
Predictability and Utilisation Trade-off in the Dynamic
Management of Multiple Video Stream Decoding on
Network-on-Chip based Homogeneous Embedded

Multi-cores

Hashan Roshantha
Mendis

Real-time Systems Group
Department of Computer

Science
University of York

hrm506@york.ac.uk

Leandro Soares
Indrusiak

Real-time Systems Group
Department of Computer

Science
University of York

lsi@cs.york.ac.uk

Neil C. Audsley
Real-time Systems Group
Department of Computer

Science
University of York

neil.audsley@york.ac.uk

ABSTRACT
Guaranteed admission control decisions in embedded multi-
core platforms often cause a trade-off between predictability
for utilisation. The state-of-the art shows that both these
objectives cannot be optimised if the workloads are dynamic
and are not known a priori. Deterministic admission con-
trol approaches use worst-case response-time calculations of
the tasks and flows live in the system to analytically make
safe admission decisions. These tests often result in sig-
nificantly under-utilised systems. Using a poor admission
controller may improve system utilisation but at the cost of
low-predictability. In a soft-real time system under heavy
system load it is acceptable to have a few deadline misses
in order to maintain relatively higher utilisation levels. This
paper presents heuristic based admission control test that
attempts to find a compromise between predictability and
utilisation. The heuristic adjusts the estimation of subtask
deadline assignment proportionally, and uses this to esti-
mate the lateness of tasks that are admitted and live in the
system. We explore the performance consequences of the
proposed heuristic-based approach using an abstract simu-
lator, and analyse its effectiveness against a deterministic
admission control test under low and heavy workloads.

1. INTRODUCTION
Complex multimedia activities (such as decoding multiple

simultaneous video streams on a single device) require soft
real-time support due to their sensitivity to delay and jitter.
The dynamic nature of video streaming is challenging for the
platforms as it is difficult to provide reasonable predictabil-
ity guarantees whilst utilising the platform resources, when
admitting video streams into the system. The state-of the

Permission to make digital or hard copies of all orpart of this work for
personal or classroom use isgranted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this noticeand the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659826.

art in predictable admission control of dynamic workloads
uses deterministic approaches that utilise worst-case laten-
cies to guarantee the workloads can be serviced within their
timing constrains. However these methods often result in
considerably under-utilised system resources.

The intent of this paper is to explore the possibility of
using a thresholded-heuristic based approach to enable ad-
mission of dynamic video streams whilst improving system
utilisation and service predictability. An MPEG (Moving
Picture Experts Group) decoding task has a soft deadline
proportional to the video frame-rate, and missing this dead-
line or dropping tasks due to over-utilisation will cause the
video image frame to distort or freeze and will result in
viewer dissatisfaction. Buffering has been employed on the
client-side in many real-time video streaming applications
when the throughput requirements of the video processing
application is not satisfied. However if the waiting time for
the buffering process is too long it may cause a negative qual-
ity of experience (QoE) [9]. Further, videos freezing/stalling
mid-way during the playback of a stream may impact the
QoE factor and even cause lower user-engagement. Thus
guaranteeing a reliable video streaming service at the start
of the stream is critical to improving user-experience [7].

In a modern house-hold, streaming a video content from
the internet may require computational and communica-
tional data redundancy due to the multiple multimedia de-
vices (e.g. tablets, smart-phones, digital set-top boxes etc.).
As each of these multimedia devices often consumes a high
level of network bandwidth, overall network bandwidth us-
age may be affected negatively. One way to address this
issue is to utilise a low-power embedded media server that
acts as a central gateway to the media, performing parallel
streaming, decoding and transcoding functions to multiple
client devices. The embedded media gateway for this so-
lution should support several concurrent video processing
requests and should guarantee the required quality of ser-
vice (QoS) levels of each request, whilst not degrading the
QoS levels of any active video streams. The motivation of
this research is driven from an industrial case-study to de-
velop the mentioned media gateway that supports several
concurrent video streams whilst guaranteeing the required
high QoS for each multimedia device.

The remainder of this paper is organised as follows: Sec-

tion 2 discusses the background of this research. Section 3
explains the platform and application model used by the pro-
posed algorithm. Section 4, outlines the problem statement
and define our objectives. Section 5 describes our heuristic
based admission control test and outline our baselines. In
Sections 6 and 7 we describe the chosen evaluation method
and the experimental results.

2. BACKGROUND RESEARCH
This research work falls under several research domains,

and hence this section has been separated into the following
categories: video processing hardware, multi-stream video
processing, deterministic vs. statistical admission control
and feedback based admission control.

Processing of high-definition video streams, specifically for
real-time applications, has been a challenging task due to the
complexity of the algorithms performed on high-resolution
images. In addition, these tasks require considerable amounts
of memory bandwidth. Traditionally, the compute-intensive
tasks of video processing have been implemented on Field
Programmable Gate Array (FPGA) based dedicated hard-
ware accelerators due to their high customisability and per-
formance improvements [3]. Recently, graphics processing
units (GPUs) have also offered a viable solution to accelerate
the various numerical and signal processing algorithms re-
quired by video processing tasks. Modern GPUs may consist
of up to hundreds of processing cores capable of exploiting
the parallelism in these video processing algorithms to meet
the required application throughput [4]. Both GPUs and
FPGA technologies are viable approaches to implement a
multi-stream video processing platform, however their high
cost and power requirements are potential concerns if they
are to be used as a embedded consumer device.

