
A Comparison between Fixed Priority and EDF
Scheduling accounting for Cache Related
Pre-emption Delays
Will Lunniss1, Sebastian Altmeyer2, and Robert I. Davis1

1 Department of Computer Science
University of York
York, UK
{wl510,rob.davis}@york.ac.uk

2 Computer Systems Architecture Group
University of Amsterdam
Amsterdam, The Netherlands
altmeyer@uva.nl

Abstract
In multitasking real-time systems, the choice of
scheduling algorithm is an important factor to en-
sure that response time requirements are met while
maximising limited system resources. Two popular
scheduling algorithms include fixed priority (FP)
and earliest deadline first (EDF). While they have
been studied in great detail before, they have not
been compared when taking into account cache
related pre-emption delays (CRPD). Memory and
cache are split into a number of blocks containing
instructions and data. During a pre-emption, cache
blocks from the pre-empting task can evict those
of the pre-empted task. When the pre-empted task
is resumed, if it then has to re-load the evicted
blocks, CRPD are introduced which then affect the
schedulability of the task.

In this paper we compare FP and EDF schedul-
ing algorithms in the presence of CRPD using the
state-of-the-art CRPD analysis. We find that when
CRPD is accounted for, the performance gains
offered by EDF over FP, while still notable, are
diminished. Furthermore, we find that under scen-
arios that cause relatively high CRPD, task layout
optimisation techniques can be applied to allow FP
to schedule tasksets at a similar processor utilisation
to EDF. Thus making the choice of the task layout
in memory as important as the choice of scheduling
algorithm. This is very relevant for industry, as
it is much cheaper and simpler to adjust the task
layout through the linker than it is to switch the
scheduling algorithm.

2012 ACM Subject Classification Software and its engineering, Software organization and properties,
Software functional properties, Correctness, Real-time schedulability
Keywords and phrases Real-Time Systems, Fixed Priority, EDF, Pre-emptive, Scheduling, Cache Related
Pre-emption Delays
Digital Object Identifier 10.4230/LITES-v001-i001-a001
Received 2013-08-22 Accepted 2014-03-03 Published 2014-04-14

1 Introduction

Today’s real-time applications are complex systems built up of a large number of interacting
tasks running on hardware with non-deterministic performance enhancing features such as caches,
pipelines and out-of-order execution. To manage the available resources efficiently, scheduling
algorithms are used to determine which task should run and at which time in order to fulfil
the functional and temporal requirements of the system. The scheduling algorithms are often
pre-empting, in that they allow important tasks to interrupt less important tasks before they have
finished. Two popular scheduling algorithms for real-time systems are fixed priority (FP) and

© Will Lunniss, Sebastian Altmeyer, and Robert I. Davis;
licensed under Creative Commons Attribution 3.0 Germany (CC BY 3.0 DE)

Leibniz Transactions on Embedded Systems, Vol. 1, Issue 1, Article No. 1, pp. 01:1–01:24
Leibniz Transactions on Embedded Systems
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LITES-v001-i001-a001
https://creativecommons.org/licenses/by/3.0/de/deed.en
http://www.dagstuhl.de/lites
http://www.dagstuhl.de


2 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

earliest deadline first (EDF). FP scheduling uses statically defined priorities to run the task with
the highest priority first. In comparison, EDF is a dynamic scheduling algorithm that schedules
the task with the earliest absolute deadline first. EDF is an optimal scheduling algorithm without
pre-emption costs, whereas FP is not, and is therefore typically able to schedule tasksets at a
higher processor utilisation than FP [20]. However, despite the significant performance benefits
over FP, EDF is not widely used in commercial real-time operating systems.

In real-time systems, and especially hard real-time systems, the schedulability of each task must
be known in order to verify that the timing requirements will be met. The schedulability of a taskset
is determined using information about the scheduling algorithm, the arrival pattern of tasks and
the tasks’ worst-case execution times. Worst-case execution times are typically obtained assuming
no pre-emption. However, in pre-emptive multi-tasking systems, caches introduce additional
cache related pre-emption delays (CRPD) caused by the need to re-fetch blocks belonging to
the pre-empted task which were evicted from the cache by the pre-empting task. These CRPD
effectively increase the worst-case execution time of the tasks. It is therefore important to be able
to calculate, and therefore account for, CRPD when determining if a system is schedulable or not.

In 2005, Buttazzo [13] performed a detailed study of FP and EDF scheduling. This work
covered both schedulability under a variety of scenarios, in addition to practical implementation
considerations. Results showed that the FP scheduling algorithm introduces more pre-emptions
than EDF, especially at high processor utilisation levels. This leads to FP performing worse
than EDF. Yet, FP has an advantage over EDF, in that it is generally simpler to implement in
commercial kernels which do not provide explicit support for timing constraints. Despite being
a very detailed study, these comparisons where done under the assumption that there were no
pre-emption costs due to CRPD.

In this paper we build on the work by Buttazzo [13] and use state of the art CRPD analysis for
FP [3] and EDF [22] to perform a comprehensive study of these two popular scheduling algorithms
when accounting for CRPD.

1.1 Related Work on CRPD
Analysis of CRPD uses the concept of useful cache blocks (UCBs) and evicting cache blocks (ECBs)
based on the work by Lee et al. [18]. Any memory block that is accessed by a task while executing
is classified as an ECB, as accessing that block may evict a cache block of a pre-empted task. Out
of the set of ECBs, some of them may also be UCBs. A memory block m is classified as a UCB
at program point P, if (i) m may be cached at P and (ii) m may be reused at program point Q
that may be reached from P without eviction of m on this path. In the case of a pre-emption
at program point P, only the memory blocks that are (i) in cache and (ii) will be reused, may
cause additional reloads. The maximum possible pre-emption cost for a task is determined by the
program point with the highest number of UCBs. For each subsequent pre-emption, the program
point with the next smallest number of UCBs can be considered. Altmeyer and Burguière [1]
presented a tighter definition of UCBs however, we only need the basic concept for this paper.

Depending on the approach used, the CRPD analysis combines the UCBs belonging to the
pre-empted task(s) with the ECBs of the pre-empting task(s). Using this information, the total
number of blocks that are evicted, which must then be reloaded after the pre-emption, can be
calculated and combined with the cost of reloading a block to then give the CRPD.

A number of approaches have been developed for calculating the CRPD when using FP
pre-emptive scheduling. They include Lee et al. [18] UCB-Only approach, which considers just
the pre-empted task(s), and Busquets et al. [12] ECB-Only approach which considers just the pre-
empting task. Approaches that consider the pre-empted and pre-empting task(s) include Tan and
Mooney [26] UCB-Union approach, Altmeyer et al. [2] ECB-Union approach, and an alternative



W. Lunniss, S. Altmeyer, and R. I. Davis 3

approach by Staschulat et al. [25]. Finally, there are advanced multiset based approaches that
consider the pre-empted and pre-empting task(s) by Altmeyer et al. [3], ECB-Union Multiset,
UCB-Union Multiset, and a combined multiset approach.

There has been less work towards developing CRPD analysis for EDF pre-emptive scheduling.
In 2007, Ju et al. [17] considered the intersection of the pre-empted task’s UCBs with the
pre-empting task’s ECBs. However, this method for handling nested pre-emptions can lead to
significant pessimism as each pair of tasks is considered separately. In 2013, Lunniss et al. [22]
adapted a number of approaches for calculating CRPD for FP to work with EDF. Including the
ECB-Only, UCB-Only, UCB-Union, ECB-Union, ECB-Union Multiset, UCB-Union Multiset and
combined multiset CRPD analysis for FP given by Busquets et al. [12], Lee et al. [18], Tan and
Mooney [26], and Altmeyer et al. [2, 3].

A different methodology was used by Bastoni et al. [8]. Instead of focusing on how to calculate
an upper bound on the CRPD, they used measurements on real hardware to estimate a lower
bound on the CRPD and cache related migration delays for data caches in a multi-processor
system.

CRPD can have a significant effect on schedulability, and can also vary dramatically depending
on a number of factors. In particular, the CRPD is highly dependent on how tasks are placed in
cache. As the layout of tasks in memory determines how they are positioned in cache, choosing a
sensible layout can have a big impact on the CRPD caused due to pre-emptions. In 2012, Lunniss
et al. [21] presented an approach that uses a Simulated Annealing algorithm to optimise the layout
of tasks to increase system schedulability when using FP scheduling.

