is the
approach we have adopted during our experiments. An important
assumption is that the detection should determine whether a robot
itself is faulty (self-detection) and not whether the other robots
are faulty: for this reason the identity of the sources of data is
not important. We propose that such an approach should be more
flexible as no additional storage is required to keep track of data
sources, there is no centralised point of detection, and in principle,
the approach is scalable.

4.1. Accessing error-detection ability

The error-detection ability of statistical classifiers was evalu-
ated based on the true positive rate TPR, false positive rate FPR,
and the time taken to detect the failure (referred to here as the
Latency).

TP
TPR= —— (8)
TP + FN
FP
FPR (9)

T FP+IN
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Fig. 6. Boxplots of the MCC, TPR, and FRP in detecting Pcp in CST.

TP = true positive, FN = false negative, FP = false positive, and
TN = true negative.

Latency = fault injection time — fault detection time. (10)

Given TPRs and FPRs of two techniques, it is often difficult
to judge which one is superior if one technique has a higher
TPR whilst the other has a lower FPR. In this case, the Matthews
correlation coefficient (MCC) [28] score is useful and was included
in the results. Although there is no single value to best describe the
matrix of TP, FN, FP, and TN but MCC is regarded as one of the best
such measures that include all of those metrics.

TP x TN — FP x FN

MCC = .
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)

(11)

5. Experiments and results analysis

In [4], a partial failure (Ppr) to the wheels was discovered
to be the most critical and it significantly affects the ability of
the swarm to carry out its task. Therefore, statistical classifiers
defined in Section 3 were tested to detect these errors in dynamic
environments. In addition, for completeness, we also tested two
additional failure modes to the wheels: complete failure (Pcp),
and gradual failure (Pgg). (Note that it is assumed that other
components including the communication are working properly.)
With Pgp, the left wheel on a faulty robot was set to left turn
10° causing the robot to move in a circle and unable to move to
continue foraging. With Ppr, the robot wheels move less efficiently
by reducing the speed of the wheels causing the robot to move
more slowly but otherwise still able to search and collect objects.
In the Pgr case, the wheels on a faulty robot move with a
gradually reducing speed. These failure modes were independently
simulated for the SRS in CST, Vgpg, and Vgps. In the experiments,
the fault was injected at control cycle 20 and persists until the end
of simulation (permanent); the changes in Vgpg and Vgps occur at
control cycles [20, 40], [60, 80]; and each scenario was repeated
20 times. In theory, if the classifiers were not able to adapt to the
environmental changes, then the FPR will be greater than % =
0.50 (i.e. environmental changes last for 40 control cycles of a
simulation of 80 control cycles). Similarly, the TPR will be lower
than 0.50.

5.1. Experiment A

This experiment investigates the ability of the statistical classi-
fiers in detecting Pcp. This failure mode is the most severe among
the three failure modes investigated in this paper and it should
manifest itself very clearly in the data. Thus, it was expected that,
in CST, the statistical classifiers should detect P¢p error easily, i.e.
with a high TPR and a low Latency.

Results for Pcp in CST are summarised in Fig. 6, Vgpg in Fig. A.14,
and Vgpg in Fig. A.15. In the boxplots, the centre line in each box
is the median, the upper edge is the third quartile, and the lower
edge is the first quartile. The whiskers extend to cover data points
within 1.5 times IQR and outliers are plotted individually.

The boxplots showed that almost all statistical classifiers were
able to detect P¢p with a median TPR greater than 0.80, FPR less
than 0.25,and a Latency of 1 control cycle (immediate detection).
One exception is the T-test in which the median TPR was about
0.74 in CST, 0.60 in Vgpg, and 0.65 in Vgps. However, the T-test has
the lowest FPR.

MCC score is useful as a measure (if necessary) to decide which
classifier is superior when one classifier is better with a higher
TPR whilst another is better with a lower FPR. For example in
CST (Fig. 6), the Quartile and Q -test has a significantly higher TPR
than with the T-test. However, on the results of the FPR, T-test
a significantly lower FPR compared to the Quartile and Q-test. In
this case, the MCC score is useful and it was determined that the
T-test was superior.

In the case of Vgpg, the TPR results were lower and the FPR
were higher compared to CST. The reason for this is the availability
of objects in the arena changes and this directly affects the data.
When the quantity of objects is minimal and approaching zero,
many fault-free robots will not be able to collect any objects.
Similarly, a faulty robot will not be collecting any object and thus
the TPR is expected be lower compared with results in CST. This
is because while the environment is changing, all robots will have
nearly exact data values and thus the fault might not be reflected
on the data.

