

Accounting for Cache Related

Pre-emption Delays in Hierarchical Scheduling
Will Lunniss

1
, Sebastian Altmeyer

2
, Giuseppe Lipari

3,4
, Robert I. Davis

1

1
Department of Computer Science

University of York

York, UK

{wl510,rob.davis}@york.ac.uk

2
Computer Systems Architecture

Group

University of Amsterdam

Netherlands

altmeyer@uva.nl

3
Scuola Superiore

Sant'Anna, IT

g.lipari@sssup.it

4
LSV – ENS Cachan,

FR

giuseppe.lipari@lsv.ens-

cachan.fr

Abstract — Hierarchical scheduling provides a means of

composing multiple real-time applications onto a single

processor such that the temporal requirements of each

application are met. This has become a popular technique in

industry as it allows applications from multiple vendors as

well as legacy applications to co-exist in isolation on the same

platform. However, performance enhancing features such as

caches mean that one application can interfere with another

by evicting blocks from cache that were in use by another

application, violating the requirement of temporal isolation.

While one solution is to flush the cache after every application

context switch, this can potentially lead to a degradation in

performance. In this paper, we present analysis that bounds

the additional delay due to blocks being evicted from cache by

other applications in a system using hierarchical scheduling.

 INTRODUCTION I.

There is a growing need in industry to combine multiple

applications together to build complex embedded real-time

systems. This is driven by the need to re-use legacy

applications that once ran on slower, but dedicated

processors. Typically, it is too costly to go back to the

design phase resulting in a need to use applications as-is.

Furthermore, there are often a number of vendors involved

in today’s complex embedded real-time systems, each

supplying separate applications which must then be

integrated together. Hierarchical scheduling provides a

means of composing multiple applications onto a single

processor such that the temporal requirements of each

application are met. Each application, or component, has a

dedicated server. A global scheduler then allocates

processor time to each server, during which the associated

component can use its own local scheduler to schedule its

tasks.

In hard real-time systems, the worst-case execution time

(WCET) of each task must be known offline in order to

verify that the timing requirements will be met at runtime.

However, in pre-emptive multi-tasking systems, caches

introduce additional cache related pre-emption delays

(CRPD) caused by the need to re-fetch cache blocks

belonging to the pre-empted task which were evicted from

the cache by the pre-empting task. These CRPD effectively

increase the worst-case execution time of the tasks. It is

therefore important to be able to calculate, and account for,

CRPD when determining if a system is schedulable or not.

This is further complicated when using hierarchical

scheduling as servers will often be suspended while their

components’ tasks are still active, that is they have started

but have not yet completed execution. While a server is

suspended, the cache can be polluted by the tasks belonging

to other components. When the global scheduler then

switches back to the first server, tasks belonging to the

associated component may have to reload blocks into cache

that were in use before the global context switch.

A. Related Work on Hierarchical Scheduling

Hierarchical scheduling has been studied extensively in

the past 15 years. Deng and Liu [17] were the first to

propose such a two-level scheduling approach. Later Feng

and Mok [18] proposed the resource partition model and

schedulability analysis based on the supply bound function.

Shin and Lee [26] introduced the concept of a temporal

interface and the periodic resource model, and refined the

analysis of Feng and Mok. Kuo and Li [19] and Saewong et

al. [25] specifically focused on fixed priority hierarchical

scheduling. Lipari and Bini [21] solved the problem of

computing the values of the partition parameters to make an

application schedulable. Davis and Burns [14] proposed a

method to compute the response time of tasks running on a

local fixed priority scheduler. Later, Davis and Burns [13]

investigated selecting optimal server parameters for fixed

priority pre-emptive hierarchical systems.

Hierarchical systems have been used mainly in the

avionics industry. The IMA (Integrated Modular Avionics)

[29], [4] is a set of standard specifications for simplifying

the development of avionics software; among other

requirements, it allows different independent applications to

share the same hardware and software resources [5]. The

ARINC 653 standard [5] defines temporal partitioning for

avionics applications. The global scheduler is a simple

Time Division Multiplexing (TDM), in which time is

divided into frames of fixed length, each frame is divided

into slots and each slot is assigned to one application.

B. Related Work on CRPD

Analysis of CRPD uses the concept of useful cache

blocks (UCBs) and evicting cache blocks (ECBs) based on

the work by Lee et al. [20]. Any memory block that is

accessed by a task while executing is classified as an ECB,

as accessing that block may evict a cache block of a pre-

empted task. Out of the set of ECBs, some of them may

also be UCBs. A memory block m is classified as a UCB at

program point ρ, if (i) m may be cached at ρ and (ii) m may

be reused at program point ϥ that may be reached from ρ

without eviction of m on this path. In the case of a pre-

emption at program point ρ, only the memory blocks that

are (i) in cache and (ii) will be reused, may cause additional

reloads. For a more thorough explanation of UCBs and

ECBs, see section 2.1 “Pre-emption costs” of [2].

Depending on the approach used, the CRPD analysis

combines the UCBs belonging to the pre-empted task(s)

with the ECBs of the pre-empting task(s). Using this

information, the total number of blocks that are evicted,

which must then be reloaded after the pre-emption can be

calculated and combined with the cost of reloading a block

to give an upper bound on the CRPD.

A number of approaches have been developed for

calculating the CRPD when using fixed priority pre-

emptive scheduling under a flat, single-level system. They

include Lee et al. [20] UCB-Only approach, which

considers just the pre-empted task(s), and Busquets et al.

[12] ECB-Only approach which considers just the pre-

empting task. Approaches that consider the pre-empted and

pre-empting task(s) include Tan and Mooney [28] UCB-

Union approach, Altmeyer et al. [1] ECB-Union approach,

and an alternative approach by Staschulat et al. [27].

Finally, there are advanced multiset based approaches that

consider the pre-empted and pre-empting task(s) by

Altmeyer et al. [2], ECB-Union Multiset, UCB-Union

Multiset, and a combined multiset approach. This analysis

has also been recently been adapted to pre-emptive EDF

scheduling by Lunniss et al. [23].

Xu et al. [30] proposed an approach for accounting for

cache effects in multicore virtualization platforms.

However, their focus was on how to include CRPD and

cache related migration delays into a compositional

analysis framework, rather than how to tightly bound the

task and component CRPD.

C. Organisation

The remainder of the paper is organised as follows.

Section II introduces the system model, terminology and

notation used. Section III covers existing schedulability and

CRPD analysis for flat single-level systems, and

schedulability analysis for hierarchical systems. Section IV

introduces the new analysis for calculating CRPD due to

hierarchical scheduling. Section V evaluates the analysis

using case study data, and section VI evaluates it using

synthetically generated tasksets. Finally, section VII

concludes with a summary and outline of future work.