1.2 Organisation
The paper is organised as follows. Section 2 introduces the system model, terminology and
notation used. Existing schedulability tests and CRPD analysis are outlined in Section 3 for
FP scheduling, and in Section 4 for EDF scheduling. Section 5 briefly covers optimising task
layout to reduce CRPD. Section 6 compares FP and EDF with CRPD analysis using a set of case
studies. In Section 7, we investigate the effect of a variety of configuration parameters in a series
of evaluations using synthetic tasksets. Finally, we conclude in Section 8.

2 System Model, Terminology and Notation

This section describes the system model, terminology, and notation used in the rest of the paper.
We assume a single processor system, running a statically defined taskset under either pre-

emptive FP or pre-emptive EDF scheduling. The system comprises a taskset Γ made up of a
fixed number of tasks (τ1, . . . , τn) where n is a positive integer. In the case of FP, each task has a
unique fixed priority and the priority of task τi, is i, where a priority of 1 is the highest and n is
the lowest. Each task, τi may produce a potentially infinite stream of jobs that are separated by a
minimum inter-arrival time or period Ti. Each task has a relative deadline Di, and each job of a
task has an absolute deadline di which is Di after it is released. In the case of EDF, each task
has a unique task index ordered by relative deadline from smallest to largest. In the case of a tie
when assigning the unique task indices, an arbitrary choice is made. Each task also has a worst
case execution time Ci (determined for non-pre-emptive execution). In this paper, we consider
tasks with constrained deadlines. (Task deadlines may be referred to as constrained deadlines,
i.e. Di ≤ Ti or implicit i.e. Di = Ti). We assume a discrete time model. We define Tmax as the
largest period of any task in the taskset, and similarly Dmax as the largest relative deadline of
any task in the taskset. Each task has a utilisation Ui, where Ui = Ci/Ti, and each taskset has a
utilisation U which is equal to the sum of its tasks’ utilisations.

LITES



4 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

A taskset is said to be schedulable with respect to a scheduling algorithm if all valid sequences of
jobs generated by the taskset can be scheduled by the algorithm without any missed deadlines. A
taskset is feasible if there exists some scheduling algorithm that can schedule all possible sequences
of jobs that may be generated by the taskset without any missed deadlines. A scheduling algorithm
is said to be optimal with respect to a task model if it can schedule all of the feasible tasksets
that comply with the task model.

Each task τi has a set of UCBs, UCBi and a set of ECBs, ECBi represented by a set of integers.
If for example, task τ1 contains 4 ECBs, where the second and fourth ECBs are also UCBs, these
can be represented using ECB1 = {1, 2, 3, 4} and UCB1 = {2, 4}. The block reload time (BRT) is
the time taken to load a block from memory into cache. This cost is incurred every time that a
UCB has to be reloaded after a pre-emption. We assume that the remaining context switch costs,
i.e., pipeline and scheduler related costs are subsumed in the execution time bound of each task.
Furthermore, we assume that the OS resides in a different cache partition and therefore scheduler
operations do not cause CRPD.

We use the term cache utilisation to describe the ratio of the total size of the tasks to the size
of the cache. A cache utilisation of 1 means that the tasks fit exactly in the cache, whereas a
cache utilisation of 5 means the total size of the tasks is 5 times the size of the cache.

We focus on instruction only caches. In the case of data caches, the analysis would either
require a write-through cache or further extension in order to be applied to write-back caches. We
assume that tasks do not share any code. We also assume a direct mapped cache, but the work
extends to set-associative caches with the LRU replacement policy1. In the case of set-associative
LRU caches, a single cache-set may contain several UCBs. For example, UCB1 = {2, 2, 4} means
that task τ1 has two UCBs in cache-set 2 and one UCB in cache set 4. As one ECB suffices to evict
all UCBs of the same cache-set, multiple accesses to the same set by the pre-empting task do not
appear in the set of ECBs. A bound on the CRPD in the case of LRU caches due to task τj directly
pre-empting τi is thus given by the intersection UCBi ∩′ ECBj = {m|m ∈ UCBi : m ∈ ECBj},
where the result is a multiset that contains each element from UCBi if it is also in ECBj . A
precise computation of CRPD in the case of LRU caches is given in Altmeyer et al. [4]. The
equations provided in this paper can be applied to set-associative LRU caches with the above
adaptation to the set-intersection.

3 CRPD Analysis for FP Scheduling

In this section, we give an overview of FP scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for FP scheduling, by Altmeyer et al. described in detail
in [3].

Under FP scheduling, the sets of tasks that can pre-empt each other are based on the statically
assigned fixed task priorities. Using the fixed priorities, we can define the following sets of tasks
for determining which tasks can pre-empt each other. hp(i) and lp(i) are the sets of tasks with
higher and lower priorities than task τi, and hep(i) and lep(i) are the sets containing tasks with
higher or equal and lower or equal priorities to task τi. Additionally, aff(i, j) = hep(i) ∩ lp(j) is
used to represent all tasks that can have CRPD caused by task τj pre-empting them, which affects
the response time of task τi. In other words, it is the set of tasks that may be pre-empted by task
τj and have at least the priority of task τi.

1 The concept of UCBs and ECBs cannot be applied to the FIFO or PLRU replacement policies as shown by
Burguière [11].



W. Lunniss, S. Altmeyer, and R. I. Davis 5

Schedulability tests are used to determine if a taskset is schedulable, i.e. all the tasks will meet
their deadlines given the worst-case pattern of arrivals and execution. For a given taskset, the
response time Ri for each task τi, can be calculated and compared against the tasks’ deadline, Di.
If every task in the taskset meets its deadline, then the taskset is schedulable. The equation used
to calculate Ri is defined as [5]:

Rα+1
i = Ci +

∑
∀j∈hp(i)

⌈
Rαi
Tj

⌉
(Cj) . (1)

Equation (1) can be solved using fixed point iteration. Iteration continues until either
Rα+1
i > Di in which case the task is unschedulable, or until Rα+1

i = Rαi in which case the
task is schedulable and has a worst-case response time of Rαi .

Note the convergence of (1) may be speeded up using the techniques described in [14].

3.1 CRPD Analysis
To account for the CRPD, a component γi,j is introduced into (1). There are a number of different
methods that can be used to compute γi,j described by Altmeyer et al. in [3]. Depending on
the method used, γi,j represents either a single pre-emption, or multiple pre-emptions and is
calculated using the cost incurred when reloading a block, the block reload time (BRT), multiplied
by the number of blocks which may need to be reloaded after each pre-emption.

We will now summarise the combined multiset approach, which has been shown to dominate all
other approaches [3]. For worked examples of the analysis, see Section 4 ECB-Union and Multiset
Approaches of Altmeyer et al. [3].

In the combined multiset approach, γi,j represents the total cost of all pre-emptions due to
jobs of task τj executing within the response time of task τi. Incorporating γi,j into (1) gives a
revised equation for Ri:

Rα+1
i = Ci +

∑
∀j∈hp(i)

(⌈
Rαi
Tj

⌉
Cj + γi,j

)
. (2)

γi,j is then calculated using two separate approaches, the UCB-Union multiset, and ECB-Union
multiset which are described below. The key concept behind them is to calculate the cost of
each individual pre-emption by jobs of task τj that could occur within the response time of task
τi. By calculating the cost of each pre-emption, the analysis is able to account for the fact that
intermediate tasks in a nested pre-emption will often be pre-empted less than the lowest priority
task. Consider the following example with three tasks shown in Figure 1.

In the example, the total cost of all jobs of task τ1 pre-empting task τ3 within the response
time of task τ3 is equal to the cost of task τ1 pre-empting task τ2 and task τ3 once (nested
pre-emption), and task τ3 on its own twice. It is therefore important to recognise that the cost of
one task pre-empting another is highly dependent on any intermediate tasks that may be involved
in a nested pre-emption. To calculate the number of pre-emptions, we use Ej(Ri) to denote the

0 1 2 3 4 5 6 7 8 9 10

τ1
τ2
τ3

Figure 1 The pre-emption cost of all jobs of task τ1 pre-empting task τ2 can only contribute once to
the total pre-emption cost of task τ1 pre-empting τ3 during the response time of τ3.

LITES



6 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

maximum number of jobs of task τj that can execute during the response time, Ri, of task τi. For
our model, Ej(Ri) = dRi/Tje.

3.1.1 ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task τj . Specifically, it accounts for nested pre-emptions by assuming
that task τj has already been pre-empted by all tasks of a higher priority.