Ditze et al. [6] proposes a method for real-time schedul-
ing and admission control of multiple MPEG video streams
which uses continuous re-processing by the admission con-
troller and scheduling the different workloads out-of-phase
to each other such that the decoding tasks do not inter-
fere. In case the allocated resources vary over time, their
method re-invokes the admission controller to adjust the re-
source reservation. This method guarantees quality of ser-
vice, however their analysis is limited to a few concurrent
video streams and a single-core system. Blanch et al. [2]
presents several scheduling strategies and task assignment
metrics used in decoding multiple MPEG-4 video streams
on a heterogeneous multi-core platform. Selecting a task
from the multiple video streams is developed based on es-
timated task execution cost, and tasks are assigned to pro-
cessing elements with earliest expected completion time; this
scheme is then combined with a frame-level priority assign-
ment scheme which guarantees the execution of most rel-
evant frames. They also introduce a simple but accurate
task execution time prediction method, where the execution
time of the current frame is determined by the execution
time of a similar typed previous frame. However their simu-
lations assume a bus-based communication architecture and
constant rate DMA transfers and does not take into account
contention patterns seen in platforms with Network-on-Chip
based interconnects.

In [19, 21], observation based control algorithms have been
used to improve the resource utilisation of the platform by
providing statistical service guarantees to each client. These
algorithms prove to be safe but in the case of the worst-case

Figure 1: System overview diagram

scenarios it may cause deadline misses to occur. On the
other hand, deterministic approaches such as in [5, 15], pro-
vides a guaranteed and predictable service by taking into
account worst-case behaviour of the application and plat-
form. If these worst-case assumptions of the workload are
highly pessimistic, then the admission control algorithms
will cause severe under-utilisation of system resources such
as communication links and computation nodes.

Feedback control real-time scheduling has been implemented
to continuously monitor the system characteristics and ad-
just the schedules and admission control decisions for unpre-
dictable dynamic workloads [17]. The admission controller
in these systems is aware of any unpredicted changes in the
workload and is able to dynamically change the control de-
cision in order to meet the required QoS levels. Feedback
based control schemes have been used in multimedia based
applications where the video encoding rate was dynamically
adapted to suit the estimated network bandwidth, thus en-
abling the delivery of good visual quality across a congested
network [20]. In [12] the system load is fed back into the
MPEG decoder to decide which MPEG frames can be de-
coded in time or skipped if the deadlines cannot be met,
thereby maintaining reasonable quality even during peak
system load. The efficiency of the admission controller lies
within the accuracy of the approximated analytical model of
the real-time system [14], which is challenging because real-
time systems are non-linear and time varying. Unlike the
approaches described in this section our proposed heuristic
based method does not depend on deterministic analyses nor
does it depend on analytical models to make the admission
control decisions.

3. SYSTEM OVERVIEW

3.1 Application Model
We consider a task model of M independent stream based

work-flows, denoted Wi, each containing V number of video
streams and each video stream containing N independent
jobs, as shown in Figure 1. The system can process sev-
eral video streams in parallel and this can be thought of
as different decoding requests that arrive within the same
time frame sent by different users of the system. We assume

the number of video streams and their start/end times are
completely arbitrary, and therefore at a given time the sys-
tem will be decoding multiple video streams simultaneously
which are contained within the different parallel workflows.
Hence the workflows act as a container for the delivery of
video streams to the platform.

We assume data-parallel processing at the frame-level,
where a task denoted as τi represents a single MPEG en-
coded frame that requires decoding. Each job, denoted
Ji represents a group of dependant tasks (also known as
an MPEG group of pictures - GoP). Hence each job con-
tains a chain of tasks (see Figure 2) with certain depen-
dency/precedence constraints such that a tasks’ execution
can only start iff its predecessor(s) have completed execu-
tion and their output data is available. In Figure 2 the
circles (e.g. I0, P1 etc.) represent MPEG frame level de-
coding tasks and the arrows represent data dependencies -
for example task I0 will send its output data to task P1 af-
ter completing its execution. As shown in Figure 2, certain
tasks in the task-graph can be executed in parallel (e.g. P4,
B2, B3) if all the precedence constraints are met and there
are sufficient available resources. Tasks are preemptive and
have a fixed priority. We assume the priorities are unique
and are predefined - as is the case when users or application
developers of the system would assign the priorities when
they are creating the tasks. Video streams do not have pri-
orities, however the individual tasks contained within the
video stream have a fixed pre-assigned priority. The same
task priorities are used throughout all the GoPs in the video
stream, such that the priority assignment between different
GoPs of the same video stream does not change.

The following terms are used to define the attributed of
tasks and jobs:

• pi is the priority of τi

• ti is the period of τi

• ci is the worst-case execution cost of τi

• ri is the response-time of τi

• ai is the arrival time - when τi is dispatched to the
input buffer (not necessarily, equal to the release time)

• li is the lateness of τi

• di is the relative deadline of τi

• De2e is the end-to-end deadline of Ji, calculated with
respect to the frame-rate

The exact execution time of the tasks are unknown in ad-
vance as MPEG decoding times vary greatly based on spatial
resolution, content and compression type etc. The number
of workflows and jobs are not known in advance as video de-
coding requests will arrive randomly. We consider the video
streams to be MPEG-2 encoded, where there are three kinds
of frame types; namely I (Intra), P (Predictive) and B (Bi-
directional) frames. The type of frame does not only influ-
ence the execution cost of the decoding task but also the
precedence order. For example, as shown in Figure 2, drop-
ping an I-frame causes severe image quality degradation as
it results in the whole GoP being invalid. We also assume a
closed, fixed GoP structure of IPBBPBBPBBBB (decoding
order; hence GoP length = 12).

The spatial resolution of a video stream will correspond
directly to the computation cost of the task and the payload

Figure 2: MPEG GoP data precedence graph

of the message flow, and this varies between different video
streams. The execution time of the tasks within jobs across
the same workflow and across other workflows is different,
but has the same GoP structure, hence the same data prece-
dence task graph (DPG) as shown in Figure 2. We assume
there are no intermediate deadlines for each task in a job,
however each job as a whole is considered schedulable if it
completes execution on/before its De2e. We assume that all
the tasks within a job will arrive at the same time instant
but the arrival rate of a job will be sporadic, and the min-
imum inter-arrival rate is known in advance (analogous to
using variable bit-rates with an upper bound).

