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ABSTRACT
This paper introduces an evolutionary multi-objective opti-
misation algorithm to facilitate fast and efficient task alloca-
tion of hard real-time embedded systems with Networks-On-
Chip (NoC) as the interconnection at the early design stage,
where evaluating as many as possible solutions is crucial.
Our approach uses analytical fitness functions to provide
fast evaluation of large number of solutions; a contrast to
simulation-based optimisation technique, whereby it tends
to be not only impractical when the design space is very large
but also unfeasible as far as hard real-time systems are con-
cerned. The proposed algorithm guarantees the predictabil-
ity in timing behaviour of the systems whilst minimising
energy dissipation whenever tasks are reallocated and their
packets are rerouted, which differs from the state-of-the-art
approaches. In addition, not only it can explore the alloca-
tion of tasks but also the encoding of the data packets. The
evidence gathered from case studies shows that the proposed
algorithm is able to find schedulable allocation of tasks, pre-
serving it whilst further minimising energy dissipation.

1. INTRODUCTION
This paper addresses the early design space exploration

problem in NoC-based hard real-time embedded systems de-
sign for finding the allocation of tasks which can meet the
hard real-time constraints and low energy requirement. Our
approach to this problem is an evolutionary multi-objective
optimisation that uses analytical fitness functions to cal-
culate the energy dissipation of NoC and to validate the
schedulability of any task and communication message in
the systems. The integration of such functions into the op-
timisation algorithm is an essential step to enable fast and
efficient coverage of the design space.

The design of NoC-based hard real-time embedded sys-
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tems must take into account the schedulability of the sys-
tems besides other objectives such as meeting the energy
requirement. Such systems differ with non-real-time sys-
tems in such a way that just having average performance is
not sufficient but each of the application task and message
must be ensured to be schedulable; if not the systems can-
not be guaranteed to be predictable. This can be achieved
by ensuring that each of them must be able to meet their
respective deadline. If a deadline is missed, their expected
timing behaviour will be interrupted and no guarantee that
the systems will behave accordingly.

However, the state-of-the-art energy-aware task allocation
approaches for NoC based embedded systems lack the ability
to validate the strictness of the timing constraints for this
type of systems, limiting their application to only average
case. Every time each task is reallocated to another core
and its message is rerouted, significant changes in response
time of the task and network latency of its message occur.
In a worst-case scenario, maximum interference is likely to
happen and the expected behaviour of the systems might
be disrupted, thus the worst-case response time of the task
and worst-case latency of its message must be analysed in
advance. Allocating tasks near to each other in order to
reduce the number of network hops is not sufficient, though
might be effective in reducing the energy consumption in
average case.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses the background of this research and sec-
tion 3 explains the system model that is used by the pro-
posed algorithm. In section 4, we propose an evolutionary
multi-objective optimisation algorithm to address the prob-
lem of finding energy-aware task allocation for NoC based
hard real-time embedded systems. Section 5 and 6 intro-
duce the fitness functions for evaluating every allocation of
tasks. Then followed by case studies in section 7 to illus-
trate the feasibility of our approach and lastly we conclude
the contribution in section 8.

2. BACKGROUND RESEARCH
Many researchers had used simulation in multi-objective

optimisation to evaluate performance and energy for NoC-
based systems. Ascia et al. [1] used simulation to evalu-
ate allocation of tasks in their GA-based optimisation with
the targeted objectives are to minimise latency and aver-
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age power consumption. However, simulation runtime poses
severe limitation to early exploration of design when every
solution in very large design space needs to be evaluated
under highly detailed execution model. Unfavourable im-
pact of the high simulation time hinders many alternative
solutions from being considered, leading to inefficient design
space exploration. A common technique such as pruning
the design space [10] is normally used to reduce the number
of simulation runs. However, even with the reduced num-
ber of simulation runs, a simulation still depends on the
appropriate stimulus to evaluate worst-case scenario. It is
a challenging task to construct a stimulus that could really
perform this scenario (if any can be found); hence it becomes
a hurdle to validate the hard real-time constraints with this
technique.

Other works [18, 6, 9] applied analytical methods to eval-
uate task allocation but did not address the optimisation
problem of hard real-time embedded systems. In [18], the
authors proposed a GA-based optimisation approach to min-
imise latency and average energy consumption between swit-
ches. Their assumption is that both metrics can be reduced
by minimising the number of average network hops required
by packets to travel over the NoC. However, route minimi-
sation can increase packet contention and such negative im-
pact on latency is not taken into account in their evaluation
model.

Jena [6] proposed a two-stage optimisation technique, tar-
geting minimisation of average power consumption and cost,
however minimisation of latency is not considered in their
approach. Similar to two-stage optimisation in [6], Ned-
jah et al. [9] proposed an optimisation technique to min-
imise power, area and execution time. The contention in
the transmission channel is taken into account by applying
time penalty, which is the product of total flits and the time
taken when travelling through channel. However, this does
not take into account how much interference and latency
each flow will receive when contention occurs in the chan-
nel.