The first step is to calculate the number of UCBs that task τj could evict when pre-empting an
intermediate task, τk. This is given by calculating the intersection of the UCBs of the pre-empted
task, task τk, with the set of ECBs belonging to the pre-empting tasks

⋃
h∈hp(j)∪{j} ECBh to give:

∣∣∣∣∣∣UCBk ∩
 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣ . (3)

Note h ∈ hp(j) ∪ {j} is used to account for the case when tasks can share priorities.
The ECB-Union multiset approach recognises that task τj cannot pre-empt each intermediate

task τk more than Ej(Rk)Ek(Ri) times during the response time of task τi. Therefore, the next
step is to form a multiset Mi,j that contains the cost of task τj pre-empting task τk (3) repeated
Ej(Rk)Ek(Ri) times, for each task τk ∈ aff(i, j) hence:

Mi,j =
⋃

k∈aff(i,j)

 ⋃
Ej(Rk)Ek(Ri)

∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣
 . (4)

As only Ej(Ri) jobs of task τj can execute during the response time of task τi, the maximum
CRPD is obtained by summing the Ej(Ri) largest pre-emptions, i.e. the Ej(Ri) largest values in
Mi,j :

γecb-mi,j = BRT ·
Ej(Ri)∑
l=1

M l
i,j , (5)

where M l
i,j is the lth largest integer value from the multiset Mi,j .

3.1.2 UCB-Union Multiset
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task
τj are evicted by the ECBs of task τj . The first step is to form a multiset Mucb

i,j containing
Ej(Rk)Ek(Ri) copies of the UCBk of each task τk ∈ aff(i, j) that could be pre-empted by task τj
and has at least the priority of task τi. This multiset reflects the fact that jobs of task τj cannot
evict the UCBs of jobs of task τk within the response time of task τi more than Ej(Rk)Ek(Ri)
times. Hence:

Mucb
i,j =

⋃
k∈aff(i,j)

 ⋃
Ej(Rk)Ek(Ri)

UCBk

 . (6)

The second step is to form a separate multiset Mecb
i,j containing Ej(Ri) copies of the ECBj

of task τj . This multiset reflects the fact that there can be no more than Ej(Ri) jobs of task τj



W. Lunniss, S. Altmeyer, and R. I. Davis 7

Schedulable Tasksets

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

UCB-U. Mult. ECB-U. Mult.

Figure 2 Venn diagram showing the relationship between different approaches for CPRD analysis
under FP scheduling.

within the response time of task τi, each of which can evict cache blocks in the set ECBj :

Mecb
i,j =

⋃
Ej(Ri)

(ECBj) . (7)

γucb-mi,j is then given by the size of the multiset intersection between Mucb
i,j and Mecb

i,j :

γucb-mi,j = BRT ·
∣∣∣Mucb

i,j ∩Mecb
i,j

∣∣∣ . (8)

3.1.3 Combined Multiset
The ECB-Union multiset and UCB-Union multiset approaches are incomparable, meaning that
each approach can find different sets of tasksets schedulable. Because of this property, they can
be combined together to form a combined approach:

Ri = min(Rucb-m
i , Recb-m

i ) . (9)

The response time for every task is calculated using each approach and then the minimum is
taken, because of this, the combined approach can deem some tasksets schedulable that are not
schedulable by either approach on its own.

3.2 Comparison of Approaches
Figure 2 shows a Venn diagram that conveys the relationship between a number of different
approaches for calculating CRPD under FP scheduling [3]. However, it does not include the
method by Staschulat et al. [25] because it is incomparable to them. Specifically, while it typically
deems a lower number of tasksets schedulable, it could potentially find a taskset schedulable that
is not schedulable by any of the other approaches. Aside from the approach by Staschulat et
al. [25], it can be seen that the combined multiset approach dominates all other approaches. See
Altmeyer et al. [3] for a detailed comparison between each approach.

4 CRPD Analysis for EDF Scheduling

In this section, we give an overview of EDF scheduling and schedulability analysis for it. We then
cover the state of the art CRPD analysis for EDF scheduling, by Lunniss et al. [22].

LITES



8 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

EDF is a dynamic scheduling algorithm which always schedules the job with the earliest
absolute deadline first. In pre-emptive EDF, any time a job arrives with an earlier absolute
deadline than the current running job, it will pre-empt the current job. When a job completes
its execution, the EDF scheduler chooses the pending job with the earliest absolute deadline to
execute next.

In 1973, Liu and Layland [20] gave a necessary and sufficient schedulability test that indicates
whether a taskset is schedulable under EDF iff U ≤ 1, under the assumption that all tasks have
implicit deadlines (Di = Ti). In the case where Di ≤ Ti this test is still necessary, but is no longer
sufficient.

In 1974, Dertouzos [15] proved EDF to be optimal among all scheduling algorithms on a
uniprocessor, in the sense that if a taskset cannot be scheduled by pre-emptive EDF, then this
taskset cannot be scheduled by any algorithm.

In 1980, Leung and Merrill [19] showed that a set of periodic tasks is schedulable under EDF
iff all absolute deadlines in the interval [0,max{si}+ 2H] are met, where si is the start time of
task τi, min{si} = 0, and H is the hyperperiod (least common multiple) of all tasks’ periods.

In 1990 Baruah et al. [6, 7] extended Leung and Merrill’s work [19] to sporadic tasksets. They
introduced h(t), the processor demand function, which denotes the maximum execution time
requirement of all tasks’ jobs which have both their arrival times and their deadlines in a contiguous
interval of length t. Using this they showed that a taskset is schedulable iff ∀t > 0, h(t) ≤ t where
h(t) is defined as:

h(t) =
∑
i=1

max
{

0, 1,+
⌊
t−Di

Ti

⌋}
Ci . (10)

Examining (10), it can be seen that h(t) can only change when t is equal to an absolute
deadline, which restricts the number of values of t that need to be checked. In order to place
an upper bound on t, and therefore the number of calculations of h(t), the minimum interval in
which it can be guaranteed that an unschedulable taskset will be shown to be unschedulable must
be found. For a general taskset with arbitrary deadlines t can be bounded by La [16]:

La = max
{
D1, . . . , Dn,

∑n
i=1(Ti −Di)Ui

1− U

}
. (11)

Spuri [24] and Ripoll et al. [23] showed that an alternative bound Lb, given by the length of
the synchronous busy period can be used. Where Lb is computed by solving the following equation
using fixed point iteration:

wα+1 =
n∑
i=1

⌈
wα

Ti

⌉
Ci . (12)

There is no direct relationship between La and Lb, which enables t to be bounded by L =
min(La, Lb). Combined with the knowledge that h(t) can only change at an absolute deadline, a
taskset is therefore schedulable under EDF iff U ≤ 1 and:

∀t ∈ Q : h(t) ≤ t , (13)

where Q is defined as:

Q = {dk | dk = kTi +Di ∧ dk < min(La, Lb), k ∈ N} . (14)

In 2009, Zhang and Burns [27] presented their Quick convergence Processor-demand Analysis
(QPA) algorithm which exploits the monotonicity of h(t). QPA determines schedulability by
starting with a value of t that is close to L, and then iterating back towards 0 checking a
significantly smaller number of values of t than would otherwise be required.



W. Lunniss, S. Altmeyer, and R. I. Davis 9

0 1 2 3 4 5 6 7 8 9 10

τ1
τ2
τ3

Figure 3 Example schedule showing how the scheduler chooses which task should execute. Task τ3

is released at t = 0. At t = 5, task τ2 is released, pre-empting τ3 as although it has the same absolute
deadline, it has a lower task index. At t = 6, task τ1 is released, pre-empting task τ2. At t = 7, τ1

completes, the scheduler then chooses to resume task τ2 as although it has the same absolute deadline as
task τ3, it has the lower task index.

4.1 CRPD Analysis
Due to the undefined behaviour of EDF when two or more jobs have the same absolute deadline,
an assumption needs to be made before we can tightly calculate CRPD for EDF. In the case
where two or more jobs have the same absolute deadline, Lunniss et al. [22] assume the scheduler
always picks the job belonging to the task with the lowest unique task index, see Figure 3. This
has the benefit of minimising the number of pre-emptions. In the case where jobs of two tasks
have the same absolute and relative deadlines, it ensures that they cannot pre-empt each other.
Furthermore, it ensures that after a pre-emption, the task that was pre-empted last is resumed
first.