Once a task has completed execution, its output (i.e. the
decoded frame data) is sent as a message flow to the pro-
cessing element executing its successor tasks τsecci . If τsecci

are mapped on different processing elements, multiple mes-
sages will be released from the same task τi. We assume that
each task produces a single or multiple messages which are
sent immediately after it finishes its computation. Message
flows inherit the priority of their source tasks, if multiple
messages are produced by the same task then the message
flows priority values are added an offset to ensure all flows
have a unique priority.

A message flow denoted by Msgi can be characterised by
the following attributes:

• Pi is the priority of Msgi

• Ti is the period of Msgi

• PLi is the payload of Msgi

• Ci is the basic-latency of Msgi

• Ri is the response-time of Msgi

• Di is the relative deadline of Msgi

3.2 Platform Model
The distributed system is composed of P homogeneous

processing elements (PEs) connected by a network on chip
(NoC) interconnect. NoCs are the common communica-
tion architecture of choice for system on chips with dozens
of cores [8]. The PEs are directly connected to the NoC
switches which route data packets towards a destination
core. NoCs offer a wide range of parameters to the system

designer such as topology, routing algorithms and switch-
ing strategies which permits flexible and scalable systems.
We assume the NoC in our platform model uses fixed prior-
ity preemptive arbitration, a 2D mesh topology and uses the
XY deterministic algorithm for routing. We assume that the
NoC link arbiters can preempt packets when higher-priority
packets request the output link they are using. The basic la-
tency of a message flow, which is the time taken for a packet
to be transferred from source to destination under the as-
sumption of no contention over the NoC links is calculated
according to Eq.1.

Ci = (numHops× arbitrationCost) + numFlits (1)

We assume each PE (e.g. CPU) is executing separate in-
stances of the application software running on top of sep-
arate real-time kernels in an asymmetric multiprocessing
(AMP) fashion. We assume the platform has no shared
memory, and inter-processor communication (IPC) is per-
formed via the NoC by passing messages. Each PE con-
nected to the NoC contains a local memory, task queue and
a dependency buffer. Once a task is released from a global
input buffer, it is sent to the task queue of the PE, and
the respective PE notified via an interrupt. The PE upon
completing a tasks execution, transmits its output to the
appropriate PEs dependency buffer.

The resource manager of the system, denoted as RM mainly
performs scheduling, mapping and admission control of the
video streams. The RM and admission controller (AC) is
considered to be a single component in the platform, and
the terms are used interchangeably throughout the paper.
The RM is responsible for the timely release of tasks from
the global input buffers to the PE task queues as well as map-
ping the tasks to specific processing elements. Tasks are held
in the global input buffers until its predecessors have com-
pleted execution and their output data is transmitted to the
required destination processing node. PEs will notifies the
RM via interrupts once a task has completed its execution,
so that the RM can release any successor tasks of the com-
pleted task. The RM performs a series of tests to decide if a
new video stream request should be granted admission into
the system. The task to PE mapping assignment is the same
between GoPs of the same video stream and different map-
pings between GoPs of different video streams. This GoP
level task to core mapping is established by the RM upon
admission of a new video stream stream. A task-mapping
table is maintained by the RM, and is queried by the PEs
to determine where the completed tasks’ output should be
transmitted to. In this preliminary research work, we map
each subsequent task to the node with the lowest number
of tasks in its task queue. The goal behind this approach
is to facilitate uniform utilisation across all nodes on the
platform.

4. PROBLEM STATEMENT
As time progresses the multimedia system will receive

multiple video stream decoding requests from different users
of the system. The system should serve these video streams
without missing any deadlines and dropping tasks. The
first objective is that the AC decision should be predictable,
such that if a video stream is admitted, the AC guarantees
that the newly admitted stream will not incur any lateness
throughout the streams lifetime, nor will the admission cause

any lateness to the existing video streams already admitted.
The second objective is to maintain high system utilisation
of the processing elements of the system, which is desirable
in an embedded multi-core system.

Improving predictability of the admission control algorithm
in this research is defined as minimising the maximum and
mean job lateness of the jobs that missed their deadlines, as
well as minimising the number of dropped jobs under high
load condition. Jobs will be dropped by the task-dispatcher
at job release time if the global input buffers are full; tasks
are not dropped once they have been admitted into the sys-
tem. Dropped tasks negatively affects user-experience, pre-
dictability and system utilisation. A job is considered com-
plete, when all its tasks have completed execution and a job
is considered late if its end-to-end response time is greater
than the end-to-end deadline. A completely predictable AC
fully guarantees that all of the admitted video streams will
be schedulable and would not incur any lateness or dropped
jobs/tasks nor will it disrupt any of the existing streams.
Furthermore a completely unpredictable AC does not guar-
antee the timely execution of the video decoding tasks ad-
mitted and will have a higher maximum job lateness, and
more dropped jobs. The second objective - system utili-
sation, can be defined as the ratio between the number of
active (busy) PEs and the total PEs in the system, in other
words the secondary goal is to increase the system busy time.