The only approaches that can statically allocate tasks to
multiple cores in NoC-based hard real-time embedded sys-
tems were based on single-objective optimisation [7, 14].
However, these approaches lack insight on the impact of task
allocation to the energy dissipation of NoC. In our previous
work [15], we have done the multi-objective optimisation,
but in this paper we consider multi-objective optimisation
with more sophisticated energy macromodels and optimisa-
tion based on encoding.

3. DESIGN METHODOLOGY & SYSTEM
MODEL

The proposed optimisation algorithm is aimed to find static
allocation of tasks at system level design. At this level of ab-
straction, the application and platform models resulted from
separation of concerns can be combined by mapping tasks
to the cores. Remapping of both models and the analysis of
performance and energy can be iteratively performed until
it stops when a termination condition is reached. Figure 1
shows how the algorithm performs the mapping process.

An application model describes the design-time character-
istics of computation and communication load imposed by
an application. It consists of a task set and a set of messages;
tasks that are assigned at different cores send messages to

Figure 1: The multi-objective optimisation flow

communicate between each other. Packetisation of a mes-
sage before its transmission produces one or several packets.
A traffic flow represents a series of packets sent over the NoC
from a source task to a destination task.

Following a common practise in real-time analysis (RTA)
based system design, tasks and their respective messages can
be described as the following tuples. The application model
is characterised with timing properties (e.g. period T and
deadline D) because RTA normally requires these properties
to calculate the upper bounds of task response time and flow
network latency.

Task = {C, T, V,D}

C the task computation time

T periodic interval of the task release

V priority level of the task

D deadline of the task’s end-to-end response time

Msg = {So,De, T, V, F}

So sender of the message

De receiver of the message

T periodic interval of successive packet release

V priority level of the message

F length of the message

We assume that the end-to-end response time upper bound
of a task that communicate with other task in different core
includes the amount of time since its release until the last
packet that it sends arrive at the destination router in worst-
case scenario. In our assumption, we also consider that a
task transmits a message after it has finished its execution
and the overhead of the network interface is negligible. In
order to meet the hard real-time constraints, a task’s end-
to-end response time must not exceed its deadline (D).

The platform is modelled to represent the architecture of
an on-chip multicore system that uses NoC as the intercon-
nection. As shown in Figure 2, we implemented the platform
as 2D Mesh with a NoC architecture that consists of many

4



routers with deterministic routing and wormhole switching.
The arbitration unit supports flit-level pre-emption to con-
trol the access of packets to shared links. A processing core
can run more than one tasks and a link can be shared by
multiple traffic flows. The scheduling policy of tasks and
flows is fixed-priority pre-emptive policy.

Figure 2: NoC-based system model

4. OPTIMISATION ALGORITHM
The proposed multi-objective optimisation algorithm (MO

GA) is based on the work published in [3], which uses the
concept of evolution in a population to produce better in-
dividuals. The improvement of the individuals is a continu-
ous process until a termination condition is reached. During
optimisation, the population undergo three transformations:
the parent population, the offspring population and the com-
bined population. The overview of the process flow of the
algorithm is shown in Figure 1.

In this algorithm, an individual represents a configuration
that contains instructions on how to allocate tasks to cores
and how to configure the encoding of traffic flows. Each in-
dividual is a possible solution to the problem and can be
defined by a uniform representation called chromosome; a
chromosome is built upon a set of small units called genes.
Figure 3b shows the chromosome format of the proposed
algorithm. The chromosome is partitioned into two main
parts, representing a set of tasks (green) and a set of traffic
flows (orange). In the first part, each gene contains a loca-
tion of the core (an integer index) on which a task is assigned
to in the system. For the second part, each gene contains
a binary decision (0 or 1) that decides if the traffic flow
should be encoded or not. The total number of tasks and
traffic flows of the application determines the total length of
the chromosome.

Every time a new individual (or configuration) is pro-
duced, it will be evaluated by the fitness functions (Uti, Ufi,
Pm) to determine its quality. The first fitness function (Uti)
is used to calculate the number of unschedulable tasks. The
second fitness function (Ufi) is used to calculate the num-
ber of unschedulable traffic flows. The third fitness function
(Pm) is used to calculate the total energy dissipated by NoC.
Before the evaluations can be performed, tasks are assigned
to the cores as given by the configuration and then their
traffic flows are routed. Then, the worst-case response time
of each task and the worst-case latency of each flow is calcu-

lated and compared with their deadline. A traffic flow will
be encoded and its energy dissipation is calculated if it is
true (or left unencoded if false). The total energy dissipated
by NoC is given by sum of the energies dissipated by all
flows.

In the early phase of evolution, the parent population con-
tains a set of randomly generated individuals. Every in-
dividual is assigned with two quality attributes [3] known
as non-domination level and crowding distance. These at-
tributes are determined based on values calculated by the
fitness functions. Once a parent population is created, its
individuals will be manipulated by four type of operators
that perform specific functions relevant to evolution process.
These operators are known as selection operator, crossover
operator, mutation operator and elitism operator.

