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Abstract — Hierarchical scheduling provides a means of 

composing multiple real-time applications onto a single 

processor such that the temporal requirements of each 

application are met. This has become a popular technique in 

industry as it allows applications from multiple vendors as 

well as legacy applications to co-exist in isolation on the same 

platform. However, performance enhancing features such as 

caches mean that one application can interfere with another 

by evicting blocks from cache that were in use by another 

application, violating the requirement of temporal isolation. 

While one solution is to flush the cache after every application 

context switch, this can potentially lead to a degradation in 

performance. In this paper, we present analysis that bounds 

the additional delay due to blocks being evicted from cache by 

other applications in a system using hierarchical scheduling. 

 INTRODUCTION I.

There is a growing need in industry to combine multiple 

applications together to build complex embedded real-time 

systems. This is driven by the need to re-use legacy 

applications that once ran on slower, but dedicated 

processors. Typically, it is too costly to go back to the 

design phase resulting in a need to use applications as-is. 

Furthermore, there are often a number of vendors involved 

in today’s complex embedded real-time systems, each 

supplying separate applications which must then be 

integrated together. Hierarchical scheduling provides a 

means of composing multiple applications onto a single 

processor such that the temporal requirements of each 

application are met. Each application, or component, has a 

dedicated server. A global scheduler then allocates 

processor time to each server, during which the associated 

component can use its own local scheduler to schedule its 

tasks.  

In hard real-time systems, the worst-case execution time 

(WCET) of each task must be known offline in order to 

verify that the timing requirements will be met at runtime. 

However, in pre-emptive multi-tasking systems, caches 

introduce additional cache related pre-emption delays 

(CRPD) caused by the need to re-fetch cache blocks 

belonging to the pre-empted task which were evicted from 

the cache by the pre-empting task. These CRPD effectively 

increase the worst-case execution time of the tasks. It is 

therefore important to be able to calculate, and account for, 

CRPD when determining if a system is schedulable or not. 

This is further complicated when using hierarchical 

scheduling as servers will often be suspended while their 

components’ tasks are still active, that is they have started 

but have not yet completed execution. While a server is 

suspended, the cache can be polluted by the tasks belonging 

to other components. When the global scheduler then 

switches back to the first server, tasks belonging to the 

associated component may have to reload blocks into cache 

that were in use before the global context switch. 

A. Related Work on Hierarchical Scheduling 

Hierarchical scheduling has been studied extensively in 

the past 15 years. Deng and Liu [17] were the first to 

propose such a two-level scheduling approach. Later Feng 

and Mok [18] proposed the resource partition model and 

schedulability analysis based on the supply bound function. 

Shin and Lee [26] introduced the concept of a temporal 

interface and the periodic resource model, and refined the 

analysis of Feng and Mok. Kuo and Li [19] and Saewong et 

al. [25] specifically focused on fixed priority hierarchical 

scheduling. Lipari and Bini [21] solved the problem of 

computing the values of the partition parameters to make an 

application schedulable. Davis and Burns [14] proposed a 

method to compute the response time of tasks running on a 

local fixed priority scheduler. Later, Davis and Burns [13] 

investigated selecting optimal server parameters for fixed 

priority pre-emptive hierarchical systems. 

Hierarchical systems have been used mainly in the 

avionics industry. The IMA (Integrated Modular Avionics) 

[29], [4] is a set of standard specifications for simplifying 

the development of avionics software; among other 

requirements, it allows different independent applications to 

share the same hardware and software resources [5]. The 

ARINC 653 standard [5] defines temporal partitioning for 

avionics applications. The global scheduler is a simple 

Time Division Multiplexing (TDM), in which time is 

divided into frames of fixed length, each frame is divided 

into slots and each slot is assigned to one application. 

B. Related Work on CRPD 

Analysis of CRPD uses the concept of useful cache 

blocks (UCBs) and evicting cache blocks (ECBs) based on 

the work by Lee et al. [20]. Any memory block that is 

accessed by a task while executing is classified as an ECB, 

as accessing that block may evict a cache block of a pre-

empted task. Out of the set of ECBs, some of them may 

also be UCBs. A memory block m is classified as a UCB at 

program point ρ, if (i) m may be cached at ρ and (ii) m may 

be reused at program point ϥ that may be reached from ρ 

without eviction of m on this path. In the case of a pre-

emption at program point ρ, only the memory blocks that 

are (i) in cache and (ii) will be reused, may cause additional 



 

 

reloads. For a more thorough explanation of UCBs and 

ECBs, see section 2.1 “Pre-emption costs” of [2]. 

Depending on the approach used, the CRPD analysis 

combines the UCBs belonging to the pre-empted task(s) 

with the ECBs of the pre-empting task(s). Using this 

information, the total number of blocks that are evicted, 

which must then be reloaded after the pre-emption can be 

calculated and combined with the cost of reloading a block 

to give an upper bound on the CRPD. 

A number of approaches have been developed for 

calculating the CRPD when using fixed priority pre-

emptive scheduling under a flat, single-level system. They 

include Lee et al. [20] UCB-Only approach, which 

considers just the pre-empted task(s), and Busquets et al. 

[12] ECB-Only approach which considers just the pre-

empting task. Approaches that consider the pre-empted and 

pre-empting task(s) include Tan and Mooney [28] UCB-

Union approach, Altmeyer et al. [1] ECB-Union approach, 

and an alternative approach by Staschulat et al. [27]. 

Finally, there are advanced multiset based approaches that 

consider the pre-empted and pre-empting task(s) by 

Altmeyer et al. [2], ECB-Union Multiset, UCB-Union 

Multiset, and a combined multiset approach. This analysis 

has also been recently been adapted to pre-emptive EDF 

scheduling by Lunniss et al. [23]. 