 SYSTEM MODEL, TERMINOLOGY AND NOTATION II.

This section describes the system model, terminology,

and notation used in the rest of the paper.

We assume a single processor system comprising m

applications or components, each with a dedicated server

(S
1
..S

m
) that allocates processor capacity to it. We use Ψ to

represent the set of all components in the system. G is used

to indicate the index of the component that is being

analysed. Each server S
G
 has a budget Q

G
 and a period P

G
,

such that the associated component will receive Q
G
 units of

execution time from its server every P
G
 units of time.

Servers are assumed to be scheduled globally using a non-

pre-emptive scheduler, as found in systems that use time

partitioning to divide up access to the processor. While a

server has remaining capacity and is allocated the

processor, we assume that the tasks of the associated

component are scheduled pre-emptively according to their

fixed priorities. If there are no tasks to schedule, we assume

that the processor idles until the server exhausts all of its

capacity, or a new task is released.

The system comprises a taskset Г made up of a fixed

number of tasks (τ1..τn) divided between the components.

The priority of task τi, is i, where a priority of 1 is the

highest and n is the lowest. Priorities are unique, but are

only meaningful within components. Each component

contains a strict subset of the tasks, represented by Г
G
. For

simplicity, we assume that the tasks are independent and do

not share resources requiring mutually exclusive access,

other than the processor. (We note that global and local

resource sharing has been extensively studied for

hierarchical systems [15] [9] [6]. Resource sharing and its

effects on CRPD have also been studied for single level

systems [1] [2]. However, such effects are beyond the scope

of this paper).

Each task, τi may produce a potentially infinite stream of

jobs that are separated by a minimum inter-arrival time or

period Ti. Each task has a relative deadline Di, a worst case

execution time Ci (determined for non-pre-emptive

execution) and release jitter Ji. We assume that deadlines

are constrained (i.e. Di≤Ti). We used the notation hp(i) to

mean the set of tasks with priorities higher than that of task

τi and hep(i) to mean the set of tasks with higher or equal

priorities. We also use the notation hp(G,i), and hep(G,i), to

restrict hp(i), and hep(i), to just tasks of component G.

With respect to a given system model, a schedulability

test is said to be sufficient if every taskset it deems to be

schedulable is in fact schedulable. Similarly, a

schedulability test is said to be necessary if every taskset it

deems to be unschedulable is in fact unschedulable. Tests

that are both sufficient and necessary are referred to as

exact.

A schedulability test A is said to dominate another

schedulability test B if all of the tasksets deemed

schedulable by test B are also deemed schedulable by test

A, and there exist tasksets that are schedulable according to

test A but not according to test B. Schedulability tests A

and B are said to be incomparable if there exists tasksets

that are deemed schedulable by test A and not by test B and

also tasksets that are deemed schedulable by test B and not

by test A.

Each task τi has a set of UCBs, UCBi and a set of ECBs,

ECBi represented by a set of integers. If for example, task τ1

contains 4 ECBs, where the second and fourth ECBs are

also UCBs, these can be represented using

ECB1 = {1,2,3,4} and UCB1 = {2,4}. Each component G

also has a set of UCBs, UCB
G
 and a set of ECBs, ECB

G
,

that contain respectively all of the UCBs, and all of the

ECBs, of their tasks, i.e. G UCBUCBG

i
i

and

 G ECBECBG

i
i

.

Each time a cache block is reloaded, a cost is introduced

that is equal to the block reload time (BRT).

We focus on instruction only caches. In the case of data

caches, the analysis would either require a write-through

cache or further extension in order to be applied to write-

back caches. We also assume that tasks do not share any

code.

A. Set-associative Caches

In the case of set-associative LRU
1

 caches, a single

cache-set may contain several UCBs. For example, UCB1 =

{2,2,4} means that task τ1 has two UCBs in cache-set 2 and

one UCB in cache set 4. As one ECB suffices to evict all

UCBs of the same cache-set, multiple accesses to the same

set by the pre-empting task do not appear in the set of

ECBs. A bound on the CRPD in the case of LRU caches

due to task τj directly pre-empting τi is thus given by the

intersection iiji mmm ECB:UCB|ECBUCB ,

where the result is a multiset that contains each element

from UCBi if it is also in ECBj. A precise computation of

CRPD in the case of LRU caches is given in Altmeyer et al.

[3]. The equations provided in this paper can be applied to

set-associative LRU caches with the above adaptation to the

set-intersection.

 EXISTING SCHEDULABILITY AND CRPD ANALYSIS III.

In this section we briefly recap how CRPD can be

calculated in a flat, single-level system, and how

schedulability analysis without CRPD analysis can be

performed for hierarchical systems. Schedulability tests are

used to determine if a taskset is schedulable, i.e. all the

tasks will meet their deadlines given the worst-case pattern

of arrivals and execution. For a given taskset, the response

time Ri for each task τi, can be calculated and compared

against the tasks’ deadline, Di. If every task in the taskset

meets its deadline, then the taskset is schedulable. In the

case of a single-level system, the equation used to calculate

Ri is [7]:

j

ihp j

ji
ii C

T

JR
CR

j

)(

1

Equation (1) can be solved using fixed point iteration.

Iteration continues until either iii JDR 1
 in which case

the task is unschedulable, or until

ii RR 1

 in which case

the task is schedulable and has a worst-case response time

of

iR . Note the convergence of (1) may be sped up using

the techniques described in [16].

To account for the CRPD, a term ji, is introduced into

(1). There are a number of approaches that can be used, and

for explanations of the analysis, see Altmeyer et al. [2]. In

this work, we use the Combined Multiset approach by

Altmeyer et al. [2] for calculating the CRPD at task level.

In this approach, ji, represents the total cost of all pre-

emptions due to jobs of task τj executing within the response

time of task τi. Incorporating ji, into (1) gives a revised

equation for Ri:

)(

,
1

ihp

jij

j

ji
ii

j

C
T

JR
CR

A. Schedulability Analysis for Hierarchical Systems

Hierarchical scheduling is a technique that allows

multiple independent components to be scheduled on the

same system. A global scheduler allocates processing

resources to each component via server capacity. Each

1
 The concept of UCBs and ECBs cannot be applied to the FIFO or

PLRU replacement policies as shown by Burguière et al. [11]

component can then utilise the server capacity by

scheduling its tasks using a local scheduler.

SUPPLY BOUND FUNCTION

In hierarchical systems, components do not have

dedicated access to the processor, but must instead share it

with other components. The supply bound function [26], or

specifically, the inverse of it, can be used to determine the

maximum amount of time needed by a specific server to

supply some capacity c.