The selection operator selects two individuals to become
parents based on binary tournament selection procedure.
This procedure randomly selects two individuals and deter-
mines a winner through comparison of the quality attributes.
An individual who has lower non-domination level than its
opponent becomes the winner. However, when two individ-
uals have the same non-domination level, one with larger
crowding distance is considered as the winner. The winner
becomes a parent and the same procedure is repeated to
choose its mate.

In a mating process or crossover, genes from both par-
ents are exchanged to produce new offspring. The amount
of genes that are exchanged depends on a crossover point
drawn across both chromosomes of the parents; hence its
name is single-point crossover. This point is randomly de-
termined and all genes at the right side of the point are
exchanged whereas genes at the left side remain unchanged.
However, not all parents are being manipulated by the cross-
over operator; some are passed to the next generation with-
out crossover depending on a probability called crossover
rate. After crossover, a part of genes in offspring chro-
mosome closely resembles genes of their parents. Hence,
population may be filled with individuals that are roughly
the same kind as their parents. In order to promote diver-
sity, mutation is performed on individuals by altering certain
genes of theirs depending on a probability called mutation
rate. A gene that has a random number less than a muta-
tion rate will be mutated by replacing its value with a new
value.

The outcome of the operators is an offspring population.
At this stage, two types of population exist: the parent
population and the offspring population. Both populations
might contain individuals with good criteria and exclusion
on either side may prohibit the best individuals from pro-
ceeding to the next generation. The elitism operator is re-
sponsible for retaining the best individuals from both popu-
lations. During this process, the parent population and the
offspring population are merged together to create a transi-
tion called the combined population. Comparison is made
between all individuals in this population to filter only the
best for the next parent population. All the individuals in
the lowest non-domination level to the best n-level are se-
lected and grouped into a new population until its maximum
size is reached. If the last best level has more potential indi-
viduals, then the crowding distance is used as the selection
criteria. The new parent population replaces the old par-
ent population and next cycle of evolution continues until a
termination condition is reached.
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(a) Task allocation (b) Task allocation & data packet encoding

Figure 3: Chromosome structures

5. SCHEDULABILITY ANALYSES
Schedulability of tasks and traffic flows need be deter-

mined when tasks are allocated to cores in hard real-time
systems. This requires systematic analysis of schedulability
and abundant of RTAs proposed since 1960s can be applied
for this purpose. In this paper, The RTAs proposed in [2]
and [17] are extended and then integrated into the opti-
misation algorithm to enable calculation of task end-to-end
response time upper bounds.

5.1 Analysing the Schedulability of Tasks and
Traffic Flows

In a hard real-time system, each task can be assigned with
a fixed priority level. This is to enable pre-emption of low
priority tasks by their high priority counterparts to give the
latter guaranteed access to the shared computing resource.
Interference caused by the pre-emptive actions can delay
the response time of tasks especially those with low priority
level. The classical schedulability analysis of single proces-
sor [2] can be applied to analyse the worst-case response
time of tasks. Application of this analysis is based on the
assumption that each processor has its own priority-ordered
queue due to the partitioning scheduling in multiprocessors
[4]. Equation (1) calculates the worst-case response time
(ri) of a task. If for each task i of a task set, ri ≤ Di,
then the task set is deemed schedulable on the processor,
where ri and Di is the response time and deadline of task
i respectively. The first term of this equation refers to the
computation time (ci) of task i when no interference occurs.
The second term refers to the total interference experienced
by task i caused by high priority tasks in the interference
set (hp(i)).

rn+1
i = ci +

∑
∀Taskj∈hp(i)

⌈
rni
tj

⌉
cj (1)

Similar to tasks, traffic flows on shared NoC links are as-
signed with fixed priority levels and packets that belong to
a traffic flow inherit the same priority. Routers guarantee
accesses for high priority packets by pre-emptively delay the
low priority packets from using the shared NoC links. This
arbitration policy causes not only direct interference but also
indirect interference to packets with low priority level. The
definition of direct interference is rather straightforward; it
is the amount of interference caused by high priority traf-
fic flows that share the same path as the observed traffic
flow. Indirect interference is caused by the traffic flows with
higher priority level than the packets that cause direct in-
terference, sharing the same path as them but not directly
with the observed traffic flow. This concept is generalised
in equation (2) to calculate the worst-case latency (Ri) of
a traffic flow [17]. For an observed flow i, the first term of
equation (2) represents its basic latency (Ci) whilst the sec-
ond term refers to the total latency caused by the direct and

indirect interference. The maximum deviation from release
period (JR

j ) of flow j and the maximum interference it re-

ceives from direct and indirect high priority flows (JI
j ) are

known as release jitter and interference jitter respectively.
Given a set of traffic flows, this set is deemed schedulable if
for each flow i, Ri ≤ Di, where Di is the deadline of flow i.