5. ADMISSION CONTROL TESTS

5.1 Deterministic Admission Control Tests
The tasks and flows in our soft real-time systems model

have fixed priority and preemptive scheduling, as described
in Section 3.1. Each processing node in the system has a pri-
ority ordered task queue, and since fixed priorities are used
higher priority tasks are guaranteed access to shared com-
putation resources in the platform. Hence as shown in Eq.2,
classical schedulability analysis [1] can be used to evaluate
the worst-case response time ri of the tasks. Here the set
hp(i) denotes the tasks that have a higher priority and in
the same task queue as task τi. Active tasks in the system
can belong to different video streams, hence a lower priority
task of one stream can be blocked by a higher priority task
of another stream.

rn+1
i = ci +

∑
∀τj∈hp(i)

⌈
rni
tj

⌉
cj (2)

Similarly on the network on chip interconnect, contention
occurs when several message flows try to access the same
network resource at the same time. And due to the pri-
ority based preemptive arbitration of the routers, the NoC
architecture is able to provide guaranteed throughput to the
message flows of higher priority. Hence a message flow will
have at most two interference sources - direct and indirect in-
terference flows. Direct-interferers (denoted Sid) are higher
priority traffic-flows that have at least one physical link in
common with the observed traffic-flow. Indirect-interferers
(denoted Sii) are higher-priority flows that do not share any
links with the observed traffic-flow but share at least one link
with a traffic-flow in Sid. Shi et al. [16] introduced an ana-
lytical approach to derive an upper bound for the worst-case
network latency of each traffic flow in wormhole switching,
fixed priority preemptive NoC and shown in Eq.3. In this

equation JRi is the release-jitter, JIi is the interference-jitter
and Ci is the basic latency of the message flow Msgi as de-
scribed in Eq.1.

Rn+1
i = Ci +

∑
∀j∈Sid

⌈
Rni + JRj + JIj

Tj

⌉
Cj (3)

Subsequently this analysis was extended in [10], where the
response time ri of the task τi that releases the message-flow
is considered to be the release jitter of Msgi, hence JRi = ri,
as shown in Eq.4. This is assuming the message flow is
released immediately after the execution of its source task.

Rn+1
i = Ci +

∑
∀j∈Sid

⌈
Rni + rj + JIj

Tj

⌉
Cj (4)

The worst-case end-to-end response time of a task com-
prises the worst-case computation time of τi and worst-case
communication latency of Msgi, as shown in Figure 3(a).
Hence a the end-to-end schedulability of a task can be checked
by (Ri + ri) ≤ De2e

5.1.1 Exclusion of Non-interferers
Figure 3(b) shows an example of the execution of MPEG

frame decoding tasks I0, P1, B2 and B3 on 3 processing ele-
ments. I0 and P1 are mapped on PE0 and PE1 respectively,
and both B2 and B3 are mapped on the same processing el-
ement - PE2. This example follows the data precedence
task graph shown in Figure 2. In this example since B2 and
B3 are assumed to be mapped on to the same processing
element, we can see that only a single flow is sent by I0
and P1 to the destination PE2, where the B-frame tasks are
mapped. However B2 and B3 cannot start execution until
PE2 receives the decoded frame data from P1.

To simplify the task and flow interference analysis, we
assume that there is no overlap between executions and in-
vocations of different jobs within the same video stream,
(Figure 3(c)). We assume that a new job of an live video
stream will not be received and decoded by the platform
while still currently executing the previous job invocation;
although realistically the platform can decode multiple con-
tiguous jobs of the same video stream in parallel. Due to
this restriction in the analysis, when determining the higher
priority interferers of tasks, the precedence constraints are
taken into account such that dependant and successor tasks
are excluded from the interference set hp(i). An example of
this is seen in Figure 3(b) where P1, B2 and B3 will never
interfere with task I0. Similarly, for flows depending on the
task precedence relationship some flows may not interfere
with others. For example in Figure 3(b) the flow I0 → P1

will not interfere with the flow P1 → B2, B3. These ex-
clusions are taken into account when calculating the worst-
case response time of tasks and flows, to make the analysis
slightly tighter than in [16], but as the simulation results
(Section 7) shows us, is still safe.

5.1.2 End-to-end Job Schedulability
Since we are only concerned with the end-to-end deadline

De2e, the schedulability tests should check if the cost of the
critical path of a job is less than or equal to the end-to-end
deadline of the job. The critical path of a job is the path
with the largest accumulated cost, where cost refers to the

Figure 3: (a)End-to-end response time of a com-
municating task, adapted from [10] showing tasks
and flows being interfered. (b)Example of 4 MPEG
frame tasks executed over 3 processors (c)Non-
overlapping job executions

worst-case-response time of tasks and flows. For example in
the task graph shown in Figure 2 the critical path of the job
would start with the root node I0 and end in any one of the
leaf nodes (i.e. the B-frames)

The RM keeps track of each video stream that it has ad-
mitted and currently being processed. Each video stream
is composed of a set of tasks and flows, and each task and
flow can be blocked by tasks and flows from the same or
other video streams. Therefore during the evaluation of the
interference sets all tasks and flows of the system are taken
into account. The RM performs the iterative calculations
given in Eq.4 and Eq.2 when a new video stream admission
is requested. However, this calculation takes a significant
amount of time to compute when the interference sets of
the tasks and flows are large in number. To avoid this issue
a timeout is assigned to the calculation, where an intermedi-
ary result is returned when the timeout expires. The timeout
needs to be set to a sufficiently high value such that a suffi-
ciently accurate worst-case response time can be calculated
within the time-limit but at the same time have a relatively
fast computation time.

5.2 Heuristic Based Tests
The heuristic based tests described below are essentially

best effort tests with minimum calculation overhead. They
do not take into account the computational and communica-
tional requirements of the tasks, but check the status of the
platform to determine if it is overloaded or not, and makes
the admission decision.