Figure 1 shows an example for server S
G

with Q
G
 = 5 and

P
G
 = 8. Here we assume the worst case scenario, i.e. a task

is activated just after the server’s budget is exhausted. In

this case, the first instance of time at which tasks can

receive some supply is at 2(P
G
 – Q

G
) = 6.

Figure 1 - General case of a server where QG = 5 and PG = 8 showing it can

take up to 6 time units before a task receives supply

We define the inverse supply bound function, isbf, for

component G as Gisbf [24]:

 1)()(

G

GGG

Q

c
QPccisbf

Integrating (3) into equation (1) gives the response time of

τi under server S
G
 taking into account the shared access to

the processor as:

j

iGhpj j

ji
i

G
i C

T

JR
CisbfR

),(

1

 CRPD ANALYSIS FOR HIERARCHICAL SYSTEMS IV.

In this section, we describe how CRPD analysis can be

extended for use in hierarchical systems and integrated into

the schedulability analysis for it. We do so by extending the

concepts of ECB-Only, UCB-Only, UCB-Union and UCB-

Union Multiset analysis introduced in [12], [20], [28] and

[2] respectively to hierarchical systems. This analysis

assumes a non-pre-emptive global scheduler (i.e. the

capacity of a server is supplied without pre-emption, but

may be supplied starting at any time during the server’s

period), and a pre-emptive fixed priority local scheduler.

We will explain a number of different methods, building up

in complexity.

The analysis needs to capture the cost of reloading any

UCBs into cache that were evicted by tasks belonging to

other components. This can be achieved by combining the

intra-component CRPD due to pre-emptions between tasks

within the same component, (2), with the modified response

(1)

(2)

(3)

(4)

time analysis for non-dedicated processor access, (4), with a

new term,
G
i :

 G
i

iGhpj

jij

j

ji
i

G
i C

T

JR
CisbfR

),(

,
1

Here,
G
i represents the CRPD on task τi in component G

caused by tasks in the other components running while the

server (S
G
) for component G is suspended.

We use
iREG

 to denote the maximum number of times

server S
G
 can be both suspended and resumed during the

response time of task τi:

G

i
i

G

P

R
RE 1

We use the term disruptive execution to describe an

execution of server S
Z
 while server S

G
 is suspended that

results in tasks from component Z evicting cache blocks

that tasks in component G might have loaded and need to

reload. Note that if server S
Z
 runs more than once while

server S
G
 is suspended, its tasks cannot evict the same

blocks twice and as such, the number of disruptive

executions is bounded by the number of times that server S
G

can be both suspended and resumed. Specifically, we are

interested in how many disruptive executions a server can

have that impact a particular task τi. We use X
Z
 to denote

the maximum number of such disruptive executions.

Z

i
i

G
i

GZ

P

R
RERSX 1,min,

A. ECB-Only

A simple approach to calculate component CPRD is to

consider the maximum effect of the other components by

assuming that every block evicted by the tasks in the other

components has to be reloaded. There are two different

ways to calculate this cost.

ECB-ONLY-ALL

The first option is to assume that every time server S
G
 is

suspended, all of the other servers run and their tasks evict

all the cache blocks that they use. We therefore take the

union of all ECBs belonging to the other components to get

the number of blocks that could be evicted. We then sum

them up
iREG

 times, where
iREG

 upper bounds the

number of times server S
G
 could be both suspended and

resumed during the response time of task τi. If Z is a

specific component, then we can calculate the CRPD

impacting task τi of component G due to the other

components in the system as:

GZ

Z

i
GG

i RE

 ZECB BRT

ECB-ONLY-COUNTED

The above approach works well when the global

scheduler uses a TDM schedule such that each server has

the same period and/or components share a large number of

ECBs. If some servers run less frequently than server S
G
,

then the number of times that their ECBs can evict blocks

may be over counted. One solution to this problem is to

consider each component separately by calculating the

number of disruptive executions that server S
Z
 can have on

task τi in component G during the response time of task τi,

i

GZ RSX , . We can then calculate an alternative bound

for the CRPD incurred by task τi of component G due to the

other components in the system as:

GZ
Z

i
GZG

i RSX ZECB, BRT

Note that the ECB-Only-All and ECB-Only-Counted

approaches are incomparable.

B. UCB-Only

Alternatively, we can focus on the tasks in component G,

hence calculating which UCBs could be evicted if the entire

cache was flushed by the other components in the system.

However, task τi may have been pre-empted by higher

priority tasks so we must bound the pre-emption cost by the

maximum number of UCBs over all tasks in component G

that may pre-empt task τi, and task τi itself, i.e.

 G,ik hep .

iGk

k

,hep

UCB

We then multiply the number of UCBs (10) by the number

of times that server S
G
 can be both suspended and resumed

during the response time of task τi.

iGk

ki
GG

i RE
,hep

UCB BRT

This approach is incomparable with the ECB-Only-All

and ECB-Only-Counted approaches.

C. UCB-ECB

While it is a safe to only consider the ECBs of the tasks

in the other components, or the UCBs of the tasks in the

component of interest, these approaches are clearly

pessimistic. We can tighten the analysis by considering

both.

UCB-ECB-ALL

We build upon the ECB-Only-All and UCB-Only

methods. For task τi and all tasks that could pre-empt it in

component G, we can calculate which UCBs could be

evicted by the tasks in the other components, (10). We then

take the union of all ECBs belonging to the other

components to get the number of blocks that could

potentially be evicted. We then calculate the intersection

between the two unions to give an upper bound on the

number of UCBs evicted by the ECBs of the tasks in the

other components.

GZ

ZiGk

k
Z

,hep

ECBUCB

This is then multiplied by the number of times that the

server S
G
 could be both suspended and resumed during the

response time of task τi to give:

(11)

(5)

(6)

(7)

(8)

(9)

(10)

(12)

GZ

ZiGk

ki
GG

i RE Z

,hep

ECBUCB BRT

By construction, the UCB-ECB-All approach dominates

the ECB-Only-All and UCB-Only approaches.

UCB-ECB-COUNTED

Alternatively, we can consider each component in

isolation by building upon the ECB-Only-Counted and

UCB-Only approaches. For task τi and all tasks that could

pre-empt it in component G, we start by calculating an

upper bound on the number of blocks that could be evicted

by component Z:

Z

,hep

ECBUCB

iGk

k

We then multiply this number of blocks by the number of

disruptive executions that server S
Z
 can have during the

response time of task τi, and sum this up for all components

to give:

GZ
Z iGk

ki
GZ

G
i

RSX Z

,hep

ECBUCB,

 BRT

By construction, the UCB-ECB-Counted approach

dominates the ECB-Only-Counted approach, but is

incomparable with the UCB-Only approach.

