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Abstract

Real-time embedded systems are becoming ever more
complex, and we are reaching the stage where even if static
Response-Time Analysis (RTA) was feasible from a cost
and technical perspective, the results are overly pessimistic
making them less useful to the practitioner. When com-
bined with most timing analysis tends to be statistical in
nature, this suggests there should be a move toward statis-
tical RTA. However, to make such analysis useful, it is im-
perative that we have evidence that the statistical RTA and
the information analyzed is sufficiently accurate. In this pa-
per we present and validate a technique for statistical RTA
that can cope with systems that are complex from both a size
and tasks’ dependencies perspective. This claim is backed
up by our evaluation using information from real industrial
control systems.

1 Introduction

Many industrial embedded systems are very complex,
large, flexible, and highly configurable software systems.
Such systems often consist of millions of lines of code, and
contain hundreds of tasks, many are with real-time con-
straints and being triggered by other tasks in a complex and
nested pattern. More importantly, in such systems, tasks
may have intricate dependencies in their temporal behav-
ior, such as 1) asynchronous message-passing and globally
shared state variables, which may decide important control-
flow conditions with major impact on task execution time
as well as task response time, 2) task offsets, and 3) run-
time changeability of priorities and periods of tasks. Con-
sequently, the systems have a very complicated runtime be-
havior. We refer to systems with such characteristics as
Complex Real-Time Embedded Systems (CRTES).

The severity of the failure about missing tasks’ deadlines

is grave for the CRTES in the safety-critical domain, where
functional and temporal correctnesses are equally impor-
tant. An example is that a deadline miss in an industrial
robotic control system may lead to a failure, which would
further lead to a significant economical loss, in terms of
halting an entire production line in a factory for hours and
reducing production rate. In order to determine that all such
timing constraints are met in all circumstances, Response-
Time Analysis (RTA) is often used in the context. Tradi-
tional RTA methods [1] are under the assumption that tasks
are independent with each other, and use the Worst-Case
Execution Time (WCET) of tasks in the analysis, which in-
creases the degree of pessimism in the results and hence
make these results cannot be practically applied. Proba-
bilistic approaches [3, 4, 5] can reduce the pessimism, in
which tasks’ execution times are modeled by independent
and identically distributed (i.i.d) discrete random variables,
which, however, cannot be applied to model the execution
time of tasks in the CRTES, due to the existence of adher-
ing intricate task execution dependencies that we mentioned
previously. Other methods which adopt resource reserva-
tions algorithms such as the CBS [2] usually requires the
exact knowledge of the entire distributions of the compu-
tation times and the inter-arrival times of the tasks, which
are in generally impossible to obtain. Real-Time Queueing
Theory (RTQT) [9] also provides a way to compute tasks’
response time distributions using various real-time schedul-
ing algorithms, under the heavy traffic assumption which
significantly restricts its application in practice. Moreover,
preemption between customers is not permitted in RTQT.

Our previous work has used statistical analysis based on
simulation [8] and model checking-based approaches [7].
However, each of these is limited by the validity of the mod-
els [6] that they heavily depend on, and the statistical tech-
niques that make certain assumptions about the nature of
the information being processed that may not hold in prac-
tice. Therefore in this paper, it is our intention to timing



traces taken from real systems and then process them with
more powerful statistical techniques by extending our prior
work in [8], in terms of not only giving accurate worst-case
behaviors, but also allowing the validity of the results to be
considered.

2 Problem Overview

Throughout this work, we particularly propose a method
to collect qualified analysis samples in timing traces taken
from real systems, and we study the trade-offs between the
improvement in the statistical inference in RapidRT [8], i.e.,
in terms of reducing the number of analysis samples and
easing statistical constraints, and results accuracy. Such
analyses are necessary and critical for many applications
when RapidRT is used in contexts. Before focusing on the
contributions in this work, we introduce RapidRT, its pa-
rameters and assumptions used through the rest of the pa-
per.

RapidRT is based on Extreme Value Theory (EVT),
which is used to model the risk of the extreme, rare events.
Further, RapidRT is a recursive procedure:

1. As the first two arguments, it takes n reference data sets
each of which contains m analysis samples containing
tasks’ response times, resulting in n ×m analysis sam-
ples in total. In addition, the individuals in such analy-
sis samples are assumed to be i.i.d. for the purpose of
statistical inference.

2. For each reference data set, the algorithm returns the
WCRT estimate of the task under analysis with a prob-
ability of being exceeded, the third algorithm argument
Pe (e.g., 10−9 which is for instance adopted by Air-
bus at the highest development assurance level in the
safety-critical system domain).

3. Next, RapidRT will verify if the sampling distribution
consisting of n WCRT estimates for all n reference data
sets (i.e., the EVT distribution hereafter) conforms to
a normal distribution or not, according to the result
given by the non-parametric Kolmogorov-Smirnov test
(the KS test hereafter). If it is, then RapidRT will cal-
culate the Confidence Interval (i.e., CI hereafter) of
the EVT distribution, at the certain confidence level
cl (e.g., 99.7%), and choose the upper bound on the CI
as the final WCRT estimate. This invents a new hard
statistical constraint, i.e., from the statistical perspec-
tive, given the modeled system, the possibility of the
existence of a higher WCRT estimate (i.e., the actual
WCRT of the task on focus) than the WCRT estimate
given by RapidRT is no more than Pe × cl. Otherwise,
the resampling statistic bootstrap will be adopted to
obtain the upper bound on the CI of the EVT distribu-
tion.