Rn+1
i = Ci +

∑
∀Flowj∈SD

i

⌈
Rn

i + JR
j + JI

j

Tj

⌉
Cj (2)

We extended the real-time analyses [2, 17] to enable the
calculation of task end-to-end response time upper bound.
The end-to-end response time of a task is defined from the
moment it is released until its last packet reaches the desti-
nation router. A task is schedulable if its upper bound does
not exceed its deadline (D), which we assume as equivalent
to period (T ) of the task i.e. D = T . A task set allocated
to a core is schedulable if every task in this set can meet its
deadline. However, packets sent from a task that communi-
cate with other task located at a different processor may not
be necessarily schedulable if they fail to meet the deadline of
their sending task (e.g. due to the delay of task execution).
Since we assume the release of a traffic flow is only after the
task that generates it finishes its execution and overhead
to write payload to NoC is negligible, the release jitter of
a traffic flow is influenced by only the worst-case response
time of task that releases it. Then, it is immediate that the
release jitter of flow i is JR

i = ri. Therefore, from equation
(2):

Rn+1
i = Ci +

∑
∀Flowj∈SD

i

⌈
Rn

i + rj + JI
j

Tj

⌉
Cj (3)

A task is schedulable if ri ≤ Di, whereas a traffic flow
is schedulable only if JR

i + Ri ≤ Di or after substitution
ri +Ri ≤ Di.

5.2 First Objective
Unschedulable task set can cause unpredictable behaviour

in the systems due to deadline miss. Therefore, the first
objective of the optimisation algorithm is to minimise the
number of deadline miss. From equation (1) and (3), worst-
case response time of a task and worst-case latency of a flow
can be calculated respectively. The following comparisons
determine if a task set and their respective packet flows are
schedulable in the system.

Taski : if ri > Di ⇒ Uti = 1
Flowi : if ri +Ri > Di ⇒ Ufi = 1

Given that Uti and Ufi is the count for unschedulable
task and flow respectively, then the metric representing the
schedulability of the system is the total number of unschedu-
lable tasks and flows. As shown in equation (4), minimisa-
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tion of this metric is the first objective for the optimisation.

Obj1 = min(

k∑
i=1

Uti +

l∑
i=1

Ufi) (4)

6. NOC ENERGY MACROMODEL
Because of the large variety of NoC architectures, it is

not possible to construct a universal energy macromodel
to describe the energy consumption in NoCs. Our focus
in this work is to develop a simple yet expressive energy
macromodel for NoCs capturing the main effects observed in
the energy consumption of NoCs in typical scenarios. This
macromodel will be used to analyse the effect of task al-
location and encoding in different (broad) classes of NoC
architectures. The macromodel uses physical parameters to
abstract the hardware architecture and application param-
eters to model the use of the NoC.

We restrict our attention to energy optimised NoC de-
signs, where current state-of-the art low-power techniques
are applied, as for example, clock-gating, power-gating, and
crosstalk minimisation techniques. Under this restriction,
it can be assumed that the energy used by the NoC can
be closely approximated by the sum of the energy that is
required by each of the transmitted packets. A packet is
composed by header and data flits. Since the processing
and statistical characteristics of those two kinds of flits are
completely different, it is necessary to describe their contri-
butions separately. In the sequel, we use the sub index H
and D for header and data respectively. There are three
main elements involved in the energy consumption of the
NoC: the network interface (N), the router (R), and the
links (L). Let us denote as ENH , ERH , and ELH their re-
spective energy consumption when transmitting the header
flits. Similarly, END, ERD, and ELD are the energy for a
data flit corresponding to the network interface, router, and
data link respectively. We assume a mesh topology. By a
simple topological analysis, it is clear that a packet requir-
ing h hops to move from the source to the destination will
require that each flit traverse 2 network interfaces, (h + 1)
routers and h links. Using an approach similar to [11] but
employing energy instead of power, the energy consumption
associated with transmitting an n-flits packet is:

(5)
Epack = (2ENH + ERH) + h(ELH + ERH)

+ n(2END + ERD) + nh(ELD + ERD)

Let us observe that the previous parameters (e.g. ELD) are
not constant. They depend on the data being transmitted.
The next section analyses this dependency.

6.1 Links
As the aspect ratio of the wires get larger, coupling ca-

pacitances dominate ground capacitances and both latency
and power get dependent not only on the transition activity
(toggling) of one line, but also on the activity on neighbour
wires. Although coupling avoidance codes exist [11], it is
more efficient to use other strategies such as wire interleav-
ing between sender and receiver, shielding [8] or edge shifting
[16]. A consequence of the use of these approaches is that
the energy consumption over the link is proportional to the
transition activity, tr, as in classical busses. For the energy
macromodel, it is advantageous to employ the parameter dt

which measures the difference in transition activity with re-
spect to random noise, instead of tr directly. The rationale is
that dt = 0 for uncorrelated data (default case) while dt > 0
when using encoding. Since random noise has a transition
activity of 1

2
, dt is given by dt = 1

2
− tr. As it is well known,

the energy consumption for sending a data (e.g. a flit) over
a link for a bus is:

ELD = CeqV
2
ddtr = ELO(1− 2dt)

With ELO being the energy consumption required when
sending uncorrelated random data. Since the header is un-
correlated with the data flits, we have ELH = ELO.