Following the analysis of Lunniss et al. [22], we now define a number of terms with respect
to EDF scheduling. Some of the terms are also present in the analysis for FP, but have slightly
different meanings under EDF. Assuming any task τj with a relative deadline Dj < Di can
pre-empt task τi, the set of tasks that may have a higher priority, and can pre-empt task τi, under
EDF is:

hp(i) = {τj ∈ Γ | Dj < Di} . (15)

The set of tasks that can be pre-empted by jobs of task τj in an interval of length t, aff(t, j) is
based on the relative deadlines of the tasks. It captures all of the tasks whose relative deadlines
are greater than the relative deadline of task τj excluding tasks whose deadlines are larger than t
as they do not need to be included when calculating h(t). This gives:

aff(t, i) = {τj ∈ Γ | t ≥ Di > Dj} . (16)

To determine how many pre-emptions can occur, we use Pj(Di) to denote the maximum
number of jobs of task τj that can pre-empt a single job of task τi:

Pj(Di) = max
(

0,
⌈
Di −Dj

Tj

⌉)
. (17)

Finally, we also use Ej(t) to denote the maximum number of jobs of task τj that can have
both their release times and their deadlines in an interval of length t:

Ej(t) = max
(

0,
⌊
t−Dj

Tj

⌋)
. (18)

We now summarise CRPD analysis for EDF by Lunniss et al. [22] using the combined multiset
approach as it has been shown to dominate all other approaches for calculating CRPD for EDF.
This approach is based on the combined multiset approach for FP as described in Section 3.1,
and as such the equations and the intuition behind them are similar. The difference is to do with

LITES



10 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

which tasks pre-empt each other and the timeframe used to determine which jobs to include in
the calculation.

CRPD analysis can be integrated into the EDF schedulability test by introducing an additional
parameter, γt,j to represent the CRPD. In this case, γt,j represents the cost of the maximum
number Ej(t) of pre-emptions by jobs of task τj that have their release times and absolute deadlines
in an interval of length t. It is therefore included in (10) as follows:

h(t) =
n∑
j=1

(
max

{
0,
⌊
t−Dj

Tj

⌋}
Cj + γt,j

)
. (19)

γt,j can then be calculated using two different methods and the lowest value of the two used
to calculate the processor demand. These methods calculate the cost of each possible individual
pre-emption by task τj that could occur during an interval of length t.

4.1.1 ECB-Union Multiset
The ECB-Union multiset approach computes the union of all ECBs that may affect a pre-empted
task during a pre-emption by task τj . Specifically, it accounts for nested pre-emptions by assuming
that task τj has already been pre-empted by all other tasks that may pre-empt it. The first step
is to form a multiset Mt,j that contains the cost:∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣ (20)

of task τj pre-empting task τk repeated Pj(Dk)Ek(t) times, for each task τk ∈ aff(t, j). Hence:

Mt,j =
⋃

k∈aff(t,j)

 ⋃
Pj(Dk)Ek(t)

∣∣∣∣∣∣UCBk ∩

 ⋃
h∈hp(j)∪{j}

ECBh

∣∣∣∣∣∣
 . (21)

As there are only Ej(t) jobs of task τj with release times and deadlines in an interval of length
t, the maximum CRPD is obtained by summing the Ej(t) largest values in Mt,j :

γecb-mt,j = BRT ·
Ej(t)∑
l=1

M l
t,j , (22)

where M l
t,j is the lth largest integer value from the multiset Mt,j .

4.1.2 UCB-Union Multiset Approach
The UCB-Union multiset approach accounts for the effects of nested pre-emptions by assuming
that the UCBs of any tasks that could be pre-empted, including nested pre-emptions, by task
τj are evicted by the ECBs of task τj . The first step is to form a multiset Mucb

t,j containing
Pj(Dk)Ek(t) copies of the UCBk of each task τk ∈ aff(t, j). This multiset reflects the fact that
jobs of task τj cannot evict the UCBs of jobs of task τk that have both their release times and
deadlines in an interval of length t more than Pj(Dk)Ek(t) times. Hence:

Mucb
t,j =

⋃
k∈aff(t,j)

 ⋃
Pj(Dk)Ek(t)

UCBk

 . (23)



W. Lunniss, S. Altmeyer, and R. I. Davis 11

The second step is to form a separate multiset Mecb
t,j containing Ej(t) copies of the ECBj of

task τj . This multiset reflects the fact that there are at most Ej(t) jobs of task τj that have their
release times and deadlines in an interval of length t, each of which can evict cache blocks in the
set ECBj :

Mecb
t,j =

⋃
Ej(t)

(ECBj) . (24)

γucb-mt,j is then given by the size of the multi-set intersection between Mucb
t,j and Mecb

t,j :

γucb-mt,j = BRT ·
∣∣∣Mucb

t,j ∩Mecb
t,j

∣∣∣ . (25)

4.1.3 Combined Multiset Approach
The ECB-Union Multiset and UCB-Union Multiset approaches provide upper bounds that are
incomparable, therefore, h(t) can be calculated at each stage of the QPA algorithm using both
approaches and the minimum value taken to form a combined approach:

h(t) = min
(
h(t)ucb-m, h(t)ecb-m

)
. (26)

As the processor demand is calculated using each approach, for each interval t, the combined
approach can deem some tasksets schedulable that are not schedulable by either approach on its
own.

4.1.4 Effect on Task Utilisation and h(t) Calculation
As the multiset approaches effectively inflate the execution time of task τj by the CRPD that it
can cause in an interval of length t, the upper bound L, used for calculating the processor demand
h(t), must be adjusted. This is achieved by calculating an upper bound on the utilisation due to
CRPD that is valid for all intervals of length greater than some value Lc. This CRPD utilisation
value is then used to inflate the taskset utilisation and thus compute an upper bound Ld on the
maximum length of the synchronous busy period. This upper bound is valid provided that it is
greater than Lc, otherwise the actual maximum length of the busy period may lie somewhere in
the interval [Ld, Lc], hence we can use max(Lc, Ld) as a bound.

The first step is to assign t = Lc = 100Tmax which limits the overestimation of the CRPD
utilisation Uγ = γt/t to at most 1%. Next, γt is calculated using (22) for ECB-Union Multiset
and (25) for UCB-Union Multiset. However, in (21) and (23) & (24), Emax

x (t) is substituted for
Ex(t) to ensure that the computed value of Uγ is a valid upper bound for all intervals of length
t ≥ Lc:

Emax
x (t) = max

(
0, 1 +

⌈
t−Dx

Tx

⌉)
. (27)

If U + Uγ ≥ 1, then the taskset is deemed unschedulable, otherwise an upper bound on the
length of the busy period can be computed via a modified version of (12):

wα+1 ≤
∑
∀j

(
wα

Tj
+ 1
)
Cj + wαUγ (28)

rearranged to give:

w ≤ 1
(1− (U + Uγ))

∑
∀j

UjTj . (29)

LITES



12 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

Schedulable Tasksets

Combined

ECB
Only

UCB-Union

UCB
Only

ECB-Union

JCR

UCB-U. Mult. ECB-U. Mult.

Figure 4 Venn diagram showing the relationship between different approaches for CPRD analysis
under EDF scheduling.

Then, substituting in Tmax for each value of Tj the upper bound is given by:

Ld = U · Tmax

(1− (U + Uγ)) . (30)

Finally, L = max(Lc, Ld) can then be used as the maximum value of t to check in the EDF
schedulability test.

4.2 Comparison of Approaches

Figure 4 shows a Venn diagram that conveys the relationship between the different approaches for
calculating CRPD under EDF scheduling [22]. Note that JCR represents the approach of Ju et
al. [17]. It can be seen that the combined multiset approach dominates all other approaches, see
Lunniss et al. [22] for detailed comparisons of each approach.

5 Task Layout

The layout of tasks in memory determines how they are positioned in cache, which then affects
the CRPD that occurs during pre-emptions. Figure 5 shows an example layout of five tasks in
cache. If scheduled under FP, task τ1 has the highest priority, so its UCBs can never be evicted as
it cannot be pre-empted. Task τ2 and τ3’s UCBs are safe from eviction as they are not mapped
to the same location in cache as higher priority task’s ECBs. However, task τ4’s UCBs could be
evicted by task τ1, and τ5’s UCBs could be evicted by task τ1, τ2 or τ4. This layout could be
improved by shifting task τ5 so that its UCBs can only be evicted by task τ3.

In 2012, Lunniss et al. [21] presented an approach that uses Simulated Annealing to optimise
the layout of tasks to increase system schedulability. It does so by changing the order of tasks in
memory, which can be implemented in practice by presenting the tasks to the linker in the desired
order. The approach is driven by the schedulability of the taskset, favouring layouts that allow
the taskset to be scheduled at a higher utilisation. While this approach was originally used for FP
scheduling, it can also be applied to the EDF scheduling algorithm by switching the schedulability
test used. We therefore use this approach to optimise the layout of the tasksets to make each
scheduling algorithm as competitive as possible.



W. Lunniss, S. Altmeyer, and R. I. Davis 13

ECBs UCBs UCBs that could be evicted

τ1

τ2

τ3

τ4

τ5

Cache size

Tasks ordered by priority

0
#Cache Sets

-1

Figure 5 Example layout showing how the position of tasks in cache affects whether their UCBs could
be evicted during a pre-emption.