Results for Pcp in Vgpg and Vgpg give evidence that our imple-
mentation of statistical classifiers are adaptive to changes in the
environment. This is shown with a TPR significantly greater than
0.50 and a FPR significantly lower than 0.50 in those environments.
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Among the statistical classifiers investigated, T-test and the
RDA stand out and outperformed the others with the RDA being
the one with the highest MCC score. We think because of the
random movements of each robot, the data distribution is not
strictly normal all the time. Therefore, non-parametric techniques
work better than parametric ones. In addition, the RDA works
on the density (frequency) rather than exact data values as with
other classifiers. Thus, it is unaffected by the underlying data
distribution.

5.2. Experiment B

This experiment investigates the detection of Ppr which is less
severe when compared with P¢p, and thus harder to detect because
the Ppr errors are less obvious compared with Pcp errors. The
severity of Ppr directly influences the data values of the operational
data; the more severe is the Ppr, i.e. slower wheels movement, the
more obvious its effects as manifested on the data. Therefore, we
test Ppr with failures ranging from severe (Ppr = 45 x 1073 m/s)

to subtle (Ppr = 105 x 1072 m/s) to establish the performance (i.e.
TPR, FPR, Latency) of the classifiers over a range of Ppr severity.

Results for Ppy in CST are summarised in Fig. 7, Vgpg in Fig. A.16,
and Vgpg in Fig. A.17. Each graph shows the median value for a
performance metric of the classifiers over a range of Ppr severity.
The labels on the x-axis are the Ppr tested, and the lines connecting
points are drawn for clarity.

At Ppr = 45 x 1073 m/s, the TPR decreases whilst the FPR
increases as the fault become more subtle. For instance in CST,
whilst the TPR for Quartile decreased from 0.80 at Ppy = 45 X
10~3 m/s to 0.60 at Ppy = 105 x 10~> m/s, the FPR increased
from 0.08 to 0.13. This trend of decreasing TPR is seen for all
classifiers. However, the FPR of T-test and the RDA seems to be
not much affected by the severity of Ppr in which the median FPR
is consistently the same throughout, i.e. 0.05 (in CST, Vgps and Vgpg)
for the T-test, 0.05 (in CST, Vgps) and 0.10 (in Vgpg ) for the RDA.

We suspect that the relatively unchanged FPR of the T-test is
due to the subtle failure, the difference between the 1 and v in
Eq.(2)is too small and insignificant to be classified as an error, and
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Table 2
The frequency of communication (broadcast) by each robot using different communication strategies in detecting Ppr = 45 x 107> m/s.
Env. Strategy R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Original 80 80 80 80 80 80 80 80 80 80
ST S1 60 0.5 0 0 0 0 1 0 0 1
S2 65 19 18.5 19 20 18.5 19 195 19.5 19
v S1 60 3 3 3 25 3 25 3 2 2
OPR S2 635 25 215 245 23 235 24 235 235 235
v S1 60 2 25 2 3 3 2.5 2 3 2
ops S2 65.5 22 22.5 21 19 215 18 22 20 20

thus a low value for both both TPR and FPR. As for the RDA, the
aforementioned reason (i.e. detection based on density instead of
data values) applies.

At Ppr = 90 x 103 m/s in CST, especially on the RDA’s
TPR and Q-test’s FPR, a large decrease in the TPR and a large
increase in the FPR can be seen. We suspect this is a critical point

where the severity of Ppr is too subtle on the operational data for
some classifiers. There is also evidence of this observation in Vgpg
(Fig. A.16) and Vgps (Fig. A.17).

Results for Ppy in Vgpg and Vgps show that the implementations
are adaptive to changes in the environment with a TPR signifi-
cantly greater than 0.50 and FPR significantly lower than 0.50. One
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exception is the T-test in which the TPR was below 0.50 for Ppr
greater than 90 x 10~3 m/s in Vgpp.

Overall, the RDA achieved highest MCC score compared with
other classifiers, whilst the T-test remained superior compared
with other classical classifiers.
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5.3. Experiment C

The severity of Pgg has an obvious impact on the Latency, i.e.
a subtle fault will take longer before it has a significant impact on
the data. Thus, the fault can only be detected at a later stage. In
this experiment, we test Pgg from subtle (5 x 107> m/s?) to severe
(100 x 107> m/s?), where a higher value of Pgg signifies a more
severe fault.