It is interesting to stress that the input to RapidRT con-

sisting of a number of analysis samples in timing traces, can
be taken from either the simulation model which models the
target system [8] or the real system. For latter, we propose a
sampling mechanism which is to be introduced as follows.

3 Contributions

3.1 The Sampling Mechanism for Collecting Tim-
ing Traces Taken from Real Systems

First, in order to eliminate bias on the sampling, which
is a key issue of selecting samples from the population of
all individuals concerning the desired information, the tech-
nique of Simple Random Samples (SRS) is adopted. The
SRS gives every possible sample of a given size the same
chance to be chosen. Practically, when such samples are
taken from real systems, the SRS can be done by random-
izing system inputs by using the uniform distribution. Sec-
ondly, we propose a sampling mechanism which first exe-
cutes the real system for N times (i.e., N sub-timing traces)
based on the SRS technique, and each of sub-timing traces
contains m raw RT data for every adhering task. Next, per
sub-timing trace, the highest value of raw RT data for each
task recorded, will be chosen as the sample to construct the
new sampling distributions of the RT data of the same task
to be analyzed by the statistical inference in RapidRT (to be
introduced in Section 3.2). Furthermore, since there are no
dependencies between any maximum of the RT data of tasks
from two independent sub-timing traces, as a result, all the
individuals in the new reconstructed sampling distributions
are mutually independent. Hence, the underline assumption
i.i.d. is realistic and satisfied when such new reconstructed
sampling distributions are used in the statistical inference.

3.2 Improvement in the Statistical Inference in
RapidRT

In our prior work, the values of parameters in RapidRT
are obtained according to empirical evidence, i.e., the value
of four parameters in RapidRT (as introduced in Section 2)
is statistically sufficient enough to produce an upper bound
of tasks’ WCRT estimates which, however, is way too pes-
simistic, i.e., 17.25% more pessimistic than the exact value
of the task’s WCRT in the validation model in [8]. In ad-
dition, there was very less confidence in drawing any con-
clusions about using RapidRT to perform RTA of CRTES
by only evaluating two simulation models. Hence, it is
necessary to improve the statistical inference procedure in
RapidRT by reducing the number of samples and easing the
statistical constraint and confidence level, as well as eval-
uate the improved procedure by using more case studies.
In this work, such improvement can be done from the fol-
lowing perspectives centering around RapidRT parameters,



i.e., the number of reference data sets n, the number of sam-
ples per each reference data set m, the statistical constraint
Pe, and the confidence level cl. To be specific, we propose
a number of algorithms, of which implementation is de-
scribed by Algorithms 1, 2, 3, 4, 5, and 6. Moreover, since
we are more interested in reducing the number of analy-
sis samples i.e., n × m, which is critical when such tim-
ing information is collected by executing the real system,
the corresponding improvement is subsequently prioritized
to other tasks about finding a lower value of Pe and cl, as
shown in Rows 5 − 8 in Algorithm 1, where the new statis-
tical inference procedure starts with some initial values as
introduced in [8]. For space sake, some sufficiently enough
details about such improvement procedure will be given in
our full paper submission.
Algorithm 1 RapidRT ∗Val(n,m, Pe, cl)

1: n← 50
2: m← 20000
3: Pe ← 10−9

4: cl← 0.997
5: mIMP ← IMPM()
6: nIMP ← IMPN()
7: PeIMP ← IMPPe()
8: clIMP ← IMPCL()
9: rtest ← rapidRT (nIMP,mIMP, PeIMP, clIMP)

Algorithm 2 IMPM(n,m, Pe, cl)
1: m← 20000
2: rtest ← rapidRT (n,m, Pe, cl)
3: b← m

2
4: rt

′
est ← rapidRT (n, b, Pe, cl)

5: upb← m
6: success← f alse
7: while rt

′
est ≥ rtexact and success = f alse do

8: if rt
′
est < rtest then

9: rtest ← rt
′
est

10: upb← b

11: b← b
2

12: rt
′
est ← rapidRT (n, b, Pe, cl)

13: else
14: lwb← b
15: b← upb + lwb

2
16: success← true
17: end if
18: end while
19: mIMP ← upperbinarysearch(b, lwb, upb)

4 Evaluation

4.1 Four Evaluation Models

We examine the idea by using four simulation models
describing a fictive, representative industrial robotic control

Algorithm 3 upperbinarysearch(b, lwb, upb)
1: success← f alse
2: while success = f alse do
3: rt

′
est ← rapidRT (n, b, Pe, cl)