Xu et al. [30] proposed an approach for accounting for 

cache effects in multicore virtualization platforms. 

However, their focus was on how to include CRPD and 

cache related migration delays into a compositional 

analysis framework, rather than how to tightly bound the 

task and component CRPD. 

C. Organisation 

The remainder of the paper is organised as follows. 

Section II introduces the system model, terminology and 

notation used. Section III covers existing schedulability and 

CRPD analysis for flat single-level systems, and 

schedulability analysis for hierarchical systems. Section IV 

introduces the new analysis for calculating CRPD due to 

hierarchical scheduling. Section V evaluates the analysis 

using case study data, and section VI evaluates it using 

synthetically generated tasksets. Finally, section VII 

concludes with a summary and outline of future work. 

 SYSTEM MODEL, TERMINOLOGY AND NOTATION II.

This section describes the system model, terminology, 

and notation used in the rest of the paper.  

We assume a single processor system comprising m 

applications or components, each with a dedicated server 

(S
1
..S

m
) that allocates processor capacity to it. We use Ψ to 

represent the set of all components in the system. G is used 

to indicate the index of the component that is being 

analysed. Each server S
G
 has a budget Q

G
 and a period P

G
, 

such that the associated component will receive Q
G
 units of 

execution time from its server every P
G
 units of time. 

Servers are assumed to be scheduled globally using a non-

pre-emptive scheduler, as found in systems that use time 

partitioning to divide up access to the processor. While a 

server has remaining capacity and is allocated the 

processor, we assume that the tasks of the associated 

component are scheduled pre-emptively according to their 

fixed priorities. If there are no tasks to schedule, we assume 

that the processor idles until the server exhausts all of its 

capacity, or a new task is released. 

The system comprises a taskset Г made up of a fixed 

number of tasks (τ1..τn) divided between the components. 

The priority of task τi, is i, where a priority of 1 is the 

highest and n is the lowest. Priorities are unique, but are 

only meaningful within components. Each component 

contains a strict subset of the tasks, represented by Г
G
. For 

simplicity, we assume that the tasks are independent and do 

not share resources requiring mutually exclusive access, 

other than the processor. (We note that global and local 

resource sharing has been extensively studied for 

hierarchical systems [15] [9] [6]. Resource sharing and its 

effects on CRPD have also been studied for single level 

systems [1] [2]. However, such effects are beyond the scope 

of this paper). 

Each task, τi may produce a potentially infinite stream of 

jobs that are separated by a minimum inter-arrival time or 

period Ti. Each task has a relative deadline Di, a worst case 

execution time Ci (determined for non-pre-emptive 

execution) and release jitter Ji. We assume that deadlines 

are constrained (i.e. Di≤Ti). We used the notation hp(i) to 

mean the set of tasks with priorities higher than that of task 

τi and hep(i) to mean the set of tasks with higher or equal 

priorities. We also use the notation hp(G,i), and hep(G,i), to 

restrict hp(i), and hep(i), to just tasks of component G. 

With respect to a given system model, a schedulability 

test is said to be sufficient if every taskset it deems to be 

schedulable is in fact schedulable. Similarly, a 

schedulability test is said to be necessary if every taskset it 

deems to be unschedulable is in fact unschedulable. Tests 

that are both sufficient and necessary are referred to as 

exact. 

A schedulability test A is said to dominate another 

schedulability test B if all of the tasksets deemed 

schedulable by test B are also deemed schedulable by test 

A, and there exist tasksets that are schedulable according to 

test A but not according to test B. Schedulability tests A 

and B are said to be incomparable if there exists tasksets 

that are deemed schedulable by test A and not by test B and 

also tasksets that are deemed schedulable by test B and not 

by test A. 

Each task τi has a set of UCBs, UCBi and a set of ECBs, 

ECBi represented by a set of integers. If for example, task τ1 

contains 4 ECBs, where the second and fourth ECBs are 

also UCBs, these can be represented using                     

ECB1 = {1,2,3,4} and UCB1 = {2,4}. Each component G 

also has a set of UCBs, UCB
G
 and a set of ECBs, ECB

G
, 

that contain respectively all of the UCBs, and all of the 

ECBs, of their tasks, i.e.  G UCBUCBG




i
i


and

 G ECBECBG




i
i


. 

Each time a cache block is reloaded, a cost is introduced 

that is equal to the block reload time (BRT). 

We focus on instruction only caches. In the case of data 

caches, the analysis would either require a write-through 

cache or further extension in order to be applied to write-

back caches. We also assume that tasks do not share any 

code. 

 

 

 



 

 

A. Set-associative Caches 

In the case of set-associative LRU
1

 caches, a single 

cache-set may contain several UCBs. For example, UCB1 = 

{2,2,4} means that task τ1 has two UCBs in cache-set 2 and 

one UCB in cache set 4.  As one ECB suffices to evict all 

UCBs of the same cache-set, multiple accesses to the same 

set by the pre-empting task do not appear in the set of 

ECBs. A bound on the CRPD in the case of LRU caches 

due to task τj directly pre-empting τi is thus given by the 

intersection  iiji mmm ECB:UCB|ECBUCB  , 

where the result is a multiset that contains each element 

from UCBi if it is also in ECBj. A precise computation of 

CRPD in the case of LRU caches is given in Altmeyer et al. 

[3]. The equations provided in this paper can be applied to 

set-associative LRU caches with the above adaptation to the 

set-intersection.  

 EXISTING SCHEDULABILITY AND CRPD ANALYSIS III.

