
Timing-Independent Safety on Top of CAN

George Lima
�

Alan Burns

Real-Time Systems Research Group
Department of Computer Science, University of York,

Heslington, York, England, YO1 5DD�
gmlima,burns � @cs.york.ac.uk

Abstract

We describe an approach to designing CAN-based dis-
tributed real-time systems so that safety is preserved re-
gardless of timeliness. Our approach offers gains with
respect to both fault tolerance and flexibility aspects and
so it is attractive to support those systems that have crit-
ical tasks (e.g. control systems) and at the same time are
connected to non-predictable networks (e.g. the Internet).

1. Introduction

The correctness of real-time systems is specified in
terms of both safety and timeliness. The safety re-
quirement has led to the use of distributed platforms to
implement fault tolerance mechanisms. Making a sys-
tem distributed consists of spreading the processes that
carry out its computation across different machines linked
to each other by means of a communication network.
In turn, the timeliness requirement has made the syn-
chronous model of computation a natural choice for im-
plementing distributed real-time systems. According to
this model all sent messages arrive within a known inter-
val of time (communication is synchronous) and all com-
putation is finished within a bounded time (processing is
synchronous).

Assuming synchronous processing in real-time sys-
tems is reasonable since bounds on processing times can
be derived by carrying out appropriate schedulability anal-
ysis. However, assuming synchronous communication
may be a restriction. Indeed, the communication network
is a critical component of distributed systems since it is
a shared resource and is most subject to transient faults
and overload conditions. As systems that are based on
the synchronous model use the knowledge about the as-
sumed bounds to guarantee safety, we say that they are
timing-dependent safe. For example, if a message that is
supposed to be received within a given interval of time
does not arrive, the receiver process may conclude that
�
Supported by CAPES/Brazil under grant: BEX1438/98-0.

the sender is faulty. However, if the message is just late,
the result of the computation by the receiver may be in-
consistent (i.e. unsafe).

In this work we demonstrate that it is possible to build
timing-independent safe hard real-time systems on top
of the Controller Area Network (CAN) [2]. CAN is a
broadcast network that is widely used in the implemen-
tation of distributed hard real-time systems. The idea is
to make co-operating processes agree on their computa-
tions by exchanging messages. As we will see, due to
the message scheduling and error-recovery mechanisms
of CAN this can be done straightforwardly. The benefits
of our approach can be verified by considering a semi-
synchronous model of computation based on CAN proper-
ties. This model relaxes the communication synchronism
until a point beyond which the system’s timeliness would
be compromised. Moreover, the described approach is
particularly interesting due to its flexibility since by using
it systems may tolerate unpredictable behaviour caused by
overload or faulty scenarios in some nodes of the system.
These characteristics make the approach attractive, mainly
for supporting those systems that have critical tasks (e.g.
control systems) and at the same time are connected to
non-predictable networks (e.g. the Internet).

2. Model of Computation

In this section we define a semi-synchronous model of
computation having CAN as the communication network.
As our main goal is to show that one can design timing-
independent safe protocols using CAN, this model allows
message timing/omission faults to take place.

2.1. Processing Model

We consider systems made of geographically dis-
tributed nodes, which are fully connected to each other
by means of a CAN-based communication network. Each
process is allocated to a node. Processes communicate to
each other only by exchanging messages across the net-
work. Processes may only fail by crashing. Correct pro-
cesses are those that never crash. If a process crashes at

time � , it stops both sending and receiving messages in-
definitely from time � (i.e. crashed processes do not re-
cover).1

Processes may perform local and non-local tasks. Lo-
cal tasks are those that do not depend on the commu-
nication network (i.e. message-send or message-receive
events). We assume synchronous processing, by which
we mean that the worst-case response times of local tasks
are known. This can be guaranteed in practice by applying
real-time scheduling techniques [1].

2.2. Communication Model

The assumed communication network is typified by the
Controller Area Network (CAN) [2]. Due to its determin-
istic collision resolution based on priorities and the built-
in error-recovery schemes, CAN is widely used for sup-
porting hard real-time systems. Indeed, CAN provides a
very resilient error-detection and recovery mechanism that
can handle most failures consistently. Hence, we assume
that messages cannot be either arbitrarily created or cor-
rupted by the network.

Errors on CAN are detected by the transmitter or re-
ceiver nodes while monitoring the transmission of mes-
sages on a bit-by-bit base. If a message is detected cor-
rupted, it is scheduled for re-transmission according to
its priority. Although this error recovery and the message
scheduling schemes used in CAN provide a high degree of
reliability and predictability, they may lead to some incon-
sistency is some specific cases. In fact, it has been shown
that in some scenarios (involving the last but one bit of the
transmitted message) a set of receivers can accept a given
transmitted message while others reject it [4, 3]. In this
situation three inconsistent scenarios may take place: (a) if
the transmitter crashes after the detection of the error and
before the re-transmission, its transmitted message will be
inconsistently omitted at some nodes; (b) if the transmit-
ter does not crash, it re-transmits the message and so some
receivers will receive the message more than once; and
(c) this scenario has the same effect as (a) and happens
if the transmitter does not crash but it does not detect the
faulty transmission [3]. Notice that scenario (a) is asso-
ciated to process crashes while (b) and (c) are due to the
way error-recovery is carried out in CAN. According to
some simulations [4, 3], the probability of occurrence for
these inconsistent scenarios varies between ��� �	��

�������
and ��� �	��
�������� per hour. Although these scenarios are
unlikely, they have to be considered when dealing with
critical applications.