The results for Pgg are summarised in Fig. 8 for CST, Fig. A.18 for
Vopr, and Fig. A.19 for Vgps. Each graph shows the median value for
a performance metric of the classifiers over a range of Pgy severity
with labels on the x-axis for the Pgy tested. The lines connecting
points are drawn for clarity.

As the severity of Pgg increases, e.g. from Pgz 5 x 107> m/s?, it
became easier to detect as evident from the increase in TPR and
can be detected faster with a decrease in Latency. The trends
were exhibited in all scenarios (CST, Vgpg, Vgps) for all classifiers.
However, the FPR remained relatively unchanged throughout.

Results for the Latency show four trends: Pz < 30 X
107> m/s? (T1), 30 x 107> m/s> < Pg < 50 x 107> m/s?
(T2), 50 x 107> m/s> < Pg < 80 x 107> m/s? (T3), and
Per > 80 x 107> m/s? (T4). The median Latency for T2 and
T4 is constant, whereas it is decreasing as the fault becomes more
severe in T1and T3.If we consider T2, T3, and T4 to be an acceptable
Latency, then Pgz = 30 x 107> m/s? is the critical point at which
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Table A.3
The median TPR, FPR, Latency, and MCC in detecting Ppr = 45 X 10-3 m/s.
Environment Strategy TPR FPR Latency MCC
Original 1.0000 0.0561 1.0 0.7463
CST S1 1.0000 0.0027 1.0 0.9739
S2 1.0000 0.0338 1.0 0.8259
Original 1.0000 0.0926 1.0 0.6377
Vopr S1 1.0000 0.0155 1.0 0.8920
S2 1.0000 0.0588 1.0 0.7247
Original 1.0000 0.0716 1.0 0.7169
Vops S1 1.0000 0.0128 1.0 0.9195
S2 1.0000 0.0345 1.0 0.8484

a drastic increase in the Latency occurs. This also means that

faults at Pgz < 30 x 107> m/s? are too subtle for the classifiers.
Results for Pgg in Vgpg and Vgpg are the same as in Pgp and

Ppr in that the implementations are adaptive to changes in the

environment with a TPR significantly greater than 0.50 and FPR
significantly lower than 0.50.

Again, the RDA remained the superior classifier compared to
other investigated classifiers in detecting Pqg with the highest MCC
score.

6. Enhancements for improved performance

Having evidence to support that implemented statistical clas-
sifiers were able to detect faults to the wheels even in the
presence of dynamic environmental changes, we wonder if the
performance especially the FPR can be improved. Results for the
TPR with Pcp, Ppr, and Pgg showed the RDA has the highest TPR.
However, the FPR was consistently lower than T-test. Therefore,
we investigate whether the FPR can be reduced with a larger detec-
tion window size (default is one). Also, assuming the exchanges of
data between robots are through wireless communication, we seek
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ways to reduce the communication overhead whilst maintaining
the performance.

6.1. Reducing FPR by increasing the size of the detection window

In [29], it has been demonstrated that by increasing the size
of the detection window (DW), sporadic or spikes in the data can
be filtered and thus a lower FPR can be obtained. This assumes
that faults last longer than the size of the DW. A DW of size one
means that an error is flagged if it is detected at current (one)
control cycle. If the size of the DW is two, an error is only flagged
if it is detected for two consecutive control cycles (i.e. previous
and current control cycle). This measure is appropriate with the
experiments in this paper because the faults persist after being
injected to a robot. However, there is a tradeoff between the
Latency and the TPR due to the size of the DW. A larger DW
will result in a longer Latency. An increase in the DW is also
likely to result in reduction in the TPR as an error is only reported
if it was detected consecutively within that DW. This means that

one misclassified error (at a control cycle) will result in two false
negatives.

We analysed the same data used in Sections 5.2 and 5.3 using
the RDA with a DW of size two (RDA-DW?2) and the results are
shown in Figs. 9 and 10. The graphs shows the difference in
performance between the original RDA and RDA-DW?2. A positive
value means an increase in the performance metric, a zero means
no difference, and a negative value means a decrease in the
performance metric.

It can be seen that by increasing the DW from one to two, a
lower TPR and FPR is obtained. Even with a decrease in TPR, a
better overall performance as measure with MCC score is achieved
as evident from the MCC score. As for the Latency, as expected,
an increase from one control cycle to greater than or equal to two
control cycles was observed.