5.2.1 Instantaneous Task Lateness
A task is considered as late if it finishes its execution after

its absolute deadline. However in our task model the jobs’
end-to-end deadline is considered as an individual tasks rela-
tive deadline (i.e. di = De2e). This assumption causes tasks
that are higher up in the task-graph to have longer slack
times, and as a result the lateness calculation may be too
optimistic. To alleviate this issue, we try to tighten the late-
ness calculation by multiplying di by a ratio as specified in
Eq.5 and 6. li(InputBuffer) is the calculated instantaneous
lateness of a task in the global input buffers, li(TaskQueue)
is the calculated instantaneous lateness of a task in the task
queues, tc denotes the current time and ai denotes the dis-
patch time of the task. IBLα and TQLα denotes the ratios
used to calculate the relative deadline of the tasks in the
global input buffers and task queues respectively.

li(InputBuffer) = (tc − ai)− (De2e ∗ IBLα) (5)

li(TaskQueue) = (tc − ai)− (De2e ∗ TQLα) (6)

Every task in global input buffers and the task queues
incurs lateness as time progresses. Lateness values as cal-
culated from Eq.5 and 6. Negative lateness values are con-
sidered as slack and are acceptable. The instantaneous late-
ness of all tasks within the input buffers and task queues are
checked and if they are late, then this is taken as an indica-
tion of the system being overloaded. Subsequently, any new
video streams are rejected until the system has sufficient free
resources.

The problem of determining a suitable value for dependent
subtask deadlines in distributed real-time systems has been
addressed in the past by Kao and Garcia-Molina [13]. Their
method, termed equal flexibility scheme (EQF) divides the
total remaining slack among the subtasks in proportion to
their estimated execution times. They use this deadline as-
signment scheme to reduce individual task deadline miss rate
when the end-to-end deadline of a task-set is known, but the
subtask deadlines are not known. Eq.7 shows the calcula-
tion of the absolute deadline using their EQF scheme; where
we have substituted the worst-case-execution time ci as the
expected task execution time and m represents the total
number of tasks in the task-set/job.

di = ai + ci +

[
De2e − ai −

m∑
j=1

cj

]
×

 ci
m∑
j=i

ci

 (7)

5.2.2 Free Space in Buffers and Task Queues
All tasks that arrive into the system are held in the global

input buffers until they are ready to start execution. There
exists certain scenarios, particularly during heavy workload
conditions, where the global buffers do not have any space
to accommodate new tasks (buffer overflow). If there is no
available space in the global input buffer then the admis-
sion of new video streams should be avoided and if any jobs
are due to be dispatched in that time instant, they will be
dropped by the task dispatcher.

Once a task τi is ready to be executed (i.e. all the depen-
dencies are available) it will be released to the respective

PEs task queue. If the tasks priority pi is higher than the
other tasks in the task queue, then it will execute imme-
diately, else it will wait in the queue with its status set to
blocked. Once a task completes execution its output is sent
to the dependency buffer of the processing element that is
executing its child tasks. Similar to the task queues, the
dependency buffers have a finite space. Hence during high
load conditions the task queues of the processing elements
and/or the dependency buffers may be full, and in these con-
ditions any new video streams are rejected until the system
has sufficient free resources.

5.2.3 Dropped Tasks
The system may become overloaded after a new video

stream has been admitted. The admitted and live video
stream may drop jobs if the global input buffers are full. It
is important to note that tasks are not dropped after they
have been dispatched into the system. From a user perspec-
tive, when jobs are dropped the video playback will freeze
for the duration of the job/GoP (i.e. 0.48 seconds). The RM
keeps track of any dropped tasks of a live stream. Dropped
tasks of a live video stream is taken as an indication to an
overloaded system, and subsequently the RM will reject any
new video stream requests, until a given point in time where
none of the live streams in the system have any dropped
tasks.

All of the above heuristics are then combined and checked
sequentially in the order they are presented such that if any
one of them fails, a new video stream request is denied ac-
cess.

6. EVALUATION METHOD

6.1 Abstract System-level Simulation
To explore the predictability and performance guarantees

offered by the different proposed admission control tests, we
implemented a high-level, discrete-event, abstract simula-
tor. Figure 4 shows the interaction and execution sequence
between the task dispatcher, resource manager, processing
node and the NoC model of the simulator.

We implement the light-weight NoC simulation compo-
nent as described in [11] to model the interference patterns
of the traffic flows being transmitted on the NoC intercon-
nect. This model considerably reduces the simulation time
taken to model the NoC, as it only simulates the system
at the time instants when packets enter or exit the NoC.
The NoC model maintains the state of the NoC as a list
of priority sorted flows, with additional information that is
required by the algorithm such as their active status, in-
terference sets, remaining payload etc. As time progresses
the algorithm activates and deactivates the flows based on
their interference set, and essentially simulates the activity
of the direct and indirect interference of each flow via event
firing. The NoC model notifies the RM of flows that have
been completed, so that successor tasks can be released to
the PEs, as shown in Figure 4.

The MPEG frame execution time calculation was selected
randomly from a uniform distribution and the worst-case
execution time (WCET) of a task in the taskset was chosen
to be the highest randomly selected execution time. The
bounds of the uniform distribution was set such that the
WCET of an 720x576 I-frame was calculated as 0.097 sec-
onds. The relationship between spatial resolution and com-

Figure 4: Execution sequence of abstract simulator

Parameter name Value
Number of processing nodes 9 (3x3)
Task queue size 10
Dependency buffer size 10
Global input buffer size 12
NoC arbitration cost 7 clock cycles
NoC frequency 1000 MHz
Min/Max inter-GoP dispatch rate (0.48, 0.72)
Min/Max inter-video dispatch rate (0.53, 0.76)
Min/Max videos per workflow (6, 7)
Min/Max GoPs per video stream (7, 8)

Table 1: Fixed simulation parameters

putation cost was implemented at a MPEG-block level as
described in [18].