6.2 Router
Inside the router, the main contributors to the energy

consumption are the buffers, the crossbar switches and the
clock. Some typical power breakdowns [13] are shown in
Table 1. The crossbar is combinatorial, and its dynamic en-
ergy consumption is almost proportional to the transition
activity tr of the signal being transmitted. The energy in
the buffers (typically implemented with flip-flops or SRAM
cells) is also dependent of the transition activity; the depen-
dency is much smaller because of the overhead of the clock.
Let us denote by αRD the actual dependency of the energy
consumption in the router with the transition activity and
as ERO the energy when sensing random data. Thus:

ERD = ERO(1− αRDdt)

For the header, there is no variation with the transition ac-
tivity; however the energy value is typically greater than
ERO since the processing of the header requires the use of ad-
ditional functionality and digital gates. Defining kH = ERH

ERO

we can express ERH as:

ERH = kHERO

The advantage is that kH is more independent of the tech-
nology than ERH .

6.3 Network Interface
In principle, we could repeat the previous analysis for the

network interface. However, in this case, the energy required
to process a flit is rather independent of the transition ac-
tivity. The rationale is the larger energy overhead of the
network interface. For the sake of simplicity, we assume
ENH = END = ENO where ENO is constant.

6.4 Complete Network Without Encoding
Using (5) and the previous formulas, it is straightforward

that:

Epack = nh[ELO + ERO − dt(2ELO + αRDERO)]

+ h[ELO + kHERO]

+ n[2ENO + ERO − dt(αRDERO)]

+ [2ENO + kHERO]

(6)

For architectural comparisons, it is useful to normalise the
energies in order to provide a technology independent com-
parison. We use the link energy, ELO, as the normalisa-
tion factor. Defining the coefficients as βR = ERO

ELO
and
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Table 1: Power Breakdowns in NoC

Buffers Crossbar Links
RAW 31% 30% 39%
TRIPS 35% 33% 31%
TeraFLOPS 22% 15% 17%

βN = ENO
ELO

. It is immediate that:

(7)
epack =

Epack

ELO

= nh[1 + βR − (2 + αRDβR)dt] + h[1 + kHβR]

+ n[2βN + βR − αRDβRdt] + [2βN + kHβR]

This formula shows that (to a first approximation) the nor-
malised energy consumption for sending a packet over the
NoC is a polynomial function of the message size (n), the hop
count (h), and the signal activity characteristics of the data
(dt). These are the application parameters of our macro-
model. Moreover, the coefficients of the polynomial are a
function of some physical parameters. The coefficients βR
and βN characterise the relative energy consumption of the
router and network interface versus the link, while kH mea-
sures the overhead for processing the header and αRD the
decrease in the router energy when the data flits are corre-
lated.

6.5 Complete Network With Encoding
In the case of a NoC using the low-power encoding tech-

niques, an encoder and decoder are introduced in the net-
work interface to decrease the transition activity (dt is thus
increased). Let us denote Eencod and Edec the energy con-
sumption of the encoder and decoder respectively, and the
reduction in activity because of the encoding, ∆t is:

∆t = dtencod − dtunencod = tunencod − tencod

In principle, we could redo the analysis for the complete
NoC again, but adding now the energies (per data flit) for
the encoder Eencod and decoder Edec and using dtencod in-
stead of dt. Clearly:

Epack encod = nh[ELO + ERO − dtencod(2ELO + αRDERO)]

+ h[ELO + kHERO] + n[Eencod + Edec

+ 2ENO + ERO − dtencod(αRDERO)]

+ [2ENO + kHERO]

(8)

After some algebraic manipulations:

(9)
Epack encod = Epack unencod + n(Edec + Eencod)

− n[2hELO + (h+ 1)αRDERO]∆t

Again, it is convenient to normalise the energy with ELO.
Let us define the relative encoding overhead factor, βencod,
as:

βencod =
(Eencod + Edec)

ELO

and the overall factor for the effect of the transition, αencod,
as:

αencod = 2h+ (h+ 1)αRDβR

Then:

epack encod = epack unencod − n(αencod∆t− βencod) (10)

This formula shows that a low-power encoding strategy
will achieve a decrease in the energy when the decrease of
the transition activity (∆t) rated with the effect that transi-
tion activity has in the particular NoC (αencod) outperforms
the energy overhead of the encoder and decoder (βencod).
Moreover, the effect of the transition activity increases with
the hop count (h). In the worst-case (i.e. the energy in the
router does not depend on the signal activity, αRD = 0, and
the energy gains are only due to the reduction of the link
energy), the αencod factor is αencod = 2h. Thus, low-power
encoding is beneficial if the hop count, h, is larger than:

h ≥
1
2
βencod

∆t
(11)

Hereafter, it is referred to as low-energy encoding condi-
tion.