6.2. Reducing communication overhead

For our implementations, we assume the communication be-
tween robots is through a wireless medium by broadcasting (note



1032
1 - — 4 — - T =
/"\‘ 7 . N
x 08 “:( = ~+ 0\ S et e /;
[ o - —° : ~
= 4 o~ A o _
07 ¢ o o g
—6— ESD
0.6 | — + —T-test ‘== Q-test |
—o—Quartile — » —RDA

5 . . . .
510 20 30 40 50 60 70 80 90 100

motor speed reduction(x 107° meter/sz)

—6— ESD ]
— + —T-test |
—0— " Quartile
- —a— Q-test
X -+ -RDA

Latency
O = N W H OO N ®©
/.

510 20 30 40 50 60 70 80 90 100

motor speed reduction (x 10°° meter/sz)

H. Lau et al. / Robotics and Autonomous Systems 59 (2011) 1021-1035

0.25

o2 W

< O - g —B

—_'t T ee=T —.—

0.15

FPR
d

0.1 I -
—o— © ~ —o-.—o_
0.05 + +~ — om Ul mem TSR

0
510 20 30 40 50 60 70 80 90 100

motor speed reduction(x 10°° meter/sz)

0.7 \/;_& T T T T T
0.65 ,;/_ - — —\4'—’1“\3—/‘\—\“‘ :*_—,‘5

0.6 ? S + 1

055 .o~ o /—_/B» o= g\\_ I

Q 05 g o’
= ©

045 /)/H——e\e__\e/e/

0.4 1

0.35 1

3 . . . . . . . . .
510 20 30 40 50 60 70 80 90 100

motor speed reduction (x 107° meter/sz)

Fig. A.18. The median TPR, FPR, Latency, and MCC in detecting Pgg in Vgps.

o«
a
=
06 [ — + —T-test —o— Q-test {
—o—Quartile — » —RDA
5
510 20 30 40 50 60 70 80 90 100
motor speed reduction(x 10°° meter/s2)
8
7 —o—ESD
5 - + —T-test |
X —o— " Quartile
5 Mw c—@—-Q-test ]
o B
c N
S 4 . -+ -RDA 1
s N )
-3
2
1
0

510 20 30 40 50 60 70 80 90 100

motor speed reduction (x 10°° meter/sz)

0.2
0.15 1
a 0.1 Flag A —a— T~ - -
o8, e o - S TG == g
0.05 T+ ’\t =&—4— :% —3— —:’ = :‘j

0
510 20 30 40 50 60 70 80 90 100

motor speed reduction(x 10~ meler/sz)

0.7 ,,4—_,_._,,“~~,_4—4‘_‘,4
P»—-o-—-o---‘-—-o—-,_—«\‘__k\

- &
0.6 P e __g_‘ﬁ‘—n—‘-n‘—‘i
[$) ‘5/ o— \9'—0\%—

g 05 W—H

0.4 J

3
510 20 30 40 50 60 70 80 90 100

motor speed reduction (x 10°° meter/sz)
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that possible problems with communication such as contentions,
localisations, or transceiver are out of our research scope). How-
ever, wireless communications consume resources heavily [30].
Thus, we propose two communication strategies to work with the
neighbourhood scheme. This does not apply if the exchange of data
is through other mediums such as physical or stigmergic (indirect)
interactions.

6.2.1. Strategy 1—optimistic communication strategy

The first strategy is called Optimistic Communication Strategy
in which external detection is only activated if an error is detected
internally. For simplicity, we refer to it as S1. We differentiate
between internal and external errors and refer to the former as
errine and errey, for the later. Internal detection only deal with an
individual robot’s own data whilst external detection with a data
stream from all robots within a robot’s communication range.

Algorithm 1 is the pseudocode for S1. It starts with the
initialisation of internal buffer W with a robot’s own data from the
first m control cycles (this is effectively using a time window as
described in the first paragraph in Section 4). The size of the buffer

Input: current data instance v, neighbourhood data DV, detection
algorithm A
Output: result of detection
initialise internal buffer ‘w;
foreach control cycle t do
execute A(v, W);
if erry, then
execute A(v, DN);
if err.,; then
| report errey;
else
| update(w);
end
else
| update(w);
end
end
Algorithm 1: Pseudocode for Optimistic Communication Strat-

egy

can vary; it is set to 5 in this research. After initialisation, at each
control cycle t, the current data instance v is evaluated. If errj, is
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X 11 vy X
X X 12 | x X X X X
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(c)t=7
Robot
t 1 2 3 4 5 6 7 8 9 10
1 X X X
2 X X X X
3 X X X
4 B x x x x X
5 x X X
6 X X X X
T y x x x
8 y X X X X
9 y X B
10 ¥y x x X X X
11 | ¥ x
12 B X X X 3
13 ‘_5_. X x X X X
14 % x : XX
15 % x X T x
(e)t = 14.