The max/min videos per workflow and max/min GoPs per
video stream given in Table 1 defines the number of simul-
taneous video streams active at any given time. As shown
in Figure 1 video streams length and number of streams in a
workflow can vary. The values given in Table 1 ensure that
the video streams in each workflow will be densely packed
to simulate heavy workload throughout the simulation time.
The min/max video and GoP dispatch rates define the vari-
able arrival rate of the videos and tasks respectively, and
can be used to mimic the notion of variable bit rates and
bandwidth fluctuations of the video streaming process. The
maximum inter-GoP dispatch rate is used as the task and
flow periods (i.e. ti and Ti) for calculating the WCRT used
in the deterministic admission control tests. Video stream
resolutions were chosen randomly from different resolution
combinations (e.g. 720x576, 426x240 and 320x240).

6.2 Experiment Design
The experimental work investigates the effect that the dif-

ferent two AC tests (heuristic and deterministic) had on
several measurement metrics: predictable guaranteed video
stream decoding service and system utilisation. Our defini-
tions of predictability and system utilisation was previously
stated in Section 4.

The heuristic-based admission control tests were evalu-
ated for a range of IBLα and TQLα values and using the
EQF subtask deadline assignment scheme given in Eq.7 which
is be denoted asHeu D-EQF. The heuristic based tests are
compared with the following baseline AC-tests: the situa-
tion where no admission control test was used (denoted No-
AC) and when a deterministic AC test (denoted Determ.)

is used. Hence the response variables in the experiment are
predictability and system utilisation and the treatment is
the different admission control test types. The hypothesis is
that there exists a reasonable combination of the two heuris-
tic parameters IBLα and TQLα, such that a sufficiently
good compromise can be made between the two response
variables. The load profile of the system is characterised by
the number of simultaneous workflows that are active in the
system at a given time. It is also important to note that
the spatial resolution of the video streams processed by the
system also directly affects the system load. The situation
where 8 simultaneous workflows are present in the system is
considered a low load condition since the number of work-
flows are less than the number of PEs in the platform; sim-
ilarly 16 simultaneous workflows is considered a high load
condition. We assume most often this soft real-time system
will operate under low load conditions, however it is impor-
tant to analyse and compare the system behaviour under
high load conditions as well, where significant differences in
deadline misses may occur. High load simulations consisted
of 105 separate video streams each with an average of 84
tasks each. Each experiment was run for 35 different ran-
dom unique seed values, and the results were later analysed
by plotting the mean of all the runs.

The terms schedulable, late and rejected video streams are
used throughout the results explanation. Schedulable video
streams are those that were admitted and successfully pro-
cessed without incurring any positive lateness or dropping
any of their jobs. Late video streams are those which were
admitted but some of the jobs had a positive lateness and/or
jobs were dropped. Rejected video streams are those which
the AC did not allow into the system due to either failing
the admission control test or the system being overloaded.

Instantaneous system utilisation is difficult to measure in
a system that deals with millisecond computation times,
without causing the simulation to be slow and incurring
large amount of data points. As an alternative, we measure
the system busy time which is directly related to system util-
isation. The busy time of each PE is tracked and added up
at the end of the simulation time to analyse the total busy
time of the system. A higher busy time means the system
has a high utilisation, which is preferred as our secondary
goal is to improve system utilisation.

7. EXPERIMENTAL RESULTS
The experimental results shown in Figures 5,6 and 7 need

to be analysed in parallel to view the trade-off between pre-
dictability and utilisation. For example, we can see in AC-
tests that show good performance in predictability show rel-
atively low-utilisation levels.

Figure 5 shows a bar chart of the number of video streams
that were successfully schedulable (green), late (blue) and
rejected (red) for different of AC tests under light and heavy
load conditions. The baselines, No-AC and Deterministic
are shaded in light-grey. The ratios on the x-axis repre-
sents the IBLα and TQLα values respectively; for example
Heu(0.3, 0.7) denotes the heuristic based admission control
test results with IBLα = 0.3 and TQLα = 0.7. A full fac-
torial parameter test was carried out (i.e 0.1 to 1.0 with
step-size 0.1 for both ratios; all permutations), however due
to space considerations only a selected few are shown. The
data shown in Figures 5,6 and 7 represent the mean values
of the 35 simulation runs.

Figure 5: Predictability guarantee (video stream admission) results for different admission control tests.
*value in brackets denotes number of jobs dropped due to global input buffers being full. Number of simul-
taneous workflows - 8 (low-load) and 16 (high-load)

Figure 6: Completed job lateness distribution for different admission control tests. Number of simultaneous
workflows : 8 (low-load) and 16 (high-load)

Figure 7: Percentage system busy time, for different admission control tests. Number of simultaneous
workflows - 8 (low-load) and 16 (high-load)

In Figure 5 we can see that when the deterministic AC-
test is used in both low and high load conditions - none of
the admitted video streams incur any lateness or dropped
tasks, but has a high rejection rate. Hence this test can be
considered to be safe, and can be used to guarantee a high-
degree of predictable service. When no admission control
test is used (i.e. No-AC) the system admits all incoming
video streams unless the global input buffers do not have
available free space to hold the new tasks. Hence a large
number of admitted video streams miss their deadlines un-
der the high-load situation, while only few video streams
are rejected. The No-AC test therefore provides no timing
guarantee to the incoming video streams. As mentioned in
Section 5.2.3, as video streams are admitted into the system,
the load of the system will increase. When the task-queues
and input buffers become saturated the active streams will
start to drop new incoming jobs. For example, in the 16
workflow scenario when the No-AC test is used, there are
on average, 156 jobs that were dropped by the admission
controller due to the global input buffers being full, simi-
larly in the Heu(1.0,1.0) AC-test we can see on average, 27
jobs being dropped. The results show that the Heu.D-EQF
scheme offers similar service guarantees as the deterministic
AC-test, where no admitted streams incur lateness, how-
ever on average, the rejection rate of this AC-test is lower
than the deterministic AC-test, giving a more tighter guar-
anteed decision. The IBLα and TQLα ratio based AC-tests
however showed a range of different results depending on
the ratios used. The results shown in Figure 5 illustrates
that smaller ratios lie closer to the deterministic tests while
higher ratios show results similar to that of the No-AC test
but with better (i.e. lower) rejection rates.