In this section we briefly recap how CRPD can be 

calculated in a flat, single-level system, and how 

schedulability analysis without CRPD analysis can be 

performed for hierarchical systems. Schedulability tests are 

used to determine if a taskset is schedulable, i.e. all the 

tasks will meet their deadlines given the worst-case pattern 

of arrivals and execution. For a given taskset, the response 

time Ri for each task τi, can be calculated and compared 

against the tasks’ deadline, Di. If every task in the taskset 

meets its deadline, then the taskset is schedulable. In the 

case of a single-level system, the equation used to calculate 

Ri is [7]: 

j
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Equation (1) can be solved using fixed point iteration. 

Iteration continues until either iii JDR 1
 in which case 

the task is unschedulable, or until 

ii RR 1

 in which case 

the task is schedulable and has a worst-case response time 

of

iR . Note the convergence of (1) may be sped up using 

the techniques described in [16].  

To account for the CRPD, a term ji,  is introduced into 

(1). There are a number of approaches that can be used, and 

for explanations of the analysis, see Altmeyer et al. [2]. In 

this work, we use the Combined Multiset approach by 

Altmeyer et al. [2] for calculating the CRPD at task level. 

In this approach, ji,  represents the total cost of all pre-

emptions due to jobs of task τj executing within the response 

time of task τi. Incorporating ji,  into (1) gives a revised 

equation for Ri: 
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A.  Schedulability Analysis for Hierarchical Systems 

Hierarchical scheduling is a technique that allows 

multiple independent components to be scheduled on the 

same system. A global scheduler allocates processing 

resources to each component via server capacity. Each 

                                                           
1
 The concept of UCBs and ECBs cannot be applied to the FIFO or 

PLRU replacement policies as shown by Burguière et al. [11] 

component can then utilise the server capacity by 

scheduling its tasks using a local scheduler. 

SUPPLY BOUND FUNCTION 

In hierarchical systems, components do not have 

dedicated access to the processor, but must instead share it 

with other components. The supply bound function [26], or 

specifically, the inverse of it, can be used to determine the 

maximum amount of time needed by a specific server to 

supply some capacity c.  

Figure 1 shows an example for server S
G 

with Q
G
 = 5 and 

P
G
 = 8. Here we assume the worst case scenario, i.e. a task 

is activated just after the server’s budget is exhausted. In 

this case, the first instance of time at which tasks can 

receive some supply is at 2(P
G
 – Q

G
) = 6. 

 

Figure 1 - General case of a server where QG = 5 and PG = 8 showing it can 

take up to 6 time units before a task receives supply 

We define the inverse supply bound function, isbf, for 

component G as Gisbf  [24]: 
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Integrating (3) into equation (1) gives the response time of 

τi under server S
G
 taking into account the shared access to 

the processor as: 
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 CRPD ANALYSIS FOR HIERARCHICAL SYSTEMS IV.

In this section, we describe how CRPD analysis can be 

extended for use in hierarchical systems and integrated into 

the schedulability analysis for it. We do so by extending the 

concepts of ECB-Only, UCB-Only, UCB-Union and UCB-

Union Multiset analysis introduced in [12], [20], [28] and 

[2] respectively to hierarchical systems. This analysis 

assumes a non-pre-emptive global scheduler (i.e. the 

capacity of a server is supplied without pre-emption, but 

may be supplied starting at any time during the server’s 

period), and a pre-emptive fixed priority local scheduler. 

We will explain a number of different methods, building up 

in complexity. 

The analysis needs to capture the cost of reloading any 

UCBs into cache that were evicted by tasks belonging to 

other components. This can be achieved by combining the 

intra-component CRPD due to pre-emptions between tasks 

within the same component, (2), with the modified response 

(1) 

(2) 

(3) 

(4) 



 

 

time analysis for non-dedicated processor access, (4), with a 

new term,
G
i : 
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Here,
G
i represents the CRPD on task τi in component G 

caused by tasks in the other components running while the 

server (S
G
) for component G is suspended. 

We use  
iREG

 to denote the maximum number of times 

server S
G
 can be both suspended and resumed during the 

response time of task τi: 

















G

i
i

G

P

R
RE 1  

We use the term disruptive execution to describe an 

execution of server S
Z
 while server S

G
 is suspended that 

results in tasks from component Z evicting cache blocks 

that tasks in component G might have loaded and need to 

reload. Note that if server S
Z
 runs more than once while 

server S
G
 is suspended, its tasks cannot evict the same 

blocks twice and as such, the number of disruptive 

executions is bounded by the number of times that server S
G
 

can be both suspended and resumed. Specifically, we are 

interested in how many disruptive executions a server can 

have that impact a particular task τi. We use X
Z
 to denote 

the maximum number of such disruptive executions.  

















 















Z

i
i

G
i

GZ

P

R
RERSX 1,min,  

A. ECB-Only 

A simple approach to calculate component CPRD is to 

consider the maximum effect of the other components by 

assuming that every block evicted by the tasks in the other 

components has to be reloaded. There are two different 

ways to calculate this cost. 