Fig. A.20. Strategy S1: Optimistic Communication Strategy. Fault is introduced torobotR1att = 7 tot = 11.Datain ‘W is shaded gray; dotted circle is current data instance;
dotted rectangle is the neighbourhood data; x is normal; and y is anomalous. (a) Initialisation. Fill internal buffer ‘W with data from t = 1to t = 5. (b) Internal detection.
Evaluate whether current data instance in circle is anomalous. If no erry;,; detected, update ‘W with current data. (c) err;,, is detected, get neighbourhood data. Detected erry;,
data will not be added to ‘W. (d) erri,; and err,,, are detected. Same as (c). (e) Anomalous data are not added to ‘W. In this example, the number of inter-communication is

only 5 whilst it is 15 with previous implementation.

detected, further analysis is carried out with neighbourhood data
DN.Anerroris considered to be detected if it is flagged by both the
internal and external detection. If not, v replaces the oldest entry
in ‘W. To illustrate how this strategy works, an example of error
detection in robot R1 is shown in Fig. A.20.

6.2.2. Strategy 2—pessimistic communication strategy

The second strategy is called Pessimistic Communication
Strategy in which the frequency of external detection is based on
the results from both internal and external detection. This strategy
is similar to S1 but with the addition of a parameter c to control
the frequency of communication. We refer to this strategy as S2.

Algorithm 2 is the pseudocode for S2. Similar to S1, it starts
with initialisation of internal buffer ‘W. In addition, the external
detection counter c is set to 1. This counter determines the next
external detection, that is after the cth control cycle. For example,
¢ = 1 means an external detection is performed at the first
control cycle after the current cycle (which is the next control
cycle), whereas ¢ = 4 means an external detection at the 4th
control cycle after the current cycle. The maximum value for c is
controlled by the parameter K. An internal detection is still at every
control cycle. If errj,; is detected, subsequent external detection
with neighbourhood data is conducted. If both errj,; and err, are
detected, an error is reported and c is reset to 1. Even if there
is no err,;, external detection is still carried out subject to c. At
this stage, if there is no erre, the value of ¢ is incremented by
1. The increment stops when c reaches K. Thus, the frequency of
external detection changes according to both results from internal
and external detection. An example of using S2 to detect errors in
robot R1 is shown in Fig. A.21.

By examining the two strategies proposed, we can see that the
number of communications is now proportional to the duration of
faults and not the length of a simulation. This may significantly

Input: current data instance v, neighbourhood data DV, detection
algorithm «, external detection parameter K
Output: result of detection
initialise sliding window W;
counter ¢ <1, tc «<0;
foreach control cycle t do
execute A(v, W);
if err;;,; then
execute A(v, DN);
if err.,; then
report errey;
c <«1;
tc=t+c;
else
| update(w);
end
else
if t == tc then
execute A(v, DN);
if err,y; then
report errey;
c «1;
tc=t+c;
else
if c < K then
Cc++;
tc=t+c;
end
end
end

end

end
Algorithm 2: Pseudocode for Pessimistic Communication Strat-
egy
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Robot Robot Robot
t 1 2 3 4 5 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10
1 Q X b3 X X 1 B x X X X 1 X X X X X
2 'x‘ X X X 2 = X 3 b3 2 X X X X
3 I x‘ X X 3 X X X 3 x X X
4 bxl x «x X X X 4 N x x X x 4 B x x X X X
5 Wxd X X 5 X 3 X 5 X X X
6 . X X X 6 fx T TRTIXTTRTTTTT TS 6 X X X X
C-.,_.t ——————————————— 1 e e e e e e — - — =

7 y X X X 7 ¥y X X b 7 YsXx X X
8 y X X X X 8 y X X X X 8 H\“- B XX
9 y X X X 9 y X X 9 y X X X
10 |y x x X X X 10 ¥y x x X X X 10 v Xx x X X X
11 y X 11 vy X i1 y X
12 x X X X X 12 x XX x 12 x X X X
13 X X X X X X 13 X X X X X X 13 X X X X X X
14 x 14 x 14 x
15 | x 15 | x 15 | x