Figure 6 shows box-plots of the distribution of job-lateness
for the different AC-tests under low and heavy load condi-
tions. Lateness is calculated at a job level, and only jobs
that incurred positive lateness are shown in this figure. The
job lateness results shown in Figure 6 correlates well with
the results shown in Figure 5. Also from Figure 6 we can
see the maximum and mean job lateness increase in a sim-
ilar manner to the distributions shown in the box plots.
The maximum job lateness denotes the largest data point
in the samples, and an increasing trend is seen as the IBLα
and TQLα ratios increase. In the 16 workflow scenario,
the streams that were admitted when No-AC test is used
shows the most lateness while the deterministic AC-tests
show no lateness to jobs as none of the streams that were
admitted were late. The Heu.D-EQF AC-test shows similar
results to that of the deterministic AC-test results, where
none of the streams incurred lateness. We can see that the
maximum lateness of the late jobs increase as higher values
of IBLα and TQLα are used, such as in the Heu(0.5,0.5),
Heu(0.7,0.7) and Heu(1.0,1.0) cases. However, because there
are no late streams in the lower heuristic ratios, we cannot
see any lateness data.

Figure 7 shows a bar chart of the percentage busy time
of all PEs, compared between different AC-tests under low
and heavy load conditions. The percentages shown is the
ratio between the total PE busy time and the total simula-
tion time displayed as a percentage. Higher values are more
desirable as they correlate to higher utilisation. Admitting
more streams into the system (regardless of whether they are
late or schedulable), improves system utilisation. However
if the admitted streams start to drop many jobs, as in the

case of the No-AC and Heu(1.0,1.0) - 16 workflows case, then
utilisation levels will drop due to the relative lack of activity
in the system. For the tested workload the peak system util-
isation is at 80% after which the buffers begin to overflow,
as shown in the No-AC test case. Both the quantity of ad-
mitted video streams and their respective spatial-resolution
(which corresponds to computation complexity), correlate
directly to a more busy system. Admitting a few high-
resolution video streams may cause the system to be more
busy than when admitting relatively more lower-resolution
video streams.

The deterministic AC-test has the lowest system busy
time which corresponds well with the high number of stream
rejections shown in Figure 5. When using the Heu.(D-EQF)
AC test the system busy time is better than the determinis-
tic AC-test which is because of the extra streams that were
admitted into the system. In the high load condition the No-
AC tests show the highest PE-busy time, as it rejects only 18
streams on average, due to buffer-overflow. Heuristic based
AC-tests with higher values of the IBLα and TQLα ratios
(e.g. Heu(1.0,1.0), Heu(0.7,0.7)) show the highest amount
of average system busy time consistently for high and low
load conditions. Lower ratios on the other hand, show re-
sults similar to the deterministic AC-tests, since they too
reject a relatively high number of video streams, and there-
fore the system is less busy.

7.1 Summary of results
The results in Figures 5, 6 and 7 confirm that determinis-

tic admission control tests offer maximum predictable tim-
ing guarantees without any disruption to admitted streams.
However this comes at a price of heavily under-utilising the
system. On the other hand, using the No-AC test increases
system utilisation significantly but at the cost of offering
no service guarantees to the user. Heuristic based tests
do not attempt to find optimality in both objectives but
present a range of values which have different levels of pre-
dictability and utilisation. For example a combination such
as IBLα = 0.3 and IBLα = 0.7 offers about 40% higher util-
isation than the deterministic AC-test and 30% lower than
the peak utilisation, with siginificantly less lateness increase
(less than 0.45s on average).

The heuristic ratios IBLα and TQLα can be categorised
into different ranges namely, High: (1.0 ≤ α ≤ 0.7), Medium:
(0.6 ≤ α ≤ 0.4) and Low : (0.5 ≤ α ≤ 0.1). A general guide-
line that can be given when choosing appropriate values for
these ratios is to select a higher value of IBLα combined
with med/high values of TQLα; as this provides the best
tradeoff between utilisation and predictability. On average
the weight of the IBLα ratio appears relatively more signif-
icant than TQLα. A specific combination of these heuristics
parameters can then be used to achieve a balance between
high predictability and higher utilisation.

8. CONCLUSION AND FUTURE WORK
In this paper, we investigated a heuristic-based approach

to compromise between predictability guarantees and sys-
tem utilisation, when making admission control decisions on
a NoC-based multi-core platform serving multiple dynamic
video decoding requests. We have shown that our approach
improves utilisation over the deterministic admission con-
trol test while maintaining acceptable lateness to real-time
jobs processed, therefore showing better predictability guar-

antees than when no admission control is used.
The lateness calculation of the subtasks of the jobs that

are live in the system depends on an accurate and optimum
calculation of their deadlines. We use a ratio of the end-to-
end deadline of the jobs to calculate the individual deadlines
of the subtasks within the jobs, thereby enabling us to de-
termine the instantaneous lateness of the tasks running in
the system. We use this as a heuristic to make admission
decisions. We have shown via system level simulation the
performance comparisons between using a heuristic based
admission control approach and the baseline deterministic
and no admission control tests. We have also compared
against a more fair slack distribution approach to calculat-
ing the subtask deadlines. Simulation results show that the
heuristic based approach offers a range of utilisation and pre-
dictability values such that, the systems designer can choose
the IBLα and TQLα thresholds depending on the require-
ments of the video streaming application and/or the load
profile. For example higher ratios can be used if higher sys-
tem utilisation is required or lower ratios can be used when
predictable services are required. Potential future work in
this research can be to explore better application specific,
dynamic task mapping and priority assignment schemes to
improve the latency and utilisation of the system.