6 Case Studies

In this section we compare the different approaches for calculating CRPD using a set of case studies
based on PapaBench2, the Mälardalen3 benchmark suite and a set of SCADE4 tasks (partially
provided by SCADE, partially from our own SCADE models). In all cases the system was set up
to model an ARMv75 processor clocked at 100 MHz with a 2 KB direct-mapped instruction cache
and a line size of 8 Bytes, giving 256 cache sets, 4 Byte instructions, and a BRT of 8 µs.

6.1 Single Taskset Case Study
PapaBench is a real-time embedded benchmark based on the software of a GNU-license UAV,
called Paparazzi. PapaBench contains two sets of tasks, fly-by-wire and autopilot. In this paper
we used the autopilot tasks, for which the WCETs, periods, UCBs, and ECBs were collected using
aiT6 – see Table 1. We made the following assumptions in our evaluation to handle the interrupt
tasks:

Interrupts have higher priority than the normal tasks, but they cannot pre-empt each other
Interrupts can occur at any time
All interrupts have the same deadline which must be greater than or equal to the sum of their
execution times in order for them to be schedulable
The cache is disabled whenever an interrupt is executing and enabled again after it completes

In the case of FP scheduling, the interrupts can be modelled as normal tasks with no UCBs or
ECBs. Due to the interrupts having the same deadline which is large enough to accommodate the
interrupts execution times, no other changes need to be made to the analysis. For EDF scheduling,
a number of adjustments must be made to correctly account for the interrupts not being able to
pre-empt each other. First we modify equation (19) to exclude interrupts when calculating the
processor demand, h(t). We then calculate the execution time of each interrupt in the interval t
using equation (2) of [10]. The result of which is then added onto the result of the modified version

2 http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
3 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
4 Esterel SCADE http://www.esterel-technologies.com/
5 http://www.arm.com/products/processors/cortex-m/cortex-m3.php
6 AbsInt http://www.absint.com/ait/

LITES

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=97
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
http://www.esterel-technologies.com/
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.absint.com/ait/


14 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

of (19), giving the processor demand for both tasks and interrupts. We then adjust the upper
bound L used when checking h(t). This is implemented by substituting U = U tasks + U interrupts

into equation (30). Note that we leave Uγ to represent the utilisation of the CRPD caused by just
tasks as we assume that the cache is disabled while the interrupts are executing and as such they
cannot cause any CRPD.

We assigned a deadline of 2 ms to all of the interrupt tasks, and implicit deadlines i.e. Di = Ti,
to the normal tasks. We then calculated the total utilisation for the system and then effectively
scaled the clock speed in order to reduce the total utilisation to the target utilisation for the
system. We used the number of UCBs and ECBs obtained via analysis, placing the UCBs in a
group at a random location in each task.

In each evaluation, the taskset utilization not including pre-emption cost was varied from 0.025
to 1 in steps of 0.001. For each utilization value, the schedulability of the taskset was determined
under both FP and EDF. Specifically, we compared each scheduling algorithm (i) assuming no
pre-emption cost, (ii) using CRPD analysis using the standard task layout, and (iii) using CRPD
analysis after optimising the task layout using Simulated Annealing as described in [21]. The
standard task layout is obtained by ordering tasks sequentially in memory based on their unique
task indices.

Table 2 shows the breakdown utilisation for the single taskset based on PapaBench. There
are a few interesting points to note. Firstly the breakdown utilisation is very high for both FP
and EDF, this is due to the nearly harmonic periods and small range of task periods, with EDF
outperforming FP. Secondly, the CRPD is very low when scheduled using either FP or EDF due
to the small number of UCBs. As the CRPD is very low, the layout optimisation makes little to
no difference.

6.2 Multiple Taskset Case Studies
The single taskset case study provides one specific example based on the PapaBench tasks and
their periods. The remaining case studies used tasksets generated by randomly selecting tasks
from a set of benchmarks. In the case of the PapaBench tasks, we treated the interrupts as
normal tasks. We obtained tasksets by randomly selecting 10 tasks from Table 1 (PapaBench
benchmarks), or 10 tasks from Table 3 (Mälardalen and SCADE benchmarks) or 15 tasks from the
two tables (Mixed benchmarks). Using the UUnifast algorithm [9], we calculated the utilisation,
Ui of each task so that the utilisations added up to the desired utilisation level for the taskset.
Based on the target utilisation and task execution times, Ti was calculated such that Ci = UiTi.
We used Di = y + x(Ti − y) to generate the constrained deadlines, where x is a random number
between 0 and 1, and y = max(Ti/2, 2Ci). This generates constrained deadlines that are no less
than half the period of the tasks. Note, allowing deadlines to be as small as Ci would result in
tasks that were unschedulable once CRPD were introduced. We used the number of UCBs and
ECBs obtained using aiT, placing the UCBs in a group at a random location in each task.

We generated 1000 tasksets for the multiple taskset case studies, and evaluated them using
the same method as the single taskset case study, except that we varied the utilisation excluding
pre-emption costs from 0.025 to 1 in steps of 0.0125.

6.2.1 PapaBench Benchmark
The tasks in the PapaBench benchmarks are simple, short control tasks with limited computations
and data accesses. Figure 6 shows the percentage of tasksets that were deemed schedulable by
each approach for the 1000 tasksets of cardinality 10 that we randomly selected from Table 1. The
results are similar to those obtained using the single taskset PapaBench case study. Specifically,



W. Lunniss, S. Altmeyer, and R. I. Davis 15

Table 1 Execution times, periods and number of UCBs and ECBs for the tasks from PapaBench.
(ms = milisecond)

Task Name UCBs ECBs WCET Period
I4 interrupt_modem 2 10 0.303 ms 100 ms
I5 interrupt_spi_1 1 10 0.251 ms 50 ms
I6 interrupt_spi_2 1 4 0.151 ms 50 ms
I7 interrupt_gps 3 26 0.283 ms 250 ms
T5 altitude_control 20 66 1.478 ms 250 ms
T6 climb_control 1 210 5.429 ms 250 ms
T7 link_fbw_send 1 10 0.233 ms 50 ms
T8 navigation 10 256 4.432 ms 250 ms
T9 radio_control 0 256 15.681 ms 25 ms

T10 receive_gps_data 22 194 5.987 ms 250 ms
T11 reporting 2 256 12.222 ms 100 ms
T12 stabilization 11 194 5.681 ms 50 ms

Table 2 Breakdown utilisation under the different approaches for the single PapaBench taskset.

Breakdown
Utilisation

EDF – No Pre-emption Cost 0.999
FP – No Pre-emption Cost 0.977
EDF – Optimised Layout 0.985
EDF – Standard Layout 0.985
FP – Optimised Layout 0.970
FP – Standard Layout 0.969

Table 3 Execution times and number of UCBs and ECBs for the largest benchmarks from the
Mälardalen Benchmark Suite (M), and SCADE Benchmarks (S). (s = second, ms = milisecond)

Source Description UCBs ECBs WCET
M adpcm 24 226 5.541 s
M compress 25 114 3.664 s
M edn 56 98 244.9 ms
M fir 28 50 21.53 ms
M jfdctinit 40 162 62.53 ms
M ns 17 26 73.38 ms
M nsichneu 53 256 149.6 ms
M statemate 3 256 77.96 ms
S cruise control system 25 107 1.959 s
S flight control system 70 256 2.138 s
S navigation system 45 82 1.409 s
S stopwatch 58 130 3.786 s
S elevator simulation 40 114 1.586 s
S robotics systems 68 256 4.311 s

LITES



16 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

Table 4 Weighted schedulability measures for the mixed case study shown in Figure 8. The higher the
weighted schedulability measure, the more tasksets deemed schedulable by the approach.

Weighted
Schedulability

EDF – No Pre-emption Cost 0.922
FP – No Pre-emption Cost 0.855
EDF – Optimised Layout 0.830
EDF – Standard Layout 0.771
FP – Optimised Layout 0.784
FP – Standard Layout 0.747

EDF outperformed FP as it deemed a higher number of tasksets schedulable at each utilisation
level. Because the range of execution times is relatively small, so is the typical range of task periods
for the generated tasksets, hence the number of pre-emption is also relatively small. Further, the
number of UCBs is small, resulting in low CRPD. Therefore, the task layout optimisation was
only able to make a small improvement, but did so for both FP and EDF.