4: if b − 1 = lwb then
5: success = true
6: else
7: if rt

′
est < rtest then

8: lwb← b
9: b← upb + lwb

2
10: else
11: upb← b

12: b← upb + lwb
2

13: end if
14: rtest ← rt

′
est

15: end if
16: end while
17: return b

Algorithm 4 IMPN(n,mIMP, Pe, cl)
1: i← 5
2: n← 0
3: rtest ← 0
4: tmp← rapidRT (i,mIMP, Pe, cl)
5: for all i such that 5 ≤ i ≤ 50 do
6: rtest ← rapidRT (i,mIMP, Pe, cl)
7: if rtest ≥ tmp then
8: i← i + 1
9: else

10: tmp← rtest

11: n← i
12: i← i + 1
13: end if
14: end for
15: return n

system developed by one of our industrial partners. Those
models are designed to include some behavioral mecha-
nisms from the industrial robotic control system: 1) Tasks
with intricate dependencies in temporal behavior due to
Inter-Process Communication (IPC); 2) The use of buffered
message queues for IPC, which vary the execution time
and response time of tasks dramatically; 3) Although fixed-
priority preemptive scheduling is used as base, some task,
may change its priority during runtime, in response to sys-
tem events. More importantly, the exact value of WCRT of
the task under analysis is known, as shown by Row Exact
WCRT in Table 1. The detailed description of each model
is introduced as follows:

1. Validation Model 1 (MV1): In MV1, the adhering
tasks communicate with each other via bounded num-
ber of messages, at each task’s invocation.

2. Validation Model 1 with 0.5 times CPU speed (MV1-
0.5): When compared to MV1, the difference in MV1-



Algorithm 5 IMPPe (nIMP,mIMP, Pe, cl)
1: i← 9
2: rtest ← 0
3: Pe ← Pe1, ..., Pe9 ← 10−1, 10−2, ..., 10−9

4: success← f alse
5: while success = f alse do
6: rtest ← rapidRT (nIMP,mIMP, Pei, cl)
7: if rtest < rtexact then
8: i← i + 1
9: success← true

10: else
11: i← i − 1
12: end if
13: end while
14: return Pei

Algorithm 6 IMPcl(nIMP,mIMP, PeIMP, cl)
1: rtest ← 0
2: rt

′
est ← 0

3: CL← cl1, cl2 ← 0.95, 0.997
4: rtest ← rapidRT (nIMP,mIMP, PeIMP, cl1)
5: rt

′
est ← rapidRT (nIMP,mIMP, PeIMP, cl2)

6: if rtest ≤ rt
′
est then

7: cl← cl1

8: else
9: cl← cl2

10: end if
11: return cl

0.5 is that the execution time of jobs in tasks1 is dou-
bled. The intention is to check if the result given by
RapidRT can still bound the known WCRT while keep-
ing the accuracy of analysis results, when the execu-
tion time of jobs in tasks is increased.

3. Validation Model 2 (MV2): When compared to MV1,
the behavior about modeling the change priority and
period of the most complicated task at runtime is in-
cluded in MV2.

4. Validation Model 2 with 0.5 times CPU speed (MV2-
0.5): When compared to MV2, the only difference in
MV2-0.5 is that the execution time of jobs in tasks is
doubled. The intention is the same as the one intro-
duced in MV1-0.5.

4.2 Evaluation Results

As shown in Rows RapidRT and RapidRT∗VAL (by using
the improved statistical inference procedure), clearly, the re-
sults given by latter is more accurate than the analysis re-
sults given by former. Specifically, for the model MV1 and
MV2, the most pessimism is 0.25%, while when the execu-
tion time of jobs in tasks is doubled, the most pessimism is

1A task consists of a number of jobs.

increased to be 3.43%, which is still quite reasonable. Fur-
thermore, as shown in Table 1, Pe,cl is not necessarily to
be at the highest development assurance level in the safety-
critical system domain, i.e., 10−9 as presented in our prior
work [8], and hence can be eased in order to produce more
accurate analysis results.

Table 1. The results obtained by the new version of RapidRT can more
accurately bound the actual WCRT of tasks in all four evaluation models,
than its previous version.

Models MV1 MV1-0.5 MV2 MV2-0.5
Exact WCRT 4 432 11 382 4 432 11 382

RapidRT 5 196.68 17 328.55 5 921.678 12 254.946
RapidRT∗VAL 4 438.606 11 623.203 4 443.300 11 772,390

Pe,cl 9.5 × 10−7 9.5 × 10−5 9.5 × 10−4 9.5 × 10−5

Pessimism 0.15% 2.12% 0.25% 3.43%
Improvement 17.1% 50.13% 33.36% 4.14%

5 Summary

This paper has presented ongoing work toward using
our prior statistical response-time analysis method RapidRT
with timing traces for complex real-time embedded sys-
tems. In addition, our evaluation results showed that by us-
ing an improved statistical inference procedure, RapidRT
can find much less pessimistic WCRT estimates of tasks
when compared to the results given by our prior work, i.e.,
at most 50.13% less pessimistic. The main part of our fu-
ture work will focus on extending such validation by using
independent real-time system model with various task’s ex-
ecution time.
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