D. UCB-ECB-Multiset

The UCB-ECB approaches are pessimistic in that they

assume that each component can, directly or indirectly,

evict UCBs of each task

 iGk ,hep in component G up

to iREG
 times during the response time of task τi. While

this is potentially true when τk = τi, it can be a pessimistic

assumption in the case of intermediate tasks which may

have much shorter response times. The UCB-ECB-Multiset

approaches (described below) remove this source of

pessimism by upper bounding the number of times

intermediate task

 iGk ,hep can run during the

response time of τi and then multiplying this value by the

number of times that the server S
G
 can be both suspended

and resumed during the response time of task τk, i.e. kREG
.

UCB-ECB-MULTISET-ALL

First we form a multiset that contains the UCBs of task τk

repeated
ikk REREG times for each task

 iGk ,hep .

iGk RERE

k
ucb

iG

ikk
G

M
,hep

, UCB

Then we form a second multiset that contains
iREG

copies of the ECBs of all of the other components in the

system. This multiset reflects the fact that the other servers’

tasks can evict blocks that may subsequently need to be

reloaded at most iREG
 times within the response time of

task τi.

i
G RE

GZ
Z

Aecb
iGM

 Z
, ECB

The total CRPD incurred by task τi, in component G due to

the other components in the system is then given by the size

of the multiset intersection of
ucb

iGM , (16) and Aecb
iGM

, (17).

Aecb
iG

ucb
iG

G
i MM ,,BRT

UCB-ECB-MULTISET-COUNTED

For the UCB-ECB-Multiset-Counted approach, we keep

equation (16) for calculating the set of UCBs; however, we

form a second multiset that contains

i

GZ RSX , copies of

the ECBs of each other component Z in the system. This

multiset reflects the fact that tasks of each server S
Z
 can

evict blocks at most

i

GZ RSX , times within the response

time of task τi.

GZ
Z RSX

Cecb
iG

i
GZ

M

,

Z
, ECB

The total CRPD incurred by task τi, in component G due to

the other components in the system is then given by the size

of the multiset intersection of
ucb

iGM , (16) and
Cecb

iGM
, (19).

Cecb
iG

ucb
iG

G
i MM ,,BRT

UCB-ECB-MULTISET-OPEN

In open hierarchical systems, the other components may

not be known a priori as they can be introduced into a

system dynamically. Additionally, even in closed systems,

full information about the other components in the system

may not be available until the final stages of system

integration. In both of these cases, only the UCB-Only

approach can be used as it requires no knowledge of the

other components. We therefore present a variation called

UCB-ECB-Multiset-Open that improves on UCB-Only

while bounding the maximum component CRPD that could

be caused by other unknown components. This approach

draws on the benefits of the Multiset approaches by

counting the number of intermediate pre-emptions, while

also recognising the fact that the cache utilisation of the

other components can often be greater than the size of the

cache, and as such, the precise number of ECBs does not

matter.

For the UCB-ECB-Multiset-Open approach, we keep

equation (16) for calculating the set of UCBs. Further, we

form a second multiset that contains iREG
 copies of all

cache blocks. This multiset reflects the fact that server S
G

can be both suspended and resumed, and the entire contents

of the cache evicted at most
iREG

 times within the

response time of task τi.

i
G RE

Oecb
iG NM ,..2,1,

Where N is the number of cache sets.

The total CRPD incurred by task τi, in component G due to

the other unknown components in the system is then given

by the size of the multiset intersection of
ucb

iGM , (16) and
Oecb

iGM
, (21).

(15)

(13)

(14)

(16)

(17)

(18)

(21)

(20)

(19)

Oecb
iG

ucb
iG

G
i MM ,,BRT

E. Comparison of Approaches

We have presented a number of approaches that calculate

the CRPD due to global context switches (server switching)

in a hierarchical system. Figure 2 shows a Venn diagram

representing the relationships between the different

approaches. The larger the area, the more tasksets the

approach deems schedulable. The diagram highlights the

incomparability between the ‘–All’ and ‘–Counted’

approaches. The diagram also highlights dominance. For

example, UCB-ECB-Multiset-All dominates UCB-ECB-

Multiset-Open and UCB-ECB-All, and UCB-All dominates

ECB-Only-All.

Figure 2 - Venn diagram showing the relationship between the different
approaches.

We now give worked examples illustrating both

incomparability and dominance relationships between the

different approaches.

Consider the following example with three components,

G, A and B, where component G has one task, Let BRT=1,
 101 REG , 10, 1

RSX GA

, 2, 1

RSX GB

.

}2,1{AECB and }10,9,8,7,6,5,4,3{BECB . In this

example, components A and G run at the same rate, while

component B runs at a tenth of the rate of component G.

ECB-Only-All considers the ECBs of component B

assuming that component B runs at the same rate as

component G:

 100101010,9,8,7,6,5,4,3,2,110

10,9,8,7,6,5,4,32,11011

G

 By comparison ECB-Only-Counted considers

components A and B individually, and accounts for the

ECBs of component B based on the number of disruptive

executions that it may have.

 3682210

}10,9,8,7,6,5,4,3{2

2,110
11

G

Below, we present a more detailed worked example for

all approaches where the ECB-Only-All approach

outperforms the ECB-Only-Counted approach, which

confirms the incomparability of the –All and –Counted

approaches.

Figure 3 shows an example schedule for four

components, G, A, B and C, where component G has two

tasks. Let BRT=1, 11 REG , 22 REG and 121 RE and

the number of disruptive executions be:

1, 1

RSX GA

, 1, 1

RSX GB

, 1, 1

RSX GC

 and

2, 2

RSX GA

, 2, 2

RSX GB

, 2, 2

RSX GC

.

The following examples show how some of the

approaches calculate the component CRPD for task τ2 of

component G.

ECB-Only-All calculates:

 189210,9,8,7,6,5,4,3,22

10,9,8,7,6,5,45,4,3,28,7,6,5,4,3,2212

G

 ECB-Only-Counted:

 36724272

}10,9,8,7,6,5,4{2

}5,4,3,2{2

8,7,6,5,4,3,22

12

G

UCB-Only:

 6}3,2,1{2}3,2,1{}2{212 G

 All of those approaches overestimated the CRPD,

although UCB-Only achieves a much tighter bound than the

ECB-Only-All and ECB-Only-Counted approaches. The

bound can be tightened by using the more sophisticated

approaches, for example, UCB-ECB-Multiset-Counted:

}3,3,2,2,2,1,1{}3,2,1{}3,2,1{}2{2, ucb
GM

(22)

Figure 3 - Example schedule and UCB/ECB data to demonstrate how the different approaches work.