ECB-ONLY-ALL 

The first option is to assume that every time server S
G
 is 

suspended, all of the other servers run and their tasks evict 

all the cache blocks that they use. We therefore take the 

union of all ECBs belonging to the other components to get 

the number of blocks that could be evicted. We then sum 

them up  
iREG

 times, where  
iREG

 upper bounds the 

number of times server S
G
 could be both suspended and 

resumed during the response time of task τi. If Z is a 

specific component, then we can calculate the CRPD 

impacting task τi of component G due to the other 

components in the system as: 

  
GZ

Z

i
GG

i RE




 ZECB  BRT  

ECB-ONLY-COUNTED 

The above approach works well when the global 

scheduler uses a TDM schedule such that each server has 

the same period and/or components share a large number of 

ECBs. If some servers run less frequently than server S
G
, 

then the number of times that their ECBs can evict blocks 

may be over counted. One solution to this problem is to 

consider each component separately by calculating the 

number of disruptive executions that server S
Z
 can have on 

task τi in component G during the response time of task τi, 








i

GZ RSX , . We can then calculate an alternative bound 

for the CRPD incurred by task τi of component G due to the 

other components in the system as: 

  





GZ
Z

i
GZG

i RSX ZECB,  BRT  

Note that the ECB-Only-All and ECB-Only-Counted 

approaches are incomparable. 

B. UCB-Only 

Alternatively, we can focus on the tasks in component G, 

hence calculating which UCBs could be evicted if the entire 

cache was flushed by the other components in the system. 

However, task τi may have been pre-empted by higher 

priority tasks so we must bound the pre-emption cost by the 

maximum number of UCBs over all tasks in component G 

that may pre-empt task τi, and task τi itself, i.e. 





 G,ik hep .  

 


iGk

k

,hep

UCB


 

We then multiply the number of UCBs (10) by the number 

of times that server S
G
 can be both suspended and resumed 

during the response time of task τi.  
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This approach is incomparable with the ECB-Only-All 

and ECB-Only-Counted approaches. 

C. UCB-ECB 

While it is a safe to only consider the ECBs of the tasks 

in the other components, or the UCBs of the tasks in the 

component of interest, these approaches are clearly 

pessimistic. We can tighten the analysis by considering 

both. 

UCB-ECB-ALL 

We build upon the ECB-Only-All and UCB-Only 

methods. For task τi and all tasks that could pre-empt it in 

component G, we can calculate which UCBs could be 

evicted by the tasks in the other components, (10). We then 

take the union of all ECBs belonging to the other 

components to get the number of blocks that could 

potentially be evicted. We then calculate the intersection 

between the two unions to give an upper bound on the 

number of UCBs evicted by the ECBs of the tasks in the 

other components. 
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Z
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ECBUCB  

This is then multiplied by the number of times that the 

server S
G
 could be both suspended and resumed during the 

response time of task τi to give: 

(11) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(12) 
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By construction, the UCB-ECB-All approach dominates 

the ECB-Only-All and UCB-Only approaches.  

UCB-ECB-COUNTED 

Alternatively, we can consider each component in 

isolation by building upon the ECB-Only-Counted and 

UCB-Only approaches. For task τi and all tasks that could 

pre-empt it in component G, we start by calculating an 

upper bound on the number of blocks that could be evicted 

by component Z: 

 

Z

,hep

ECBUCB 

















iGk

k  

We then multiply this number of blocks by the number of 

disruptive executions that server S
Z
 can have during the 

response time of task τi, and sum this up for all components 

to give: 
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By construction, the UCB-ECB-Counted approach 

dominates the ECB-Only-Counted approach, but is 

incomparable with the UCB-Only approach. 

D. UCB-ECB-Multiset 

The UCB-ECB approaches are pessimistic in that they 

assume that each component can, directly or indirectly, 

evict UCBs of each task 




 iGk ,hep  in component G up 

to  iREG
 times during the response time of task τi. While 

this is potentially true when τk = τi, it can be a pessimistic 

assumption in the case of intermediate tasks which may 

have much shorter response times. The UCB-ECB-Multiset 

approaches (described below) remove this source of 

pessimism by upper bounding the number of times 

intermediate task 




 iGk ,hep  can run during the 

response time of τi and then multiplying this value by the 

number of times that the server S
G
 can be both suspended 

and resumed during the response time of task τk, i.e.  kREG
. 

UCB-ECB-MULTISET-ALL 

First we form a multiset that contains the UCBs of task τk 

repeated    
ikk REREG  times for each task 





 iGk ,hep . 

    
 

iGk RERE

k
ucb

iG

ikk
G

M
,hep

, UCB















  

Then we form a second multiset that contains  
iREG

 

copies of the ECBs of all of the other components in the 

system. This multiset reflects the fact that the other servers’ 

tasks can evict blocks that may subsequently need to be 

reloaded at most  iREG
 times within the response time of 

task τi. 

 
 

i
G RE

GZ
Z

Aecb
iGM






















 Z
, ECB  

The total CRPD incurred by task τi, in component G due to 

the other components in the system is then given by the size 

of the multiset intersection of 
ucb

iGM , (16) and Aecb
iGM 

, (17). 

Aecb
iG

ucb
iG

G
i MM  ,,BRT  

UCB-ECB-MULTISET-COUNTED 

For the UCB-ECB-Multiset-Counted approach, we keep 

equation (16) for calculating the set of UCBs; however, we 

form a second multiset that contains 







i

GZ RSX , copies of 

the ECBs of each other component Z in the system. This 

multiset reflects the fact that tasks of each server S
Z
 can 

evict blocks at most 







i

GZ RSX ,  times within the response 

time of task τi. 

 
 

GZ
Z RSX

Cecb
iG

i
GZ

M





















,

Z
, ECB  

The total CRPD incurred by task τi, in component G due to 

the other components in the system is then given by the size 

of the multiset intersection of 
ucb

iGM ,  (16) and 
Cecb

iGM 
, (19).  