Based on the characteristics of CAN described above,
we assume that messages may be dropped by the network
(due to the inconsistent scenarios) or arbitrarily delayed
by the network (due to CAN message scheduling mecha-
nism). However, in the absence of the inconsistent scenar-
ios CAN provides what is called atomic broadcast [4, 3]:

1A protocol for re-introducing recovered processes could be added
but this is beyond the scope of this work.

transmitted messages are totally ordered and received ei-
ther by all correct processes or by none. As we will see
in the next section, this property can be used to design
timing-independent safe systems.

3. Timing-Independent Safety

Ideally, systems must be safe regardless of the present
level of synchronism. This means that processes must
only take decisions during their computation based on
their view about the whole system, instead of on the time.
It is clear that such an approach does not work in general.
The following example illustrates this.

Example 3.1. Two processes, � and � say, are co-
operating throughout their execution. Suppose a moment
during the execution of � when it is waiting for a mes-
sage from � in order to take a decision in accordance
with � ’s computation. As process � eventually has to make
progress (i.e. it has to meet deadlines), it cannot wait for-
ever (neither can �). Hence, there may be a moment at
which � has to make progress regardless of � ’s message.
If some fault prevents � ’s message from being delivered at
� , � may violate safety. If � is crashed, though, � is free to
take its own decision.

The example above illustrates a dilemma between
safety and timeliness: favouring one may compromise the
other. Notice that the reason behind this dilemma is that
it is impossible for processes to have reliable informa-
tion about failures of remote processes if the synchronous
model is not assumed. A tradeoff between safety and
timeliness, though, can be achieved by considering other
kinds of synchronism. For instance, if the system provides
atomic broadcast, it is possible to implement the system
so that no inconsistent decision can be taken. Making use
of this atomic broadcast primitive, our illustrative example
can have the following solution. After waiting for the mes-
sage from � , � atomically broadcasts a message to pass on
the decision on its computation. After receiving its own
message, � knows that if � is not faulty, it will also receive
the same message and in the same order so that � will also
make progress according to � ’s message. Therefore, both
processes will be safe regardless of the time messages take
to be delivered.

As we have seen, however, CAN does not provide per-
fect atomic broadcast due to some inconsistent scenarios.
Hence some extra effort has to be made. Indeed, our
approach to building timing-independent safe systems on
top of CAN requires that co-operating processes execute
an agreement phase during their computation to ensure
safety. During this phase processes exchange messages in
order to reach the same view about the system despite sce-
narios (a), (b) and (c). Notice that by assumption (section
2.2) if a transmitted message is received by a process and
scenarios (a), (b) and (c) do not take place, then this mes-
sage is received by all correct processes. In order to take
these scenarios into account we assume that no more than

/* ... normal computation ... */
/* � contains the result of the computation */

(1) ��� ��� �
(2) while �!� �#"
$&%'� do
(3) broadcast(�)
(4) wait for [receive ��(such that �)(*� �#+,��� �]
(5) get the first received ��(such that �)(*� �#+,��� �
(6) ���-��(; ��� �&�.��(/� �0%'�
(7) endwhile /* ... processes agree on � ... */

Figure 1. The agreement phase algorithm.

$ inconsistent scenarios may take place during the agree-
ment phase. As we have seen, the probability of these
scenarios taking place, although not negligible, is not sig-
nificantly high. Thus, one can choose a value for $ that is
suitable for the targeted system. In the next sections we
discuss the safety, timeliness and flexibility aspects.

3.1. Ensuring Safety

Assume that there is up to $ inconsistent scenarios. If
any message is received by some process and scenarios
(a), (b) and (c) do not take place, the message is also
received by all correct processes (by the CAN proper-
ties). As a process that receives a message does not know
whether or not other processes also received this message,
it has to re-transmit the message $ times. After the re-
ception of the last re-transmission the process knows that
all correct processes also received the message (at least
once). Hence, up to $#%1� transmissions by each process
are necessary to guarantee the reception of the message by
all correct processes. This is the basic idea of the agree-
ment phase and is described in the algorithm of figure 1.
In other words, lines 1-7 of the algorithm can be inserted
into the normal code of any critical task of processes that
co-operate.