}10,10,9,9,8,8,8,8,,7,7,7,7,6,6,6,6

,5,5,5,5,5,5,4,4,4,4,4,4,3,3,3,3,2,2,2,2{

}10,9,8,7,6,5,4{}10,9,8,7,6,5,4{}5,4,3,2{

}5,4,3,2{}8,7,6,5,4,3,2{}8,7,6,5,4,3,2{2,

Cecb
GM

5}3,3,2,2,2{11 2,2,2 Cecb
G

ucb
G

G MM

For the tightest bound in this specific case, the UCB-

ECB-Multiset-All approach does the best:

 10,10,9,9,8,8,7,7,6,6,5,5,4,4,3,3,2,2

10,9,8,7,6,5,4,3,2

10,9,8,7,6,5,45,4,3,28,7,6,5,4,3,2

2

2

2,

Aecb
GM

4}3,3,2,2{11 2,2,2 Aecb
G

ucb
G

G MM

Assuming there are 12 cache sets in total
2
, the UCB-

ECB-Multiset-Open approach gives:

12,12,11,11,10,10,9,9

,8,8,7,7,6,6,5,5,4,4,3,3,2,2,1,1

12,11,10,9,8,7,6,5,4,3,2,1
2

2, Oecb
GM

6}3,3,2,2,1,1{11 2,2,2 Oecb
G

ucb
G

G MM

 CASE STUDY V.

In this section we compare the different approaches for

calculating CRPD in hierarchical scheduling using tasksets

based on a case study. The case study uses PapaBench
3

which is a real-time embedded benchmark based on the

software of a GNU-license UAV, called Paparazzi. WCETs,

UCBs, and ECBs were calculated for the set of tasks using

aiT
4
 based on an ARM processor clocked at 100MHz with a

2KB direct-mapped instruction cache. The cache was setup

with a line size of 8 Bytes, giving 256 cache sets, 4 Byte

instructions, and a BRT of 8μs. This configuration was

chosen so as to give representative results when using the

relatively small benchmarks that were available to us.

WCETs, periods, UCBs, and ECBs for each task based on

the target system are provided in Table 1. We made the

following assumptions in our evaluation to handle the

interrupt tasks:

 Interrupts have a higher priority than the servers and

normal tasks.

 Interrupts cannot pre-empt each other.

 Interrupts can occur at any time.

 All interrupts have the same deadline which must be

greater than or equal to the sum of their execution

times in order for them to be schedulable.

2 Although we used 12 cache sets in this example, we note that the result

obtained is in fact independent of the total number of cache sets.
3

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=9

7
4 http://www.absint.com/ait/

 The cache is disabled whenever an interrupt is

executing and enabled again after it completes.

Based on these assumptions, we integrated interrupts into

the model by replacing the server capacity Q
G
 in equation

(3) by Q
G
 - I

G
, where I

G
 is the maximum execution time of

all interrupts in an interval of length Q
G
. This effectively

assumes that the worst case arrival of interrupts could occur

in any component.

We assigned a deadline of 2 ms to all of the interrupt

tasks, and implicit deadlines i.e. Di = Ti, to the normal tasks.

We then calculated the total utilisation for the system and

then scaled Ti and Di up for all tasks in order to reduce the

total utilisation to the target utilisation for the system. We

used the number of UCBs and ECBs obtained via analysis,

placing the UCBs in a group at a random location in each

task. We then generated 1000 systems each containing a

different arrangement of tasks in each component, using the

following technique. We split the normal tasks at random

into 3 components with four tasks in two components and

five in the other, and then assigned task priorities according

to Deadline Monotonic priority assignment. Next we set the

period of each component’s server to 12.5ms (half the

minimum task period). Finally we organised tasks in each

component in memory in a sequential order based on their

priority, and then ordered components in memory

sequentially based on their index.

A. Success Ratio

For each system, the total task utilization across all tasks

not including pre-emption cost was varied from 0.025 to 1

in steps of 0.025. For each utilization value, we initialised

each servers’ capacity to the minimum possible value, (i.e.

the utilisation of all of its tasks). We then performed a

binary search between this minimum and the maximum,

(i.e. 1 minus the minimum utilisation of all of the other

components) until we found the server capacity required to

make the component schedulable. As the servers all had

equal periods, provided all components were schedulable

and the total capacity required by all servers was ≤ 100%,

then the system was deemed schedulable at that specific

utilisation level. In addition to evaluating each of the

presented approaches, we also calculated schedulability

based on no component pre-emption costs, but still

including task level CRPD. For every approach, the intra-

component CRPD (between tasks in the same component)

was calculated using the combined multiset approach as it is

the most effective approach available [2].

The results for the case study are shown in Figure 4, note

that graphs are best viewed online in colour. Although we

generated 1000 systems, they were all very similar as they

are made up of the same set of tasks. Focusing on the

different approaches, ECB-Only-Counted and ECB-Only-

All perform the worst as they only consider the other

components in the system. Next was UCB-ECB-Counted

which though it considers all components, accounts for the

other components pessimistically in most cases. The

remainder of the approaches all performed very similarly.

Figure 4 - Percentage of schedulable tasksets at each utilisation level for

the case study tasksets

Task UCBs ECBs WCET Period

FLY-BY-WIRE

I1 interrupt_radio 2 10 0.210 ms 25 ms

I2 interrupt_servo 1 6 0.167 ms 50 ms

I3 interrupt_spi 2 10 0.256 ms 25 ms

T1 check_failsafe 10 132 1.240 ms 50 ms

T2 check_mega128_values 10 130 5.039 ms 50 ms

T3 send_data_to_autopilot 10 114 2.283 ms 25 ms

T4 servo_transmit 2 10 2.059 ms 50 ms

T5 test_ppm 30 255 12.579 ms 25 ms

AUTOPILOT

I4 interrupt_modem 2 10 0.303 ms 100 ms

I5 interrupt_spi_1 1 10 0.251 ms 50 ms

I6 interrupt_spi_2 1 4 0.151 ms 50 ms

I7 interrupt_gps 3 26 0.283 ms 250 ms

T5 altitude_control 20 66 1.478 ms 250 ms

T6 climb_control 1 210 5.429 ms 250 ms

T7 link_fbw_send 1 10 0.233 ms 50 ms

T8 navigation 10 256 4.432 ms 250 ms

T9 radio_control 0 256 15.681 ms 25 ms

T10 receive_gps_data 22 194 5.987 ms 250 ms

T11 reporting 2 256 12.222 ms 100 ms

T12 stabilization 11 194 5.681 ms 50 ms

Table 1 - Execution times, periods and number of UCBs and ECBs for the
tasks from PapaBench

We note that No-Component-Pre-emption-Cost reveals that

the component pre-emption cost is very small for the

PapaBench tasks, due to a number of factors including the

nearly harmonic periods, small range of task periods, and

relatively low number of ECBs for many tasks.