Cecb
iG

ucb
iG

G
i MM  ,,BRT  

UCB-ECB-MULTISET-OPEN 

In open hierarchical systems, the other components may 

not be known a priori as they can be introduced into a 

system dynamically. Additionally, even in closed systems, 

full information about the other components in the system 

may not be available until the final stages of system 

integration. In both of these cases, only the UCB-Only 

approach can be used as it requires no knowledge of the 

other components. We therefore present a variation called 

UCB-ECB-Multiset-Open that improves on UCB-Only 

while bounding the maximum component CRPD that could 

be caused by other unknown components. This approach 

draws on the benefits of the Multiset approaches by 

counting the number of intermediate pre-emptions, while 

also recognising the fact that the cache utilisation of the 

other components can often be greater than the size of the 

cache, and as such, the precise number of ECBs does not 

matter. 

For the UCB-ECB-Multiset-Open approach, we keep 

equation (16) for calculating the set of UCBs. Further, we 

form a second multiset that contains  iREG
 copies of all 

cache blocks. This multiset reflects the fact that server S
G
 

can be both suspended and resumed, and the entire contents 

of the cache evicted at most  
iREG

 times within the 

response time of task τi. 

  
 


i
G RE

Oecb
iG NM ,..2,1,   

Where N is the number of cache sets. 

The total CRPD incurred by task τi, in component G due to 

the other unknown components in the system is then given 

by the size of the multiset intersection of 
ucb

iGM ,  (16) and 
Oecb

iGM 
, (21). 

(15) 

(13) 

(14) 

(16) 

(17) 

(18) 

(21) 

(20) 

(19) 



 

 

Oecb
iG

ucb
iG

G
i MM  ,,BRT  

E. Comparison of Approaches 

We have presented a number of approaches that calculate 

the CRPD due to global context switches (server switching) 

in a hierarchical system. Figure 2 shows a Venn diagram 

representing the relationships between the different 

approaches. The larger the area, the more tasksets the 

approach deems schedulable. The diagram highlights the 

incomparability between the ‘–All’ and ‘–Counted’ 

approaches. The diagram also highlights dominance. For 

example, UCB-ECB-Multiset-All dominates UCB-ECB-

Multiset-Open and UCB-ECB-All, and UCB-All dominates 

ECB-Only-All. 

 

Figure 2 - Venn diagram showing the relationship between the different 
approaches. 

We now give worked examples illustrating both 

incomparability and dominance relationships between the 

different approaches.  

Consider the following example with three components, 

G, A and B, where component G has one task, Let BRT=1,
  101 REG , 10, 1 








RSX GA

, 2, 1 







RSX GB

. 

}2,1{AECB  and }10,9,8,7,6,5,4,3{BECB . In this 

example, components A and G run at the same rate, while 

component B runs at a tenth of the rate of component G.  

ECB-Only-All considers the ECBs of component B 

assuming that component B runs at the same rate as 

component G: 
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   By comparison ECB-Only-Counted considers 

components A and B individually, and accounts for the 

ECBs of component B based on the number of disruptive 

executions that it may have. 
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Below, we present a more detailed worked example for 

all approaches where the ECB-Only-All approach 

outperforms the ECB-Only-Counted approach, which 

confirms the incomparability of the –All and –Counted 

approaches. 

Figure 3 shows an example schedule for four 

components, G, A, B and C, where component G has two 

tasks. Let BRT=1,   11 REG ,   22 REG and   121 RE  and 

the number of disruptive executions be: 

1, 1 
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, 1, 1 
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2, 2 
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, 2, 2 
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. 

The following examples show how some of the 

approaches calculate the component CRPD for task τ2 of 

component G. 

 

ECB-Only-All calculates: 
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   ECB-Only-Counted: 
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UCB-Only: 

  6}3,2,1{2}3,2,1{}2{212 G  

    All of those approaches overestimated the CRPD, 

although UCB-Only achieves a much tighter bound than the 

ECB-Only-All and ECB-Only-Counted approaches. The 

bound can be tightened by using the more sophisticated 

approaches, for example, UCB-ECB-Multiset-Counted: 

}3,3,2,2,2,1,1{}3,2,1{}3,2,1{}2{2, ucb
GM  
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Figure 3 - Example schedule and UCB/ECB data to demonstrate how the different approaches work. 
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For the tightest bound in this specific case, the UCB-

ECB-Multiset-All approach does the best: 
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Assuming there are 12 cache sets in total
2
, the UCB-

ECB-Multiset-Open approach gives: 
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 CASE STUDY V.

In this section we compare the different approaches for 

calculating CRPD in hierarchical scheduling using tasksets 

based on a case study. The case study uses PapaBench
3
 

which is a real-time embedded benchmark based on the 

software of a GNU-license UAV, called Paparazzi. WCETs, 

UCBs, and ECBs were calculated for the set of tasks using 

aiT
4
 based on an ARM processor clocked at 100MHz with a 

2KB direct-mapped instruction cache. The cache was setup 

with a line size of 8 Bytes, giving 256 cache sets, 4 Byte 

instructions, and a BRT of 8μs. This configuration was 

chosen so as to give representative results when using the 

relatively small benchmarks that were available to us. 

WCETs, periods, UCBs, and ECBs for each task based on 

the target system are provided in Table 1. We made the 

following assumptions in our evaluation to handle the 

interrupt tasks: 

 Interrupts have a higher priority than the servers and 

normal tasks. 

 Interrupts cannot pre-empt each other. 

 Interrupts can occur at any time. 

 All interrupts have the same deadline which must be 

greater than or equal to the sum of their execution 

times in order for them to be schedulable. 

                                                           
2 Although we used 12 cache sets in this example, we note that the result 

obtained is in fact independent of the total number of cache sets. 
3  

http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=9

7 
4 http://www.absint.com/ait/ 

 The cache is disabled whenever an interrupt is 

executing  and enabled again after it completes. 