6.2.2 Mälardalen and SCADE Benchmarks
The second multiple taskset case study was based on tasks from the Mälardalen and SCADE
benchmarks, shown in Table 3. Compared to the tasks from PapaBench, these tasks have higher
execution times, high amounts of computation, and a larger number of UCBs. Figure 7 shows
the percentage of tasksets that were deemed schedulable by each approach for the 1000 tasksets
of cardinality 10 that we randomly selected from Table 3. As with the PapaBench benchmarks,
EDF outperformed FP scheduling as it has a higher percentage of schedulable tasksets at each
utilisation level. Likewise, because the range of task periods was also relatively small, CRPD is
minimised.

6.2.3 Mixed Benchmarks
The third multiple taskset case study was based on a mixture of the small and short PapaBench
tasks, and the large and long Mälardalen and SCADE tasks. Here the tasksets had 15 tasks each,
and represent systems with background tasks combined with short control tasks. As we mixed
tasks from both tables, it also allowed us to generate tasksets with a higher number of tasks.

The results, shown in Figure 8, show that when a taskset contains tasks with a wide range of
periods, CRPD can become a significant factor in the schedulability of the taskset. This is because
short high priority tasks are able to pre-empt long running low priority tasks multiple times.

While EDF still outperformed FP, the gain in schedulability of using EDF over FP was
diminished once CRPD was taken into account. Optimising the task layout resulted in a significant
improvement for both FP and EDF, showing the task layout optimisation can be effectively
applied to both EDF and FP scheduling. Furthermore, by optimising the task layout, FP was
able to schedule a similar number of tasksets to EDF with the standard layout. In other words, in
cases where the CRPD is relatively high, selecting an optimised task layout can be as effective
as changing the scheduling algorithm. The results are summarised in Table 4 using weighted
schedulability measures [8], see Section 7.2 for details. They show that for these tasksets, FP with
an optimised layout achieved a weighted measure of 0.784, outperforming EDF with the standard
layout as it achieved a weighted measure of 0.771.



W. Lunniss, S. Altmeyer, and R. I. Davis 17

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s 
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 6 Percentage of schedulable tasksets at each utilisation level for the PapaBench benchmark for
tasksets of cardinality 10.

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s 
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 7 Percentage of schedulable tasksets at each utilisation level for the Mälardalen and SCADE
benchmarks for tasksets of cardinality 10.

0 %

20 %

40 %

60 %

80 %

100 %

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s 
(%

)

Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 8 Percentage of schedulable tasksets at each utilisation level for the mixed case study with
tasks randomly selected from both the PapaBench and Mälardalen and SCADE benchmarks (taskset
cardinality 15).

LITES



18 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

7 Evaluation

In addition to the case studies based on the PapaBench, Mälardalen and SCADE benchmarks, we
evaluated FP and EDF with CRPD analysis using synthetically generated tasksets. This enabled
us to investigate the effect of varying key parameters under each scheduling algorithm.

The UUnifast algorithm [9] was again used to calculate the utilisation, Ui of each task so that
the utilisations added up to the desired utilisation level for the taskset. Task periods Ti, were
generated at random between 5 ms and 500 ms according to a log-uniform distribution. Ci was
then calculated via Ci = UiTi.

We generated two sets of tasksets, one with implicit deadlines and one with constrained
deadlines. In the following section, we present the results for constrained deadline tasksets. In
general, the results for implicit deadline tasksets gave a higher number of schedulable tasksets for
every approach compared to the constrained deadline tasksets. Additionally, the task layout had
a similar or slightly larger effect on schedulability in relation to the chosen scheduling algorithm.

The UCB percentage for each task was based on a random number between 0 and a maximum
UCB percentage specified for the evaluation. UCBs were split into N groups (where N was chosen
at random between 1 and 5), and placed at a random starting point within the task’s ECBs.

7.1 Baseline Configuration
To investigate the effect of key cache and taskset configurations we varied the following parameters:

Cache utilisation (default of 10)
Maximum UCB percentage (default of 30%)
Number of tasks (default of 15)
Block Reload Time (BRT) (default of 8 µs)
Period range (default of [5, 500] ms)

We used 1, 000 randomly generated tasksets for the evaluation.
In addition to testing the different analyses as done for the case study, we also performed a

simulation of the schedule for the tasksets7. For FP, the simulation tested each task τi in turn
by releasing it at time t = 0. It then released all of the other tasks that have a higher priority
than task τi, sorted by lowest to highest priority, at t = 1, t = 2, t = 3, etc. If all tasks were
schedulable it also performed the same test but instead of staggering the other tasks, released
them at random. For EDF, it is more complicated to generate the worst case arrival pattern. The
first step is to determine the interval that needs to be checked, L, which can be achieved by using
equation (30). Then for each task τi in turn, we scheduled a job of task τi so that it has a deadline
at t = L. We then scheduled a job of all of the other tasks, sorted by longest to shortest deadline,
so that they have their deadlines at t = L− 1, t = L− 2, t = L− 3 etc... Based on the final jobs’
deadlines, we then calculated when the first jobs for each task need to be released. If all tasks
are schedulable, we repeated the process using t = L− 1 for all of the other tasks’ jobs, and also
using a random schedule.

The results for the baseline configuration are shown in Figure 9 and are summarised in Table 5
using weighted schedulability measures. The results follow a similar pattern to the results from the
case study. EDF outperformed FP finding a higher number of tasksets schedulable. The results
for the simulations show that the CRPD affects both FP and EDF, with the CRPD being slightly
lower for EDF. Specifically, the simulation shows that CRPD reduced the weighted measure by at
least 0.129 for EDF (0.925− 0.795) and 0.141 for FP (0.774− 0.633) in this case. However, once

7 Note that the simulation effectively provides a necessary, but not sufficient test of schedulability.



W. Lunniss, S. Altmeyer, and R. I. Davis 19

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Simulation

FP - Simulation

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout
0 %

20 %

40 %

60 %

80 %

100 %

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
ch

ed
ul

ab
le

 T
as

ks
et

s 
(%

)

Utilisation

Figure 9 The percentage of schedulable tasksets at each utilisation level for the baseline configuration
(taskset cardinality 15).

Table 5 Weighted schedulability measures for the baseline configuration study shown in Figure 9. The
higher the weighted schedulability measure, the more tasksets deemed schedulable by the approach.

Weighted
Schedulability

EDF – No Pre-emption cost 0.925
EDF – Simulation 0.796
FP – No Pre-emption cost 0.774
FP – Simulation 0.633
EDF – Optimised layout 0.455
EDF – Standard layout 0.413
FP – Optimised layout 0.369
FP – Standard layout 0.336

the CRPD obtained via analysis is taken into account, the performance gains of using EDF over
FP are diminished. This is most likely caused by increased pessimism in the CRPD analysis for
EDF. The results for the layout optimisation showed that it was able to make improvements to
the schedulability of tasksets scheduled under both FP and EDF.

7.2 Weighted Schedulability
Evaluating all combinations of different parameters is not possible. Therefore, the majority of
our evaluations focused on varying one parameter at a time. To present the results, weighted
schedulability measures [8] are used. This allows a graph to be drawn which shows the weighted
schedulability, Wl(p), for each method used to obtain a layout l as a function of parameter p. For
each value of p, this measure combines the data for all of the generated tasksets τ for all of a set
of equally spaced utilisation levels, where the utilisation is based on no pre-emption cost.

The schedulability test returns a binary result of 1 or 0 for each layout at each utilisation level.
If this result is given by Sl (τ, p), and u(τ) is the utilisation of taskset τ , then:

Wl(p) =
(∑

∀τ u(τ)Sl(τ, p)
)∑

∀τ u(τ) . (31)

LITES



20 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d 
M

ea
su

re

Cache Utilisation

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 10 Weighted measure for varying the cache utilisation from 0 to 20 in steps of 2.

The benefit of using a weighted schedulability measure is that it reduces a 3-dimensional plot
to 2 dimensions. Individual results are weighted by taskset utilisation to reflect the higher value
placed on a being able to schedule higher utilisation tasksets.

7.2.1 Cache Utilisation
As the cache utilisation increases the likelihood of tasks evicting each other from cache increases,
this causes higher CRPD reducing the number of schedulable tasksets. It can be seen in Figure 10
that task layout optimisation is effective for FP and EDF across the same range of cache utilisations.
In both cases it becomes less effective once the cache utilisation becomes high. We note that
because the number of tasks is fixed, that the average size of the tasks is equal to the cache
utilisation divided by the number of tasks. This means that as the cache utilisation increases, so
does the size of the tasks and therefore, the number of UCBs. This in turn makes it harder to
find an improved layout.