 EVALUATION VI.

In this section we compare the different approaches for

calculating CRPD in hierarchical scheduling using

synthetically generated tasksets in order to explore a wider

range of parameters and therefore give some insight into

how the different approaches perform in a variety of cases.

To generate the components and tasksets, we generated n

(default of 24) tasks using the UUnifast algorithm [10] to

calculate the utilisation, Ui of each task so that the

utilisations added up to the desired utilisation level. Periods

Ti, were generated at random between 10ms and 1000ms

according to a log-uniform distribution. Ci was then

calculated via Ci = Ui Ti, and implicit deadlines were set,

i.e. Di = Ti. We used the UUnifast algorithm to obtain the

number of ECBs for each task so that the ECBs added up to

the desired cache utilisation (default of 10). Here, cache

utilisation describes the ratio of the total size of the tasks to

the size of the cache. A cache utilisation of 1 means that the

tasks fit exactly in the cache, whereas a cache utilisation of

10 means the total size of the tasks is 10 times the size of

the cache. The number of UCBs was chosen at random

between 0 and 30% of the number of ECBs on a per task

basis, and the UCBs were placed in a single group at a

random location in each task.

We then split the tasks at random into 3 components with

equal numbers of tasks in each, and assigned task priorities

according to Deadline Monotonic priority assignment. Next

we set the period of each component’s server to 5ms.

Finally we organised tasks in each component in memory in

a sequential order based on their priority, and then ordered

components in memory sequentially based on their index.

We generated 1000 systems using this technique. It took

approximately 5-10 seconds to analyse a single taskset

under all approaches over the range of utilisation levels for

the base line configuration on a 2.8GHz AMD Opteron

6386 SE. For the purpose of the experiments, we batched

the tasksets up and analysed them in parallel over multiple

CPU cores.

A. Success Ratio

We determined the schedulability of the synthetic tasksets

using the same approach described in the first paragraph of

section V. A.

Figure 5 - Percentage of schedulable tasksets at each utilisation level for

the synthetic tasksets

The results for the baseline evaluation are shown in

Figure 5. The ECB-Only-Counted approach is least

effective as it only considers the other components and does

so individually. ECB-Only-All was next, followed by UCB-

ECB-Counted. UCB-ECB-Multiset-Counted performed

similarly to UCB-Only and UCB-ECB-All, crossing over at

a utilisation of 0.725 highlighting their incomparability.

Although UCB-ECB-All dominates UCB-Only, it can only

improve over UCB-Only when the cache utilisation of the

other components is sufficiently low that they cannot evict

all cache blocks. Finally, the UCB-ECB-Multiset-All and

UCB-ECB-Multiset-Open approaches performed the best.

Despite only considering the properties of the component

under analysis, the UCB-ECB-Multiset-Open approach also

proved highly effective. The reason for this is that once the

size of the other components that can run while a given

component is suspended is equal to or greater than the size

of the cache then UCB-ECB-Multiset-All and UCB-ECB-

Multiset-Open become equivalent.

B. Weighted Schedulability

Evaluating all combinations of different parameters is not

possible. Therefore, the majority of our evaluations focused

on varying one parameter at a time. To present the results,

weighted schedulability measures [8] are used. The benefit

of using a weighted schedulability measure is that it reduces

a 3-dimensional plot to 2 dimensions. Individual results are

weighted by taskset utilisation to reflect the higher value

placed on a being able to schedule higher utilisation

tasksets.

To investigate the effect of key cache and taskset

configurations we varied the following parameters:

 Number of components (default of 3)

 Server period (default of 5ms)

 Cache Utilisation (default of 10)

 Total number of tasks (default of 24)

 Range of task periods (default of [10, 1000]ms)

We used 100 systems for each utilisation level from

0.025 to 1.0 in steps of 0.025 for the weighted

schedulability experiments. The results and explanations for

varying the cache utilisation, number of tasks, and range of

task periods are available in the appendix.

NUMBER OF COMPONENTS

To investigate the effects of splitting the overall set of tasks

into components, we fixed the total number of tasks in the

system at 24, and then varied the number of components

from 1 (24 tasks in one component) to 24 (1 task per

component), see Figure 6. Components were allocated an

equal number of tasks where possible, otherwise tasks were

allocated to each component in turn until all tasks where

allocated. We note that with one component, the UCB-Only

and UCB-ECB-Multiset-Open approaches calculate a non-

zero component CRPD because they assume that every time

the single component is suspended, its UCBs are evicted,

even though there is only one component running in the

system. At two components, the ECB-Only-All and ECB-

Only-Counted approaches are equal. Above two

components, the ECB-Only-All, ECB-Only-Counted and

UCB-ECB-Counted get rapidly worse as they over-count

blocks. All other approaches improve as the number of

components is increased above 2 up to 8 components. This

is because as the number of components increases, the

amount of intra-component CRPD from tasks in the same

component decreases. While the higher number of

components does lead to increased inter-component CRPD,

due to higher number of server context switches, it is not

enough to cancel out the gains from reduced intra-

component CRPD. This is because the increasing number of

components, which are scheduled non-pre-emptively, is

reducing the overall amount of pre-emption in the system.

However, above 8 components, schedulability decreases as

the inter-component CRPD and server delays become the

dominant factors. We also note that at two components,

UCB-Only, UCB-ECB-All and UCB-ECB-Counted

perform the same; as do the Multiset approaches. This is

because the ‘-All’ and ‘-Counted’ variations are equivalent

when there is only one other component.

Figure 6 - Varying the number of components from 1 to 16, while keeping

the number of tasks in the system fixed.

Figure 7 - Varying the system size from 1 to 10. An increase of 1 in the

system size relates to introducing another component that brings along

with it another 5 tasks and an increase in the cache utilisation of 2.

Figure 8 - Varying the server period from 1ms to 20ms (fixed task period
range of 10ms to 1000ms)

SYSTEM SIZE

We investigated the effects of introducing components

into a system by varying the system size from 1 to 10, see

Figure 7, where each increase introduces a new component

which brings along with it 5 tasks taking up approximately

twice the size of the cache. When there is one component,

all approaches except for UCB-Only and UCB-ECB-

Multiset-Open give the same result as No-Component-Pre-

emption-Cost. As expected, as more components are

introduced into the system, system schedulability decreases

for all approaches including No-Component-Pre-emption-

Cost. This is because each component includes additional

intra-component CRPD, in addition to the inter-component

CRPD that it causes when introduced. Notably, the ECB-

Only-All approach outperforms UCB-ECB-Counted above

a system size of 2, UCB-Only and UCB-ECB-All

outperform UCB-ECB-Multiset-Counted above a system

size of 4, highlighting their incomparability. Again we note

that the ‘-All’ and ‘-Counted’ variations are the same when

there are only two components in the system.