6.6 Second Objective
The energy macromodels (7) and (10) provide estima-

tion of normalised energy dissipated by NoC components
for traversing a packet in NoC implemented without or with
encoding technique respectively. These macromodels can be
applied to analyse the effects of changing the allocation of
tasks and configuring data packets with encoding technique
in terms of energy dissipation in typical NoC architectures.
We define the second metric as the total energy dissipation
(normalised) for traversing all packets in the network, given
as:

Pm =

l∑
m=1

epack encod

Hence, the second objective is defined as minimisation of
this metric.

Obj2 = min(Pm) (12)

7. EXPERIMENTAL WORK

7.1 Case Studies
Two case studies were used in this experimental work.

The first case study is based on an autonomous vehicle ap-
plication (AVA) that consists of 33 tasks, 38 traffic flows
and run on a 4x4 NoC-based multicore platform. The second
case study is synthetically created to represent a communica-
tion-intensive application (SA) with 50 tasks running on a
5x5 multicore platform and transmits 50 traffic flows. Both
case studies are described using the application model ex-
plained in section 3, allowing real-time analyses to perform
schedulability test on each task and traffic flow. The goal of
this experimental work is to investigate the impact when
changing task allocation and encoding of traffic flows in
terms of schedulability and energy dissipation.

7.2 Determining the Energy Macromodel Pa-
rameters

The first phase in the experimental work has been to de-
termine some reasonable values for the different parameters
involved in the energy macromodel of the NoC in 3 sce-
narios. As shown in Table 2, scenario 1 corresponds to a
NoC where the major energy bottleneck is located in the
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Table 2: Parameters of NoC Energy Macromodel

Name Scenario 1 Scenario 2 Scenario 3
βR 2 1 1/4
βN 1 1 1/4
kH 1.08 1.08 1.08
αRD 0 0 0

router. Scenario 2 corresponds to the typical case of a NoC
where energy dissipation is evenly distributed while scenario
3 refers to a case where the interconnects are the major
energy contributor. Further on, we have implemented an
encoder/decoder (Code1) in an industrial 65nm technology
similar to the probability encoder of the PMD approach [8].
It uses a 16b flit and it is memory-less. The energy consump-
tion reported by Synopsys Design Vision is Eencod=91.3fJ.
An even simpler code approach (Code2) similar to K0 [5]
would require one half of that energy. As in [11] we consider
a typical value for the link energy in a 65nm bus of 592
fF/mm and a supply voltage of Vdd=1.2V. Thus, depending
on the length of the link in the NoC a different value of en-
coding overhead (βencod) is obtained. The typical value of
encoding overhead is in between 0.25 to 4.

The reduction of transition activity achieved by the low-
power encoder depends on the statistical characteristics of
the signals. We analysed a set 12 typical signals ranging
from html files, gzip program, images, OFDM signals, and
several DSP signals. For the sake of simplicity, all the signals
were 8b wide, but two of them were packed in a 16b flit. This
arrangement tends to make encoding more difficult because
of the lost of correlation. As a result, we observed that the
signals can be clustered in three characteristic groups:

• Signals with few correlation (html, gzip). For those
signals, neither Code1 nor Code2 achieved a reduction
in transition activity.

• Signals with some correlation (OFDM, image, etc).
Code1 achieved approximately a 30% in transition ac-
tivity, while Code2 could only get 15%.

• DSP signals with high temporal correlation. In this
case the reduction with Code1 spans between 35% and
40%, while Code2 achieves a reduction between 27%
and 30%.

7.3 Optimisation of NoC-based Systems
Based on the case studies, we performed a comparison

between the proposed MOGA, the GA with encoding mode
determined by the fitness function (GA-ENF) and the GA
without encoding technique (GA-UNE). One of the differ-
ences between MOGA and the two GAs (GA-ENF and GA-
UNE) is their chromosome structure; both using the chro-
mosome structure as shown in Figure 3a. In detail, GA-
ENF decides encoding decision of data packet in its fitness
function according to the low-energy encoding condition as
shown in equation (11), which allows it to gain optimal
energy dissipation for a given task allocation. Contrary
to MOGA and GA-ENF, GA-UNE does not have encod-
ing technique implementation, thus no data packets are en-
coded.