7.2.2 Maximum UCB Percentage
As the maximum UCB percentage increases, the CRPD increases resulting in a reduction in
the number of tasksets that are deemed schedulable, as can be seen in Figure 11. With a low
percentage of UCBs, the CRPD is low which means there is little benefit from layout optimisation.
When the UCB percentage is very high, there are so many conflicts that there is very little that
can be done to improve the layout. When the maximum UCB percentage is around 40–60%, there
is a notable amount of CRPD, but there is also room for the task layout algorithm to optimise the
layout. This allows FP using an optimised task layout to schedule a similar number of tasksets as
EDF using the standard layout.

7.2.3 Number of Tasks
When varying the number of tasks, Figure 12, we scaled the cache utilisation to keep the average
size of tasks constant based on a cache utilisation of 10 for 15 tasks. This is because it would be
unrealistic for the size of tasks to decrease as more tasks are added to the system. Hence with
8 tasks the cache utilisation is equal to 5.33, whereas for 32 tasks, it is equal to 21.33. As the
number of tasks increases, it becomes harder the schedule all tasks which leads to a decrease



W. Lunniss, S. Altmeyer, and R. I. Davis 21

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100

W
ei

gh
te

d 
M

ea
su

re

Maximum UCB Percentage

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 11 Weighted measure for varying the maximum UCB percentage from 0 to 100 in steps of 10.

in the overall weighted measure. The task layout optimisation performs best when there is a
moderate number of tasks, as there are enough conflicts that optimising the layout can give an
improvement, but not so many that there is nothing that can be done to avoid the conflicts.

7.2.4 Block Reload Time
As the block reload time is increased, it becomes more costly to reload a block, which causes an
increase in CRPD. It can be seen in Figure 13 that as the block reload time is increased, the
analysis that takes into account the pre-emption cost shows a decrease in the overall weighted
measure. We note that as the cost of reloading a block increases, the potential gains of optimising
the layout increase. Once the block reload time exceeds 14 µs, using an optimised layout under
FP scheduling outperforms using a standard layout under EDF scheduling.

7.2.5 Period Range
We also investigated the effect of the scaling factor used to generate task periods to simulate
tasksets with shorter to longer execution times. We varied the scaling factor, w, from 0.5 to 10
and hence the range of task periods given by w[1, 100] ms. A lower scaling factor resembles tasks
with shorter execution times, as seen in the PapaBench benchmark, and a higher scaling factor
resembles tasks with higher execution times and commensurately longer periods, as seen in the
Mälardalen and SCADE benchmarks. The results in Figure 14 show the layout optimisation
performs best when task periods are relatively short, as that is when the pre-emption costs are
highest. Once the period range is greater than [10, 1000] ms, the relative pre-emption costs are
low enough that performing the layout optimisation only makes a very small improvement on the
schedulability of the tasksets.

8 Conclusion

The EDF scheduling algorithm is an optimal scheduling algorithm for single processors however, it
has been largely disregarded by industry. Whereas FP, despite offering lower theoretical schedulable
processor utilisation, is relatively popular with many commercial real- time operating systems
supporting it.

Previous work by Buttazzo [13] has compared the two algorithms, but it did not take into
account CRPD which can have a significant effect on the schedulability of a taskset.

LITES



22 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64

W
ei

gh
te

d 
M

ea
su

re

Number of Tasks

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 12 Weighted measure for varying the number of tasks from 20 to 26 while maintaining a
constant ratio of number of tasks to cache utilisation.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

W
ei

gh
te

d 
M

ea
su

re

Block Reload Time

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 13 Weighted measure for varying the block reload time from 0 to 20 µs in steps of 2.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 7 8 9 10

W
ei

gh
te

d 
M

ea
su

re

Period Range

EDF - No Pre-emption Cost

FP - No Pre-emption Cost

EDF - Optimised Layout

EDF - Standard Layout

FP - Optimised Layout

FP - Standard Layout

Figure 14 Weighted measure for varying the scaling factor used to generate periods, w, in w[1, 100]
ms, from 0.5 to 10.



W. Lunniss, S. Altmeyer, and R. I. Davis 23

The main contributions of this paper are:
Performing a detailed comparison of FP and EDF taking into account CRPD using state-of-
the-art CRPD analysis [3, 22].
Showing the feasibility of simple, yet effective, task layout optimisation techniques for EDF.
Finding that when CRPD is considered, the performance gains offered by EDF over FP, while
still significant, are somewhat diminished. This is most likely due to greater pessimism in the
CRPD analysis for EDF than FP.
Discovering that in configurations that cause relatively high CRPD, optimising task layout
can be just as effective as changing the scheduling algorithm from FP to EDF.

We investigated the effects of performing task layout [21] optimisation based on Simulated
Annealing under both FP and EDF scheduling algorithms. We found that in the scenarios that
cause the pre-emption cost to be relatively high in relation to task execution times, applying task
layout optimisation to a system scheduled using FP scheduling can allow it to be schedulable
at a similar processor utilisation compared to using EDF scheduling with a standard layout.
This is important in an industrial setting as it is considerably simpler and cheaper to control
the task layout via the linker, than it is to change the scheduler. Nevertheless, our evaluations
showed that changing to an EDF scheduler and optimising the task layout provides a gain over
FP scheduling. Although this gain was not as pronounced as the advantage that EDF has over
FP when pre-emption costs are not accounted for via analysis.

In the future we plan to further investigate techniques for CRPD analysis, and to apply them
in an industrial context comparing the results of analysing a real system with those obtained via
measurement.

Grant Information. This work was partially funded by the UK EPSRC through the Engineering
Doctorate Centre in Large-Scale Complex IT Systems (EP/F501374/1), the UK EPSRC fun-
ded MCC (EP/K011626/1), and the European Community’s ARTEMIS Programme and UK
Technology Strategy Board, under ARTEMIS grant agreement 295371-2 CRAFTERS.

References
1 Sebastian Altmeyer and Claire Burguière. A

new notion of useful cache block to improve the
bounds of cache-related preemption delay. In
21st Euromicro Conference on Real-Time Systems,
ECRTS 2009, Dublin, Ireland, July 1–3, 2009,
pages 109–118. IEEE Computer Society, 2009. doi:
10.1109/ECRTS.2009.21.

2 Sebastian Altmeyer, Robert I. Davis, and Claire
Maiza. Cache related pre-emption delay aware re-
sponse time analysis for fixed priority pre-emptive
systems. In Proceedings of the 32nd IEEE Real-
Time Systems Symposium, RTSS 2011, Vienna,
Austria, November 29 – December 2, 2011, pages
261–271. IEEE Computer Society, 2011. doi:10.
1109/RTSS.2011.31.

3 Sebastian Altmeyer, Robert I. Davis, and Claire
Maiza. Improved cache related pre-emption delay
aware response time analysis for fixed priority pre-
emptive systems. Real-Time Systems, 48(5):499–
526, 2012. doi:10.1007/s11241-012-9152-2.

4 Sebastian Altmeyer, Claire Maiza, and Jan
Reineke. Resilience analysis: tightening the CRPD
bound for set-associative caches. In Proceedings
of the ACM SIGPLAN/SIGBED 2010 Conference
on Languages, Compilers, and Tools for Embed-

ded Systems, LCTES 2010, Stockholm, Sweden,
April 13–15, 2010, pages 153–162. ACM, 2010.
doi:10.1145/1755888.1755911.

5 Neil C. Audsley, Alan Burns, Mike F. Richard-
son, Ken Tindell, and Andrew J. Wellings.
Applying new scheduling theory to static pri-
ority pre-emptive scheduling. Software En-
gineering Journal, 8(5):284–292, 1993. URL:
http://ieeexplore.ieee.org/stamp/stamp.jsp?
tp=&arnumber=238595&isnumber=6134.

6 Sanjoy K. Baruah, Aloysius K. Mok, and Louis E.
Rosier. Preemptively scheduling hard-real-time
sporadic tasks on one processor. In Proceedings of
the Real-Time Systems Symposium – 1990, Lake
Buena Vista, Florida, USA, December 1990, pages
182–190. IEEE Computer Society, 1990. doi:10.
1109/REAL.1990.128746.

7 Sanjoy K. Baruah, Louis E. Rosier, and Rodney R.
Howell. Algorithms and complexity concerning the
preemptive scheduling of periodic, real-time tasks
on one processor. Real-Time Systems, 2(4):301–
324, 1990. doi:10.1007/BF01995675.