SERVER PERIOD

The server period is a critical parameter when composing

a hierarchical system. The results for varying the server

period from 1ms to 20ms, with a fixed range of task periods

from 10 to 1000ms are shown in Figure 8. When the

component pre-emption costs are ignored, having a small

server period ensures that short deadline tasks meet their

time constraints. However, switching between components

clearly has a cost associated with it making it desirable to

switch as infrequently as possible. As the server period

increases, schedulability increases due to a smaller number

of server context switches, and hence component CRPD, up

until around 7ms for the best performance. At this point,

although the component CRPD continues to decrease, short

deadline tasks start to miss their deadlines due to the delay

in server capacity being supplied unless server capacities

are greatly inflated, and hence the overall schedulability of

the system decreases.

 CONCLUSION VII.

Hierarchical scheduling provides a means of composing

multiple real-time applications onto a single processor such

that the temporal requirements of each application are met.

The main contribution of this paper is a number of

approaches for calculating cache related pre-emption delay

(CRPD) in hierarchical systems with a global non-pre-

emptive scheduler and a local pre-emptive fixed priority

scheduler. This is important because hierarchical scheduling

has proved popular in industry as a way of composing

applications from multiple vendors as well as re-using

legacy code. However, unless the cache is partitioned, these

isolated applications can interfere with each other, and so

inter-component CRPD must be accounted for, even if the

cache is flushed after each global context switch.

We presented a number of approaches to calculate inter-

component CRPD in a hierarchical system with varying

levels of sophistication. We also showed that when taking

inter-component CRPD into account, minimising server

periods does not maximise schedulability. Instead, the

server period must be carefully selected to minimise inter-

component CRPD while still ensuring short deadline tasks

meet their time constraints.

While it was not the best approach in all cases, we found

the UCB-ECB-Multiset-Open approach, which does not

require any information about the other components in

the system to be highly effective. This is a useful result as

the approach does not require a closed system i.e. it can be

used when no knowledge of the other components is

available and/or cache flushing is used between the

execution of different components to ensure isolation and

composability.

The UCB-ECB-Multiset-All approach dominates the

UCB-ECB-Multiset-Open approach and therefore, if

information about other components is available, it can be

used to calculate tighter bounds in cases where not all cache

blocks will be evicted by the other components. However,

this requires a small enough cache utilisation such that the

union of the other components ECBs is less than the size of

the cache.

Previous works by Lipari and Bini [21] and Davis and

Burns [13] have investigated how to select sever

parameters. In future, we intend to extend this work to find

optimal server parameter settings taking into account inter-

component CRPD. Lunniss et al. [22] showed how the

layout of tasks can be optimised to reduce CRPD. We also

intend to extend this work to layout components and their

tasks in order to reduce both intra- and inter-component

CRPD so as to maximise system schedulability. Finally, we

intend to apply the approaches to a real system, in order to

show how the different techniques compare using results

obtained via measurement.

ACKNOWLEDGEMENTS

This work was partially funded by the UK EPSRC

through the Engineering Doctorate Centre in Large-Scale

Complex IT Systems (EP/F501374/1), the UK EPSRC

funded MCC (EP/K011626/1), the European Community's

ARTEMIS Programme and UK Technology Strategy

Board, under ARTEMIS grant agreement 295371-2

CRAFTERS, COST Action IC1202: Timing Analysis On

Code-Level (TACLe), and the European Community's

Seventh Framework Programme FP7 under grant agreement

n. 246556, “RBUCE-UP”.

REFERENCES

[1] S. Altmeyer, R.I. Davis, and C. Maiza, "Cache Related Pre-

emption Delay Aware Response Time Analysis for Fixed

Priority Pre-emptive Systems," in Proceedings of the 32nd

IEEE Real-Time Systems Symposium (RTSS), Vienna,

Austria, 2011, pp. 261-271.

[2] S. Altmeyer, R.I. Davis, and C. Maiza, "Improved Cache

Related Pre-emption Delay Aware Response Time Analysis

for Fixed Priority Pre-emptive Systems," Real-Time Systems,

vol. 48, no. 5, pp. 499-512, September 2012.

[3] S. Altmeyer, C. Maiza, and J. Reineke, "Resilience Analysis:

Tightening the CRPD Bound for Set-Associative Caches," in

LCTES, New York, NY, USA, 2010, pp. 153-162.

[4] ARINC, "ARINC 651: Design Guidance for Integrated

Modular Avionics," Airlines Electronic Engineering

Committee (AEEC), 1991.

[5] ARINC, "ARINC 653: Avionics Application Software

Standard Interface (Draft 15)," Airlines Electronic

Engineering Committee (AEEC), 1996.

[6] M. Åsberg, M. Behnam, and T. Nolte, "An Experimental

Evaluation of Synchronization Protocal Mechanisms in the

Domain of Hierarchical Fixed-Priority Scheduling," in

Proceedings of the 21st International Conference on Real-

Time and Network Systems (RTNS), Sophia Antipolis, France,

2013.

[7] N. C. Audsley, A. Burns, M. Richardson, and A.J Wellings,

"Applying new Scheduling Theory to Static Priority

Preemptive Scheduling," Software Engineering Journal, vol.

8, no. 5, pp. 284-292, 1993.

[8] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-

Related Preemption and Migration Delays: Empirical

Approximation and Impact on Schedulability," in

Proceedings of Operating Systems Platforms for Embedded

Real-Time applications (OSPERT), Brussels, Belgium, 2010,

pp. 33-44.

[9] M. Behnam, I. Shin, T. Nolte, and M. Nolin, "SIRAP: A

Synchronization Protocol for Hierarchical Resource Sharing

Real-Time Open Systems," in Proceedings of the 7th ACM &

IEEE International Conference on Embedded Software

(EMSOFT), 2007, pp. 279-288.

[10] E. Bini and G. Buttazzo, "Measuring the Performance of

Schedulability Tests ," Real-Time Systems, vol. 30, no. 1, pp.

129-154, 2005.

[11] C. Burguière, J. Reineke, and S. Altmeyer, "Cache-Related

Preemption Delay Computation for Set-Associative Caches -

Pitfalls and Solutions," in Proceeding of the 9th International

Workshop on Worst-Case Execution Time Analysis (WCET),

Dublin, Ireland, 2009.

[12] J. V. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A.

Wellings, "Adding Instruction Cache Effect to Schedulability

Analysis of Preemptive Real-Time Systems," in Proceedings

of the 2nd IEEE Real-Time Technology and Applications

Symposium (RTAS), 1996, pp. 204-212.