(At =5 (b)t =6. (at=7

Robot Robot Robot

t 1 2 3 4 5 6 7 8 10 t 1 2 3 4 5 6 7 8 9 10 t 1 2 3 4 5 6 7 8 9 10
1 X X X X X 1 X X X X X 1 X x X X X
2 X x 3 X 2 b3 X X X 2 X X X X
3 X X X 3 X X X 3 X X X
4 B x X X X X 4 B X x X X 4 B X X X x X
5 X x X 5 X X x 5 X X x
6 X X X X 6 X X X 6 x X X X
7 y x X X 7 Yy x X X 7 y x X X
8 y X X X X 8 y X X X X 8 ¥ X X X X
9 y X X X 9 y X X 9 y X X X
10 deo X X XX ____Xx_ 10 y X X X X 10 |y X x X X X
11 L\ﬂl ______________ x_) 11 A ______________x_ 11y X
12 x X X X X 12 L-‘i‘:-_"l'_x _____ X ,,__,,,_x,___,,l 12 B8 X X X X
13 x x X X 13 x x P X 13 *x_ R x_XxX_x_
14 x 14 x L R i A ]
15 x 15 x 15 X

(d)t=11. (e)t =12. ()t =14.

Fig. A.21. Strategy S2: Pessimistic Communication Strategy. Fault is introduced to robot 1att = 7tot = 11and t = 14 tot = 15. Datain ‘W is shaded gray; dotted circle
is current data instance; dotted rectangle is the neighbourhood data; x is normal from R1’s perspective; y is anomalous, and z is new normal. (a) Initialisation. Fill W with
datafromt = 1tot = 5. Assign ¢ = 1. (b) Internal detection and subsequent external detection. No err;,, or err,, detected, update ‘W with current data. Increment c by 1,
¢ = ¢ + 1(c) erry is detected, communicate and evaluate data from neighbours to confirm. err.,; detected, W not updated and reset ¢ = 1. (d) Both err;,, and err., were
detected, W not updated and reset c = 1. (e) No erri;, ¢ = ¢ + 1 = 2. (f) No errj,; but due to ¢, external detection is conducted. err., was detected, reset ¢ = 1. As for the
number of inter-communication, it is 9 in this example, att = 6, 7, 8, 9, 10, 11, 12, 14, 15.

reduce the communication overhead and thus power usage.
Table 2 shows the number of communications (broadcasts) in the
system in detecting Ppy = 45 x 103 m/s with the RDA. The robot
R1is faulty whilst the rest are fault-free. The number of broadcasts
for R1 was greater than the number of faults (i.e. 60). For fault-free
robots, the number of broadcasts was significantly lower, less than
5 with S1 and less than 25 with S2.

An obvious question is which strategy is better? The simple
answer is it depends. S1 has the advantage of having the least
communication overhead, subject to errj,.. However, a misclassi-
fication is likely to be accumulated and affects the overall TPR as
demonstrated in Fig. 11. In the figure, the TPRs over the 20 runs
were plotted. It can be seen that at simulation number 9, 19, and
20, the TPRs are significantly different from other runs. This is
the result of false negatives. On the other hand with S2, such false
negatives were not accumulated as further cross-referencing were
carried out, subject to the parameter ¢ and K (refer Algorithm 2).
Therefore, in some cases, there is a tradeoff between the commu-
nication overhead and the TPR. However, overall, both strategies
do not result in a reduction of the error-detection ability as shown
in Table A.3.

7. Conclusions and future work

Our work acknowledges the importance of fault tolerance in
swarm robotics together with the complexities and challenges
involved in achieving it through explicit detection. We have
demonstrated the implementation of statistical classifiers for
adaptive data-driven error detection and the results suggest

that using statistical classifiers not only viable but practical in
detecting different failure modes to the wheels under dynamic
environments. We have also demonstrated that the RDA is a
superior technique compared to classical statistical classifiers in
our experiments. In addition, we have also explored a way to
reduce the false positive rate by increasing the size of the detection
window, and reducing the communication overhead for lighter
resource usage with two communication strategies.

We acknowledge that our current work is based on simula-
tion and results for the same experiments with physical robots
might be different. However, the adoption of data-driven error de-
tection, adaptive detection with neighbourhood scheme, and pro-
posed communication strategies are still relevant and useful when
dealing with uncertain environments. Thus, our future work in-
volves the implementation of the statistical classifiers on Epuck*
robots. In addition, we will also be looking into (simultaneous) fail-
ures on multiple robots.
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Appendix. Referenced tables and figures

See Figs. A.12-A.21 and Table A.3.
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