9. ACKNOWLEDGEMENTS
We would like to thank the LSCITS program (EP/F501374/

1) and DreamCloud project (611411), for funding this re-
search and RheonMedia Ltd. for providing industrial case
studies.

10. REFERENCES
[1] N. Audsley, A. Burns, M. Richardson, K. Tindell, and

A. J. Wellings. Applying new scheduling theory to
static priority pre-emptive scheduling. Software Eng.
Journal, 8(5):284–292, Sept. 1993.

[2] C. Blanch, R. Baert, P. Coene, M. D’Hondt, Z. Ma,
and R. Wuyts. Runtime scheduling for video decoding
on heterogeneous architectures. In Proc. of the 19th
Int. Conf. on Real-Time Networks and Systems, pages
195–204, 2011.

[3] S. Che, J. Li, J. Sheaffer, K. Skadron, and J. Lach.
Accelerating compute-intensive applications with
GPUs and FPGAs. In Symp. on Application Specific
Processors SASP 2008, pages 101–107, June 2008.

[4] N.-M. Cheung, X. Fan, O. Au, and M.-C. Kung. Video
coding on multicore graphics processors. IEEE Signal
Processing Magazine, 27(2):79–89, Mar. 2010.

[5] J. Dengler, C. Bernhardt, and E. Biersack.
Deterministic admission control strategies in video
servers with variable bit rate streams. In B. Butscher,
E. Moeller, and H. Pusch, editors, Interactive
Distributed Multimedia Systems and Services, number
1045 in Lec. notes in Computer Science, pages
245–264. Springer Berlin Heidelberg, Jan. 1996.

[6] M. Ditze, P. Altenbernd, and C. Loeser. Improving
resource utilization for MPEG decoding in embedded
end-devices. In Proc. of the 27th Australasian Conf.
on Computer Science - Vol. 26, ACSC ’04, page
133–142, Darlinghurst, Australia, Australia, 2004.
Australian Computer Society, Inc.

[7] S. Egger, T. Hossfeld, R. Schatz, and M. Fiedler.
Waiting times in quality of experience for web based
services. In 4th Int. Workshop on Quality of
Multimedia Experience, 2012, page 86–96. IEEE, 2012.

[8] J. Henkel, W. Wolf, and S. Chakradhar. On-chip
networks: a scalable, communication-centric embedded
system design paradigm. In Proc. of the 17th Int.
Conf. on VLSI Design, 2004, pages 845–851, 2004.

[9] O. Hohlfeld, E. Pujol, F. Ciucu, A. Feldmann, and
P. Barford. BufferBloat - how relevant? a QoE
perspective on buffer sizing. Technical report,
Technische Universitat Berlin, 2012.

[10] L. S. Indrusiak. End-to-end schedulability tests for
multiprocessor embedded systems based on
networks-on-chip with priority-preemptive arbitration.
Journal of Sys. Arch., May 2014.

[11] L. S. Indrusiak and O. M. dos Santos. Fast and
accurate transaction-level model of a wormhole
network-on-chip with priority preemptive virtual
channel arbitration. In DATE 2011, page 1–6. IEEE,
2011.

[12] D. Isovic and G. Fohler. Quality aware MPEG-2
stream adaptation in resource constrained systems. In
Proc. of 16th Euromicro Conf. on Real-Time Systems,
ECRTS 2004, pages 23–32, 2004.

[13] B. Kao and H. Garcia-Molina. Deadline assignment in
a distributed soft real-time system. IEEE Trans. on
Parallel and Distributed Systems, 8(12):1268–1274,
Dec. 1997.

[14] C. Lu, J. A. Stankovic, S. H. Son, and G. Tao.
Feedback control real-time scheduling: Framework,
modeling, and algorithms*. Journal of Real-Time
Systems, 23(1-2):85–126, July 2002.

[15] D. Marinca, P. Minet, and L. George. Analysis of
deadline assignment methods in distributed real-time
systems. Journal of Computer Comms.,
27(15):1412–1423, Sept. 2004.

[16] Z. Shi, A. Burns, and L. S. Indrusiak. Schedulability
analysis for real time on-chip communication with
wormhole switching:. Int. Journal of Embedded and
Real-Time Comms. Systems, 1(2):1–22, 2010.

[17] J. Stankovic, C. Lu, S. Son, and G. Tao. The case for
feedback control real-time scheduling. In Proc. of the
11th Euromicro Conf. on Real-Time Systems, 1999,
pages 11–20, 1999.

[18] Y. Tan, P. Malani, Q. Qiu, and Q. Wu. Workload
prediction and dynamic voltage scaling for mpeg
decoding. In Proc. of the 2006 Asia and South Pacific
Design Automation Conf., pages 911–916. IEEE Press,
2006.

[19] H. Vin, P. Goyal, and A. Goyal. A statistical
admission control algorithm for multimedia servers. In
Proc. of the 2nd ACM Int. Conf. on Multimedia,
MULTIMEDIA ’94, page 33–40. ACM, 1994.

[20] Q. Zhang, W. Zhu, and Y.-Q. Zhang. Resource
allocation for multimedia streaming over the internet.
IEEE Trans. on Multimedia, 3(3):339–355, Sept. 2001.

[21] R. Zimmermann and K. Fu. Comprehensive statistical
admission control for streaming media servers. In
Proc. of the 11th Int. Conf. on Multimedia,
MULTIMEDIA ’03, page 75–85. ACM, 2003.