Based on these assumptions, we integrated interrupts into 

the model by replacing the server capacity Q
G
 in equation 

(3) by Q
G
 - I

G
, where I

G
 is the maximum execution time of 

all interrupts in an interval of length Q
G
. This effectively 

assumes that the worst case arrival of interrupts could occur 

in any component. 

We assigned a deadline of 2 ms to all of the interrupt 

tasks, and implicit deadlines i.e. Di = Ti, to the normal tasks. 

We then calculated the total utilisation for the system and 

then scaled Ti and Di up for all tasks in order to reduce the 

total utilisation to the target utilisation for the system. We 

used the number of UCBs and ECBs obtained via analysis, 

placing the UCBs in a group at a random location in each 

task. We then generated 1000 systems each containing a 

different arrangement of tasks in each component, using the 

following technique. We split the normal tasks at random 

into 3 components with four tasks in two components and 

five in the other, and then assigned task priorities according 

to Deadline Monotonic priority assignment. Next we set the 

period of each component’s server to 12.5ms (half the 

minimum task period). Finally we organised tasks in each 

component in memory in a sequential order based on their 

priority, and then ordered components in memory 

sequentially based on their index. 

A. Success Ratio 

For each system, the total task utilization across all tasks 

not including pre-emption cost was varied from 0.025 to 1 

in steps of 0.025. For each utilization value, we initialised 

each servers’ capacity to the minimum possible value, (i.e. 

the utilisation of all of its tasks). We then performed a 

binary search between this minimum and the maximum, 

(i.e. 1 minus the minimum utilisation of all of the other 

components) until we found the server capacity required to 

make the component schedulable. As the servers all had 

equal periods, provided all components were schedulable 

and the total capacity required by all servers was ≤ 100%, 

then the system was deemed schedulable at that specific 

utilisation level. In addition to evaluating each of the 

presented approaches, we also calculated schedulability 

based on no component pre-emption costs, but still 

including task level CRPD. For every approach, the intra-

component CRPD (between tasks in the same component) 

was calculated using the combined multiset approach as it is 

the most effective approach available [2]. 

The results for the case study are shown in Figure 4, note 

that graphs are best viewed online in colour. Although we 

generated 1000 systems, they were all very similar as they 

are made up of the same set of tasks. Focusing on the 

different approaches, ECB-Only-Counted and ECB-Only-

All perform the worst as they only consider the other 

components in the system. Next was UCB-ECB-Counted 

which though it considers all components, accounts for the 

other components pessimistically in most cases. The 

remainder of the approaches all performed very similarly.  



 

 

 
Figure 4 - Percentage of schedulable tasksets at each utilisation level for 

the case study tasksets 

 

Task UCBs ECBs WCET Period 

FLY-BY-WIRE     

I1 interrupt_radio 2 10 0.210 ms 25 ms 

I2 interrupt_servo 1 6 0.167 ms 50 ms 

I3 interrupt_spi 2 10 0.256 ms 25 ms 

T1 check_failsafe 10 132 1.240 ms 50 ms 

T2 check_mega128_values 10 130 5.039 ms 50 ms 

T3 send_data_to_autopilot 10 114 2.283 ms 25 ms 

T4 servo_transmit 2 10 2.059 ms 50 ms 

T5 test_ppm 30 255 12.579 ms 25 ms 

AUTOPILOT     

I4 interrupt_modem 2 10 0.303 ms 100 ms 

I5 interrupt_spi_1 1 10 0.251 ms 50 ms 

I6 interrupt_spi_2 1 4 0.151 ms 50 ms 

I7 interrupt_gps 3 26 0.283 ms 250 ms 

T5 altitude_control 20 66 1.478 ms 250 ms 

T6 climb_control 1 210 5.429 ms 250 ms 

T7 link_fbw_send 1 10 0.233 ms 50 ms 

T8 navigation 10 256 4.432 ms 250 ms 

T9 radio_control 0 256 15.681 ms 25 ms 

T10 receive_gps_data 22 194 5.987 ms 250 ms 

T11 reporting 2 256 12.222 ms 100 ms 

T12 stabilization 11 194 5.681 ms 50 ms 

Table 1 - Execution times, periods and number of UCBs and ECBs for the 
tasks from PapaBench 

 

We note that No-Component-Pre-emption-Cost reveals that 

the component pre-emption cost is very small for the 

PapaBench tasks, due to a number of factors including the 

nearly harmonic periods, small range of task periods, and 

relatively low number of ECBs for many tasks. 

 EVALUATION VI.

In this section we compare the different approaches for 

calculating CRPD in hierarchical scheduling using 

synthetically generated tasksets in order to explore a wider 

range of parameters and therefore give some insight into 

how the different approaches perform in a variety of cases. 

To generate the components and tasksets, we generated n 

(default of 24) tasks using the UUnifast algorithm [10] to 

calculate the utilisation, Ui of each task so that the 

utilisations added up to the desired utilisation level. Periods 

Ti, were generated at random between 10ms and 1000ms 

according to a log-uniform distribution. Ci was then 

calculated via Ci = Ui Ti, and implicit deadlines were set, 

i.e. Di = Ti. We used the UUnifast algorithm to obtain the 

number of ECBs for each task so that the ECBs added up to 

the desired cache utilisation (default of 10). Here, cache 

utilisation describes the ratio of the total size of the tasks to 

the size of the cache. A cache utilisation of 1 means that the 

tasks fit exactly in the cache, whereas a cache utilisation of 

10 means the total size of the tasks is 10 times the size of 

the cache. The number of UCBs was chosen at random 

between 0 and 30% of the number of ECBs on a per task 

basis, and the UCBs were placed in a single group at a 

random location in each task. 