The agreement phase consists of up to $2%3� rounds
of message exchanges. Any exchanged message is tagged
with an integer counter that is used to keep track of the
number of rounds seen by the processes. At the end of
this phase, all correct processes agree on the same mes-
sage so that they can make progress based on the same
view of the system. Notice that there is no reference to
time in the agreement phase. Safety is ensured just by
message exchanging. For the sake of illustration, consider
example 3.1 and suppose that $546� . Two possible execu-
tions of � and � are shown in figure 2. The numbers along
the time line represent the values of �!� � at each process.
In A, process � does not receive any message from � . This
may be due to a crash fault or asynchrony between the ex-
ecutions of � and � , say. Then, � sends its message twice
during its agreement phase. If � is not crashed, it receives
at least one transmission consistently. During its execu-
tion � eventually picks up the message sent by � and takes

the decision on its computation accordingly in order not
to violate safety. In execution B, an inconsistent scenario
takes place. The message from � is not received by � but
is received by � . After the second transmission, though,
both � and � choose the same message (� ’s message).

It is important to emphasise that this simple agreement
protocol does not guarantee atomic broadcast. Messages
are still being delivered out of order. This agreement
phase is enough, however, to ensure safety regardless of
time. Indeed, in the example B � gives up its own mes-
sage to accept � ’s.

PSfrag replacements

77

88

9

9

9 :

:

:

A B

timetime

Figure 2. Illustration of the agreement
phase.

3.2. Ensuring Timeliness

A real-time system is made of several services, which
may have different priorities. These priorities are usually
assigned according to the urgency of execution. Thus, the
higher the priority of the service, the higher the priority
of the messages sent by its processes. A system char-
acterised in such a way makes the analysis of its feasi-
bility straightforward. For example, one can carry out
well known schedulability analysis for this purpose (e.g.
[1, 5]). Indeed, the approach discussed in this work does
not require any special mechanism to check the system
timeliness.

For example, consider a distributed system made of
three services, H (highest priority), M (medium priority)
and L (lowest priority). The worst-case scenario in each
node is determined (as usual) when all tasks of the node
are released at the same time. In this situation, messages
sent by service M and Lmay be transmitted only after mes-
sages sent by H. Now, in order to illustrate the strength of
our approach assume that in the absence of the inconsis-
tent scenarios just the highest priority message arrives at
all its destinations within a known bounded delay. This as-
sumption may represent a given worst-case scenario due
to possible transient faults in the network, say. Even with
this low level of synchronism in the communication net-
work one is assured that safety is not violated. Yet, to de-
rive timeliness, the message scheduling provided by CAN
guarantees that after H finishes sending messages, M can
make progress and so on. If all three services meet their
deadlines, we say that timeliness is ensured.

Clearly, some considerations regarding the application
has to be taken into account when analysing the system
timeliness. For example, if it is known that processes �

and � , say, of a given service start executing their tasks
approximately at the same time in different nodes, some
tightness guarantee between their computation can be de-
rived. However, it is important to emphasise that the guar-
antee of safety does not need any reference to time what-
soever. In other words, the dynamics of the system dictate
the time spent by its computation and can be derived by
analysing the system after knowing that its safety is not
violated.

3.3 The Flexibility Aspect

It is important to note that considering safety and time-
liness independently brings flexibility for systems with
respect to both the communication synchronism and the
processing synchronism. Consider a typical application
which has hard real-time tasks distributed across a set
of nodes, say. It would be useful if information about
the system could be remotely monitored. Doing this us-
ing fieldbus networks (such as CAN) may not be viable
due to their low bandwidth. Hence, the monitoring tasks
(well modelled as soft tasks) might use non-predictable
communication networks (such as the Internet), which in
turn might overload the nodes in which such tasks run
(since TCP connections may introduce unpredictable de-
lays). If the system is designed in line with the timing-
independent safety approach, one can avoid the unpre-
dictable behaviour of the monitoring system (soft tasks)
interfering in the critical tasks. For instance, even if one
of the processes in figure 2 is subject to these overload
conditions (since it may be running in the same node as
the monitoring system), the monitoring system will never
present inconsistent information.

4. Conclusion

The problem of designing timing-independent safe
real-time systems has been addressed. As we have
seen, CAN offers powerful properties that can be used to
achieve such an objective. In general, the approach dis-
cussed in this work is very attractive due to its simplicity
and can be used to enhance both the fault tolerance and
the flexibility of real-time systems.

References

[1] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages. Addison-Wesley, 3nd edi-
tion, 2001.

[2] Int’l Standards Organisation. ISO 11898. Road Vehi-
cles – Interchange of digital information – Controller
area network (CAN) for high speed communication,
1993.

[3] J. Proenza and J. Miro-Julia. MajorCAN: A Modi-
fication to the Controller Area Network Protocol to

Achieve Atomic Broadcast. In IEEE Int’l Work-
shop on Group Communication and Computations
(IWGCC 2000). Taipei, Taiwan, Apr. 2000.

[4] J. Rufino, P. Verı́ssimo, G. Arroz, C. Almeida, and
L. Rodrigues. Fault-tolerant broadcasts in CAN. In
Symposium on Fault-Tolerant Computing, pages 150–
159, 1998.

[5] K. Tindell, A. Burns, and A. Wellings. “Analysis of
Hard Real-Time Communications”. Real-Time Sys-
tems, 9(2), Sept. 1995.