For the MOGA, with an addition of encoding mode in its
chromosome structure, the design space that it can explore

is larger than the other GAs by 2l i.e. mn×2l in total size of
design space, wherem,n, l are the total cores, total tasks and
total traffic flows respectively. This gives the MOGA with
an ability to determine the encoding mode of traffic flows,
but it has to explore larger design space than GA-ENF and
GA-UNE. For the GA-ENF, while its design space is smaller
than the MOGA, the evaluation model is optimal, whereby
it can determine accurately which data packet flow requires
encoding, however, it suffers a slight calculation overhead as
it has to check the encoding condition first before knowing
which of which needs encoding. This is an extra overhead
to the existing number of evaluations performed by the GA,
which is approximated around 5,555,000 evaluations (= 100
populations× 500 generations× (33 tasks + (38× 2) flows))
in every run. The GA-UNE does not have both overheads,
but the energy dissipation might be higher than the MOGA
and GA-ENF due to the unencoded data packets.

The experimental hypothesis is that the MOGA is as good
as the last two GAs in producing schedulable allocation of
tasks, and in terms of the energy dissipation it is as com-
parably good as the GA-ENF and always better than the
GA-UNE. In addition to this, we also compared the pro-
posed MOGA with several baselines: a nearest neighbour
(NN) and a random mapper, as the second part of the hy-
pothesis that describe it is always better in both metrics
(schedulability and total energy dissipation) than the base-
lines. With these comparisons, we aim to show that the
proposed MOGA is a better technique to find the schedula-
ble allocation of tasks for encoded NoC based hard real-time
embedded systems.

In order to provide an insight into how much impact does
the task allocation and data packet encoding impose on en-
ergy dissipation of NoC, every scenario in Table 2 was sim-
ulated with different encoding overheads (0.5, 0.8, 1.3 and
2.5); representing the amount of overhead as the length of
wire is gradually decreased. This creates a set of scenario-
encoding overhead combinations as shown in Figure 4. With
this set, the performance of the MOGA and the other GAs
can be examined as in different situations.

Figure 4a and 4b show the level of energy dissipated by
the NoC varies at different scenarios for AVA and SA respec-
tively. These graphs plot only the best task allocation found
at the last generation, which meet schedulability of the ap-
plication and with the lowest energy dissipation. Each point
in x-axis represents a combination of encoding overhead-
scenario, for example, 0.5-S1 is scenario S1 with encoding
overhead of 0.5. Note that an unencoded NoC does not
have encoding overheads; the best solution is plotted with
regard to scenarios in the x-axis (e.g. S1, S2 and S3).

It is clearly depicted in Figure 4a, that the energy dissi-
pation of unencoded NoC (GA-UNE, green bar) is higher in
almost all scenarios than encoded NoC produced either by
the proposed MOGA (blue bar) or the GA-ENF (pink bar).
This is also true in SA case study (Figure 4b) but with an
exception in scenario 1.3-S1, which shows the energy dissi-
pation of GA-UNE is lower than the others, probably due to
the stochastic characteristic of the GAs. When the encoding
overhead becomes 2.5 the length of wires between routers is
very close to nil, increasing the energy dissipation of encoded
NoC to the same level as the unencoded NoC, as shown at
2.5-S1 and 2.5-S3 of AVA case study, and 2.5-S2 and 2.5-S3
of SA case study. The proposed MOGA shown better en-
ergy dissipation than the GA-ENF in 7 and 8 scenarios (out
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(a) Autonomous Vehicle Application 4x4 (b) Synthetic Application 5x5

Figure 4: Comparison of energy dissipation across different scenarios

of total 12 scenarios) with AVA and SA respectively.
Both graphs of Figure 5 plot the best task allocation in

terms of schedulability and energy dissipation in each gen-
eration, showing the convergence of the proposed MOGA
(blue), GA-ENF (pink) and GA-UNE (green) through gen-
erations (1-500). The lower part of the graphs is where the
schedulability is plotted whereas the energy dissipation is
shown at the upper part of the graphs. The best task allo-
cation in this graph is defined as the one that was found at
every generation with the smallest number of unschedulable
tasks and flows, which generates the lowest energy dissi-
pation. In terms of meeting the hard real-time timing con-
straints, all of them able to find allocation of tasks that meet
the requirement below 100 generations in both case studies
(AVA and SA); and maintaining it to the last generation
while improving the energy dissipation of the NoC. The pro-
posed MOGA seems a little late in finding the schedulable
allocation of tasks. One of the possible reasons is that it
has a larger design space to explore as compared with the
other two, thus it might require more generations to find the
schedulable allocation of tasks, while at the same time find-
ing the right encoding combination of the flows that reduces
the energy dissipation. However, the proposed MOGA grad-
ually shows better convergence in terms of energy dissipa-
tion when the generation approaching 500, as clearly shown
in Figure 5a and 5b. This implies that, at least for scenario
0.5-S2, the proposed MOGA was able to find a schedula-
ble task allocation as good as the GA-ENF and GA-UNE
(within 100 generations) and then preserved it to the last
generation. Then, by having it to decide the encoding mode
of the traffic flows provide it with an ability to further re-
duce the energy dissipation of NoC, lower than the other
two GAs.