We then split the tasks at random into 3 components with 

equal numbers of tasks in each, and assigned task priorities 

according to Deadline Monotonic priority assignment. Next 

we set the period of each component’s server to 5ms. 

Finally we organised tasks in each component in memory in 

a sequential order based on their priority, and then ordered 

components in memory sequentially based on their index. 

We generated 1000 systems using this technique. It took 

approximately 5-10 seconds to analyse a single taskset 

under all approaches over the range of utilisation levels for 

the base line configuration on a 2.8GHz AMD Opteron 

6386 SE. For the purpose of the experiments, we batched 

the tasksets up and analysed them in parallel over multiple 

CPU cores. 

A. Success Ratio 

We determined the schedulability of the synthetic tasksets 

using the same approach described in the first paragraph of 

section V. A. 

 
Figure 5 - Percentage of schedulable tasksets at each utilisation level for 

the synthetic tasksets 

The results for the baseline evaluation are shown in 

Figure 5. The ECB-Only-Counted approach is least 

effective as it only considers the other components and does 

so individually. ECB-Only-All was next, followed by UCB-

ECB-Counted. UCB-ECB-Multiset-Counted performed 

similarly to UCB-Only and UCB-ECB-All, crossing over at 

a utilisation of 0.725 highlighting their incomparability. 

Although UCB-ECB-All dominates UCB-Only, it can only 

improve over UCB-Only when the cache utilisation of the 

other components is sufficiently low that they cannot evict 

all cache blocks. Finally, the UCB-ECB-Multiset-All and 



 

 

UCB-ECB-Multiset-Open approaches performed the best. 

Despite only considering the properties of the component 

under analysis, the UCB-ECB-Multiset-Open approach also 

proved highly effective. The reason for this is that once the 

size of the other components that can run while a given 

component is suspended is equal to or greater than the size 

of the cache then UCB-ECB-Multiset-All and UCB-ECB-

Multiset-Open become equivalent. 

B. Weighted Schedulability 

Evaluating all combinations of different parameters is not 

possible. Therefore, the majority of our evaluations focused 

on varying one parameter at a time. To present the results, 

weighted schedulability measures [8] are used. The benefit 

of using a weighted schedulability measure is that it reduces 

a 3-dimensional plot to 2 dimensions. Individual results are 

weighted by taskset utilisation to reflect the higher value 

placed on a being able to schedule higher utilisation 

tasksets.  

To investigate the effect of key cache and taskset 

configurations we varied the following parameters: 

 Number of components (default of 3)  

 Server period (default of 5ms)  

 Cache Utilisation (default of 10) 

 Total number of tasks (default of 24)  

 Range of task periods (default of [10, 1000]ms)  

We used 100 systems for each utilisation level from 

0.025 to 1.0 in steps of 0.025 for the weighted 

schedulability experiments. The results and explanations for 

varying the cache utilisation, number of tasks, and range of 

task periods are available in the appendix. 

NUMBER OF COMPONENTS 

To investigate the effects of splitting the overall set of tasks 

into components, we fixed the total number of tasks in the 

system at 24, and then varied the number of components 

from 1 (24 tasks in one component) to 24 (1 task per 

component), see Figure 6. Components were allocated an 

equal number of tasks where possible, otherwise tasks were 

allocated to each component in turn until all tasks where 

allocated. We note that with one component, the UCB-Only 

and UCB-ECB-Multiset-Open approaches calculate a non-

zero component CRPD because they assume that every time 

the single component is suspended, its UCBs are evicted, 

even though there is only one component running in the 

system. At two components, the ECB-Only-All and ECB-

Only-Counted approaches are equal. Above two 

components, the ECB-Only-All, ECB-Only-Counted and 

UCB-ECB-Counted get rapidly worse as they over-count 

blocks. All other approaches improve as the number of 

components is increased above 2 up to 8 components. This 

is because as the number of components increases, the 

amount of intra-component CRPD from tasks in the same 

component decreases. While the higher number of 

components does lead to increased inter-component CRPD, 

due to higher number of server context switches, it is not 

enough to cancel out the gains from reduced intra-

component CRPD. This is because the increasing number of 

components, which are scheduled non-pre-emptively, is 

reducing the overall amount of pre-emption in the system. 

However, above 8 components, schedulability decreases as 

the inter-component CRPD and server delays become the 

dominant factors. We also note that at two components, 

UCB-Only, UCB-ECB-All and UCB-ECB-Counted 

perform the same; as do the Multiset approaches. This is 

because the ‘-All’ and ‘-Counted’ variations are equivalent 

when there is only one other component.   

 
Figure 6 - Varying the number of components from 1 to 16, while keeping 

the number of tasks in the system fixed. 

 
Figure 7 - Varying the system size from 1 to 10. An increase of 1 in the 

system size relates to introducing another component that brings along 

with it another 5 tasks and an increase in the cache utilisation of 2. 

 
Figure 8 - Varying the server period from 1ms to 20ms (fixed task period 
range of 10ms to 1000ms) 

 



 

 

SYSTEM SIZE 

We investigated the effects of introducing components 

into a system by varying the system size from 1 to 10, see 

Figure 7, where each increase introduces a new component 

which brings along with it 5 tasks taking up approximately 

twice the size of the cache. When there is one component, 

all approaches except for UCB-Only and UCB-ECB-

Multiset-Open give the same result as No-Component-Pre-

emption-Cost. As expected, as more components are 

introduced into the system, system schedulability decreases 

for all approaches including No-Component-Pre-emption-

Cost. This is because each component includes additional 

intra-component CRPD, in addition to the inter-component 

CRPD that it causes when introduced. Notably, the ECB-

Only-All approach outperforms UCB-ECB-Counted above 

a system size of 2, UCB-Only and UCB-ECB-All 

outperform UCB-ECB-Multiset-Counted above a system 

size of 4, highlighting their incomparability. Again we note 

that the ‘-All’ and ‘-Counted’ variations are the same when 

there are only two components in the system. 