8 Andrea Bastoni, Björn B. Brandenburg, and
James H. Anderson. Cache-related preemp-
tion and migration delays: Empirical approxim-

LITES

http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/ECRTS.2009.21
http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1109/RTSS.2011.31
http://dx.doi.org/10.1007/s11241-012-9152-2
http://dx.doi.org/10.1145/1755888.1755911
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=238595&isnumber=6134
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=238595&isnumber=6134
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1007/BF01995675


24 A Comparison between Fixed Priority and EDF Scheduling accounting for CRPD

ation and impact on schedulability. In Proceed-
ings of the 6th International Workshop on Op-
erating Systems Platforms for Embedded Real-
Time Applications, OSPERT 2010, pages 33–
44, 2010. URL: http://www.mpi-sws.org/~bbb/
papers/pdf/ospert10.pdf.

9 Enrico Bini and Giorgio C. Buttazzo. Measur-
ing the performance of schedulability tests. Real-
Time Systems, 30(1-2):129–154, 2005. doi:10.
1007/s11241-005-0507-9.

10 Björn B. Brandenburg, Hennadiy Leontyev, and
James H. Anderson. Accounting for interrupts
in multiprocessor real-time systems. In 15th
IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications,
RTCSA 2009, Beijing, China, 24–26 August 2009,
pages 273–283. IEEE Computer Society, 2009. doi:
10.1109/RTCSA.2009.37.

11 Claire Burguière, Jan Reineke, and Sebastian Alt-
meyer. Cache-related preemption delay computa-
tion for set-associative caches - pitfalls and solu-
tions. In 9th International Workshop on Worst-
Case Execution Time Analysis, WCET 2009, Dub-
lin, Ireland, July 1–3, 2009, volume 10 of OASICS,
pages 1–11. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, Germany, 2009. doi:10.4230/
OASIcs.WCET.2009.2285.

12 José V. Busquets-Mataix, Juan José Serrano, Ra-
fael Ors, Pedro J. Gil, and Andy J. Wellings.
Adding instruction cache effect to schedulabil-
ity analysis of preemptive real-time systems. In
2nd IEEE Real-Time Technology and Applications
Symposium, RTAS 1996, June 10–12, 1996, Bo-
ston, MA, USA, page 204. IEEE Computer Society,
1996. doi:10.1109/RTTAS.1996.509537.

13 Giorgio C. Buttazzo. Rate monotonic vs. EDF:
judgment day. Real-Time Systems, 29(1):5–26,
2005. doi:10.1023/B:TIME.0000048932.30002.d9.

14 Robert I. Davis, A. Zabos, and Alan Burns. Ef-
ficient exact schedulability tests for fixed priority
real-time systems. IEEE Transactions on Com-
puters, 57(9):1261–1276, 2008. doi:10.1109/TC.
2008.66.

15 Michael L. Dertouzos. Control robotics: The pro-
cedural control of physical processes. In IFIP Con-
gress, pages 807–813, 1974.

16 Laurent George, Nicolas Rivierre, and Marco Spuri.
Preemptive and non-preemptive real-time unipro-
cessor scheduling. Technical report, INRIA, 1996.
URL: http://hal.inria.fr/inria-00073732.

17 Lei Ju, Samarjit Chakraborty, and Abhik Roy-
choudhury. Accounting for cache-related preemp-
tion delay in dynamic priority schedulability ana-
lysis. In 2007 Design, Automation and Test in
Europe Conference and Exposition, DATE 2007,
April 16–20, 2007, Nice, France, pages 1623–1628.

ACM, 2007. URL: http://dl.acm.org/citation.
cfm?id=1266366.1266723.

18 Chang-Gun Lee, Joosun Hahn, Yang-Min Seo,
Sang Lyul Min, Rhan Ha, Seongsoo Hong,
Chang Yun Park, Minsuk Lee, and Chong-Sang
Kim. Analysis of cache-related preemption delay in
fixed-priority preemtive scheduling. IEEE Trans.
Computers, 47(6):700–713, 1998. doi:10.1109/12.
689649.

19 Joseph Y.-T. Leung and M. L. Merrill. A note
on preemptive scheduling of periodic, real-time
tasks. Information Processing Letters, 11(3):115–
118, 1980. doi:10.1016/0020-0190(80)90123-4.

20 C. L. Liu and James W. Layland. Scheduling al-
gorithms for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61,
1973. doi:10.1145/321738.321743.

21 Will Lunniss, Sebastian Altmeyer, and Robert I.
Davis. Optimising task layout to increase
schedulability via reduced cache related pre-
emption delays. In 20th International Conference
on Real-Time and Network Systems, RTNS 2012,
Pont a Mousson, France – November 08–09, 2012,
pages 161–170. ACM, 2012. doi:10.1145/2392987.
2393008.

22 Will Lunniss, Sebastian Altmeyer, Claire Maiza,
and Robert I. Davis. Integrating cache related pre-
emption delay analysis into EDF scheduling. In
19th IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2013, Phil-
adelphia, PA, USA, April 9–11, 2013, pages 75–84.
IEEE Computer Society, 2013. doi:10.1109/RTAS.
2013.6531081.

23 Ismael Ripoll, Alfons Crespo, and Aloysius K.
Mok. Improvement in feasibility testing for real-
time tasks. Real-Time Systems, 11(1):19–39, 1996.
doi:10.1007/BF00365519.

24 Marco Spuri. Analysis of deadline scheduled real-
time systems. Technical report, INRIA, 1996. URL:
http://hal.inria.fr/inria-00073920.

25 Jan Staschulat, Simon Schliecker, and Rolf Ernst.
Scheduling analysis of real-time systems with pre-
cise modeling of cache related preemption delay. In
17th Euromicro Conference on Real-Time Systems,
ECRTS 2005, 6–8 July 2005, Palma de Mallorca,
Spain, pages 41–48. IEEE Computer Society, 2005.
doi:10.1109/ECRTS.2005.26.

26 Yudong Tan and Vincent John Mooney III. Tim-
ing analysis for preemptive multitasking real-time
systems with caches. ACM Transactions on Em-
bedded Computing Systems (TECS), 6(1), 2007.
doi:10.1145/1210268.1210275.

27 Fengxiang Zhang and Alan Burns. Schedulab-
ility analysis for real-time systems with EDF
scheduling. IEEE Transactions on Computers,
58(9):1250–1258, 2009. doi:10.1109/TC.2009.58.

http://www.mpi-sws.org/~bbb/papers/pdf/ospert10.pdf
http://www.mpi-sws.org/~bbb/papers/pdf/ospert10.pdf
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTCSA.2009.37
http://dx.doi.org/10.1109/RTCSA.2009.37
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2285
http://dx.doi.org/10.4230/OASIcs.WCET.2009.2285
http://dx.doi.org/10.1109/RTTAS.1996.509537
http://dx.doi.org/10.1023/B:TIME.0000048932.30002.d9
http://dx.doi.org/10.1109/TC.2008.66
http://dx.doi.org/10.1109/TC.2008.66
http://hal.inria.fr/inria-00073732
http://dl.acm.org/citation.cfm?id=1266366.1266723
http://dl.acm.org/citation.cfm?id=1266366.1266723
http://dx.doi.org/10.1109/12.689649
http://dx.doi.org/10.1109/12.689649
http://dx.doi.org/10.1016/0020-0190(80)90123-4
http://dx.doi.org/10.1145/321738.321743
http://dx.doi.org/10.1145/2392987.2393008
http://dx.doi.org/10.1145/2392987.2393008
http://dx.doi.org/10.1109/RTAS.2013.6531081
http://dx.doi.org/10.1109/RTAS.2013.6531081
http://dx.doi.org/10.1007/BF00365519
http://hal.inria.fr/inria-00073920
http://dx.doi.org/10.1109/ECRTS.2005.26
http://dx.doi.org/10.1145/1210268.1210275
http://dx.doi.org/10.1109/TC.2009.58

	Introduction
	Related Work on CRPD
	Organisation

	System Model, Terminology and Notation
	CRPD Analysis for FP Scheduling
	CRPD Analysis
	ECB-Union Multiset
	UCB-Union Multiset
	Combined Multiset

	Comparison of Approaches

	CRPD Analysis for EDF Scheduling
	CRPD Analysis
	ECB-Union Multiset
	UCB-Union Multiset Approach
	Combined Multiset Approach
	Effect on Task Utilisation and h(t) Calculation

	Comparison of Approaches

	Task Layout
	Case Studies
	Single Taskset Case Study
	Multiple Taskset Case Studies
	PapaBench Benchmark
	Mälardalen and SCADE Benchmarks
	Mixed Benchmarks


	Evaluation
	Baseline Configuration
	Weighted Schedulability
	Cache Utilisation
	Maximum UCB Percentage
	Number of Tasks
	Block Reload Time
	Period Range


	Conclusion