In multi-objective optimisation, having all objectives sat-
isfactorily met like the single-objective is difficult. The so-
lutions found by an optimisation algorithm usually contain
trade-off between the objectives. An improvement is said to
have been made by new solutions from the previous solu-
tions if they can show an improvement in one objective but
not worse in the others towards the Pareto-optimal region
[12]. Those solutions are not dominated by the others in

the population and are known as the non-dominated set. In
order to assess the performance of our proposed MOGA in
this regard, we plot the graphs as depicted in Figure 6 to
show the improvement made from the random distribution
of solutions in the first generation until the last generation
(500). It is clearly depicted in graph 6a and 6b that the
non-dominated set of MOGA (blue line) has better trade-
off than the GA-ENF (pink line) at the last generation in
both case studies. The trade-off produced by GA-UNE is no
better than MOGA and GA-ENF, as shown in the graphs its
non-dominated set is largely dominated by non-dominated
set of MOGA, which again validating our hypothesis.

In the above paragraph of this section, we have discussed
the analysis presented in Figure 4 that compares the en-
ergy dissipation of the schedulable task allocation found by
MOGA, GA-ENF and GA-UNE in different combinations
of scenario. In most of the scenarios of both case stud-
ies, MOGA produced better energy dissipation as compared
with the others; while in some other scenarios it performed
worse than them. In order to have better insight of their
performance we chose the Wilcoxon rank-sum test to sta-
tistically determine which has the lowest energy dissipation
between the MOGA and GA-ENF. The statistic test is cho-
sen to test the two groups because their population from
which they are drawn are not normally distributed; as the
result of stochastic characteristic of the GAs. Each group
contains 12 samples and the critical value is 115 for two-
tailed testing at 0.95 confidence level, which we used to re-
ject the null hypothesis if the obtained critical value is less
than that. The null hypothesis of this test states that there
is no significant difference in terms of the energy dissipation
between the two groups of schedulable task allocation and
the alternative hypothesis is either the MOGA has greater
or lesser energy dissipation than GA-ENF.

From Table 3, in AVA case study, the obtained critical
value is 36 and with p-value of 0.0196 we have strong evi-
dence against the null hypothesis in favour of the alternative
hypothesis. The alternative hypothesis is that the energy
dissipated by the NoC with task allocation generated by
MOGA is lesser than the allocation produced by GA-ENF.
However, in SA case study the performance of GA-ENF is
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(a) Autonomous Vehicle Application 4x4 (0.5-S2) (b) Synthetic Application 5x5 (0.5-S2)

Figure 5: Comparison of convergence of the best task allocation in each generation

(a) Autonomous Vehicle Application 4x4 (0.5-S1) (b) Synthetic Application 5x5 (0.5-S1)

Figure 6: Comparison of initial solutions and non-dominated sets at last generation

better than MOGA as the null hypothesis is rejected with
critical value of 21 supported by strong evidence shown by
the p-value of 0.00115. The alternative hypothesis states
that the energy dissipation of the NoC with task allocation
found by the GA-ENF is lower than the MOGA. Here we
can conclude that both, MOGA and GA-ENF are compa-
rably good techniques for finding the allocation of tasks, in
spite of their difference in deciding the encoding mode of
traffic flows. This again validates our hypothesis mentioned
at the beginning of this section that MOGA is as good as
the GA-ENF; one may be better for an application than the
other or vice versa.

Table 3: Wilcoxon Rank-Sum Test

Application Critical Value p-value
AVA 36 0.01936
SA 21 0.00115

Reduction of energy dissipation as a rationale of having
encoded NoC in hard real-time embedded systems is clearly
shown in graphs of Figure 4, 5 and 6. The baselines de-
picted in Figure 7 were implemented with the same fitness
function as the GA-ENF to calculate the optimal energy
dissipation for a given allocation of tasks i.e. labelled as En-
ergy Encoded. Again, MOGA outperformed the baselines in
terms of energy dissipation, and even worse the baselines
were unable to meet the timing constraints. This validates
the second part of the hypothesis that the proposed MOGA
is always better in both metrics than the baselines.

8. CONCLUSION AND FUTURE WORK
The main contribution of this paper is an evolutionary

multi-objective optimisation algorithm that could find schedu-
lable task allocation whilst minimising the energy dissipa-
tion of NoC-based hard real-time embedded systems. The
algorithm is efficient for the early design space exploration;
able to explore large design space with its fast evaluation
technique. This is achieved by integration of analytical fit-
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(a) Autonomous Vehicle Application 4x4 (b) Synthetic Application 5x5

Figure 7: Comparison of schedulability and energy dissipation against baselines

ness functions into the algorithm, which consists of new en-
ergy macromodel to estimate the energy dissipated by NoC
and an extended end-to-end schedulability analysis that can
validate schedulability of any task or traffic flow in the sys-
tems. We illustrated its feasibility with two case studies and
we have shown that the algorithm could find better trade-off
between both objectives than the other GAs.
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