SERVER PERIOD 

The server period is a critical parameter when composing 

a hierarchical system. The results for varying the server 

period from 1ms to 20ms, with a fixed range of task periods 

from 10 to 1000ms are shown in Figure 8. When the 

component pre-emption costs are ignored, having a small 

server period ensures that short deadline tasks meet their 

time constraints. However, switching between components 

clearly has a cost associated with it making it desirable to 

switch as infrequently as possible. As the server period 

increases, schedulability increases due to a smaller number 

of server context switches, and hence component CRPD, up 

until around 7ms for the best performance. At this point, 

although the component CRPD continues to decrease, short 

deadline tasks start to miss their deadlines due to the delay 

in server capacity being supplied unless server capacities 

are greatly inflated, and hence the overall schedulability of 

the system decreases. 

 CONCLUSION VII.

Hierarchical scheduling provides a means of composing 

multiple real-time applications onto a single processor such 

that the temporal requirements of each application are met. 

The main contribution of this paper is a number of 

approaches for calculating cache related pre-emption delay 

(CRPD) in hierarchical systems with a global non-pre-

emptive scheduler and a local pre-emptive fixed priority 

scheduler. This is important because hierarchical scheduling 

has proved popular in industry as a way of composing 

applications from multiple vendors as well as re-using 

legacy code. However, unless the cache is partitioned, these 

isolated applications can interfere with each other, and so 

inter-component CRPD must be accounted for, even if the 

cache is flushed after each global context switch. 

We presented a number of approaches to calculate inter-

component CRPD in a hierarchical system with varying 

levels of sophistication. We also showed that when taking 

inter-component CRPD into account, minimising server 

periods does not maximise schedulability. Instead, the 

server period must be carefully selected to minimise inter-

component CRPD while still ensuring short deadline tasks 

meet their time constraints. 

While it was not the best approach in all cases, we found 

the UCB-ECB-Multiset-Open approach, which does not 

require any  information  about  the  other  components in 

the system to be highly effective. This is a useful result as 

the approach does not require a closed system i.e. it can be 

used when no knowledge of the other components is 

available and/or cache flushing is used between the 

execution of different components to ensure isolation and 

composability. 

The UCB-ECB-Multiset-All approach dominates the 

UCB-ECB-Multiset-Open approach and therefore, if 

information about other components is available, it can be 

used to calculate tighter bounds in cases where not all cache 

blocks will be evicted by the other components. However, 

this requires a small enough cache utilisation such that the 

union of the other components ECBs is less than the size of 

the cache. 

Previous works by Lipari and Bini [21] and Davis and 

Burns [13] have investigated how to select sever 

parameters. In future, we intend to extend this work to find 

optimal server parameter settings taking into account inter-

component CRPD. Lunniss et al. [22] showed how the 

layout of tasks can be optimised to reduce CRPD. We also 

intend to extend this work to layout components and their 

tasks in order to reduce both intra- and inter-component 

CRPD so as to maximise system schedulability. Finally, we 

intend to apply the approaches to a real system, in order to 

show how the different techniques compare using results 

obtained via measurement. 
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APPENDIX – ADDITIONAL RESULTS 

CACHE UTILISATION 

As the cache utilisation increases the likelihood of the 

other components evicting UCBs belonging to the tasks in 

the suspended component increases. The results for varying 

the cache utilisation from 0 to 20 are shown in Figure 9. In 

general, all approaches show a decrease in schedulability as 

the cache utilisation increases. Up to a cache utilisation of 

around 2, the UCB-Only and UCB-ECB-Multiset-Open 

approaches do not perform as well as the more sophisticated 

approaches, as the other components do not evict all cache 

blocks when they run. We also observe that up to a cache 

utilisation of 1, the ECB-Only-Counted, and the ECB-Only-

All approaches perform identically as no ECBs are 

duplicated. We note that the weighted measure stays 

relatively constant for No-Component-Pre-emption-Cost up 

to a cache utilisation of around 2.5. This is because the 

average cache utilisation of each component is still less than 

1, which leads to relatively small intra-component CRPD 

between tasks. 

NUMBER OF TASKS 

We also investigated the effect of varying the number of 

tasks, while keeping the number of components fixed. As 

we introduced more tasks, we scaled the cache utilisation in 

order to keep a constant ratio of tasks to cache utilisation. 

The results for varying the number of tasks from 3 to 48 are 

shown in Figure 10. As expected, increasing the number of 

tasks leads to a decrease in schedulability across all 

approaches, including No-Component-Pre-emption-Cost, as 

it still includes intra-component CRPD. 

TASK PERIOD RANGE 

We varied the range of task periods from [1, 100]ms to  

[20, 2000]ms (while fixing the server period at 5ms). The 

results can be seen in Figure 11, as expected, the results 

show an increase in schedulability across all approaches as 

the task period range is increased.  

 

 

 

 

 

 

 

 

 
Figure 9 - Varying the cache utilisation from 0 to 20 

 

 
Figure 10 - Varying the total number of tasks from 3 to 48 (1 to 16 tasks 

per component) 

 

 

Figure 11 - Varying the period range of tasks from [1, 100]ms to                

[20, 2000]ms (while fixing the server period at 5ms) 