[13] R. I. Davis and A. Burns, "An Investigation into Server

Parameter Selection for Hierarchical Fixed Priority Pre-

emptive Systems," in Proceedings 16th International

Conference on Real-Time and Network Systems (RTNS),

Renne, France, 2008, pp. 19-28.

[14] R. I. Davis and A. Burns, "Hierarchical Fixed Priority Pre-

emptive Scheduling," in Proceedings of the 26th IEEE Real-

Time Systems Symposium (RTSS), 2005.

[15] R. I. Davis and A. Burns, "Resource Sharing in Hierarchical

Fixed Priority Pre-Emptive Systems," in Proceedings of the

27th IEEE Real-Time Systems Symposium (RTSS), Rio de

Janeiro, Brazil, 2006, pp. 257-270.

[16] R. I. Davis, A. Zabos, and A. Burns, "Efficient Exact

Schedulability Tests for Fixed Priority Real-Time Systems,"

IEEE Transactions on Computers, vol. 57, no. 9, pp. 1261-

1276, September 2008.

[17] Z. Deng and J. W. S. Liu, "Scheduling Real-Time

Applications in Open Environment," in Proceedings of the

IEEE Real-Time Systems Symposium (RTSS), San Francisco,

USA, 1997.

[18] X. Feng and A. K. Mok, "A Model of Hierarchical Real-Time

Virtual Resources," in Proceedings of the 23rd IEEE Real-

Time Systems Symposium (RTSS), Austin, TX, USA, 2002,

pp. 26-35.

[19] T-W. Kuo and C-H. Li, "A Fixed Priority Driven Open

Environment for Real-Time Applications," in Proceedings of

the 19th IEEE Real-Time Systems Symposium (RTSS),

Madrid, Spain, 1998.

[20] C. Lee, J. Hahn, Y. Seo, S. Min, H. Ha, S. Hong, C. Park, M.

Lee, and C. Kim, "Analysis of Cache-related Preemption

Delay in Fixed-priority Preemptive Scheduling," IEEE

Transactions on Computers, vol. 47, no. 6, pp. 700-713, June

1998.

[21] G. Lipari and E. Bini, "A Methodology for Designing

Hierarchical Scheduling Systems," Journal of Embedded

Computing, vol. 1, no. 2, pp. 257-269, December 2005.

[22] W. Lunniss, S. Altmeyer, and R. I. Davis, "Optimising Task

Layout to Increase Schedulability via Reduced Cache Related

Pre-emption Delays," in In proceedings of the International

Conference on Real-Time Networks and Systems (RTNS),

Pont à Mousson, France, 2012, pp. 161-170.

[23] W. Lunniss, S. Altmeyer, C. Maiza, and R. I. Davis,

"Intergrating Cache Related Pre-emption Delay Analysis into

EDF Scheduling," in Proceedings 19th IEEE Converence on

Real-Time and Embedded Technology and Applications

(RTAS), Philadelphia, USA, 2013, pp. 75-84.

[24] K. Richter, "Compositional Scheduling Analysis Using

Standard Event Models," Technical University Carolo-

Wilhelmina of Braunschweig, PhD Dissertation 2005.

[25] S. Saewong, R. Rajkumar, J. Lehoczky, and M. Klein,

"Analysis of Hierarchical Fixed Priority Scheduling," in

Proceedings of the 14th Euromicro Conference on Real-Time

Systems (ECRTS), Vienna, Austria, 2002, pp. 173-181.

[26] I. Shin and I. Lee, "Periodic Resource Model for

Compositional Real-Time Guarantees," in Proceedings of the

24th IEEE Real-Time Systems Symposium (RTSS), Cancun,

Mexico, 2003, pp. 2-13.

[27] J. Staschulat, S. Schliecker, and R. Ernst, "Scheduling

Analysis of Real-Time Systems with Precise Modeling of

Cache Related Preemption Delay," in In Proceedings 17th

Euromicro Conference on Real-Time Systems (ECRTS),

Balearic Islands, Spain, 2005, pp. 41-48.

[28] Y. Tan and V. Mooney, "Timing Analysis for Preemptive

Multitasking Real-Time Systems with Caches," ACM

Transactions on Embedded Computing Systems (TECS), vol.

6, no. 1, February 2007.

[29] C. B. Watkins and R. Walter, "Transitioning from Federated

Avionics Architectures to Integrated Modular Avionics," in

Proceedings of the 26th IEE/AIAA Digital Avionics Systems

Conference (DASC), 2007.

[30] M. Xu, L. T.X. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and

C. Gill, "Cache-Aware Compositional Analysis of Real-Time

Multicore Virtualization Platforms," in Proceedings of the

34th IEEE Real-Time Systems Symposium (RTSS),

Vancouver, Canada, 2013.

APPENDIX – ADDITIONAL RESULTS

CACHE UTILISATION

As the cache utilisation increases the likelihood of the

other components evicting UCBs belonging to the tasks in

the suspended component increases. The results for varying

the cache utilisation from 0 to 20 are shown in Figure 9. In

general, all approaches show a decrease in schedulability as

the cache utilisation increases. Up to a cache utilisation of

around 2, the UCB-Only and UCB-ECB-Multiset-Open

approaches do not perform as well as the more sophisticated

approaches, as the other components do not evict all cache

blocks when they run. We also observe that up to a cache

utilisation of 1, the ECB-Only-Counted, and the ECB-Only-

All approaches perform identically as no ECBs are

duplicated. We note that the weighted measure stays

relatively constant for No-Component-Pre-emption-Cost up

to a cache utilisation of around 2.5. This is because the

average cache utilisation of each component is still less than

1, which leads to relatively small intra-component CRPD

between tasks.

NUMBER OF TASKS

We also investigated the effect of varying the number of

tasks, while keeping the number of components fixed. As

we introduced more tasks, we scaled the cache utilisation in

order to keep a constant ratio of tasks to cache utilisation.

The results for varying the number of tasks from 3 to 48 are

shown in Figure 10. As expected, increasing the number of

tasks leads to a decrease in schedulability across all

approaches, including No-Component-Pre-emption-Cost, as

it still includes intra-component CRPD.

TASK PERIOD RANGE

We varied the range of task periods from [1, 100]ms to

[20, 2000]ms (while fixing the server period at 5ms). The

results can be seen in Figure 11, as expected, the results

show an increase in schedulability across all approaches as

the task period range is increased.

Figure 9 - Varying the cache utilisation from 0 to 20

Figure 10 - Varying the total number of tasks from 3 to 48 (1 to 16 tasks

per component)

Figure 11 - Varying the period range of tasks from [1, 100]ms to

[20, 2000]ms (while fixing the server period at 5ms)

