
Instruction Set Simulator for MPSoCs based on NoCs and MIPS Processors

Leandro Möller1, André Rodrigues1, Fernando Moraes2, Leandro Soares Indrusiak3, Manfred Glesner1

1 Darmstadt University of Technology - Institute of Microelectronic Systems - Darmstadt, Germany
2 Faculty of Informatics - Catholic University of Rio Grande do Sul - Porto Alegre, Brazil

3 Department of Computer Science - University of York - York, United Kingdom
Email: moller@mes.tu-darmstadt.de

Abstract
Even though Multiprocessor System-on-Chip (MPSoC) is a
hot topic for a decade, Instruction Set Simulators (ISSs) for
it are still scarce. Data exchange among processors and
synchronization directives are some of the most required
characteristics that ISSs for MPSoCs should supply to
really make use of the processing power provided by the
parallel execution of processors. In this work a framework
for instantiating ISSs compatible with the MIPS processor
is presented. Communication among different ISS instances
is implemented by message passing, which is actually
performed by packets being exchanged over a NoC. The
NoC, the ISS and the framework that controls the co-
simulation between them are all implemented in Java. Both
ISS and the framework are free open-source tools
implemented by third parties and available on the internet.

1. Introduction

Multiprocessor systems have become a standard in the
computer industry since the release of the Intel Pentium D
in 2005 [1]. Since then, processor manufacturers have
focused in multi-core architectures to raise the processing
power, favoring a larger number of cores instead of trying
to achieve higher clock speeds, avoiding also the
complexity of superscalar pipelines. While executing
several small applications in parallel have a significant
improve in performance with actual multiprocessor
systems, a unique complex application needs a careful
development to use wisely this processing power. It is not
simply to write the application code with multiple threads,
but each thread has to be really executing in the same time
as the other threads, instead of paused in a wait directive.

While communication infrastructures based on bus have
been sufficient for multiprocessor systems so far, the
increase of number of cores and data transfer associated
will demand a more complex on-chip interconnection. For
this purpose Networks-on-Chip (NoCs) have arisen as a
scalable solution to future increase of number of cores. The
use of a NoC represents no direct changes to the developer
of the complex application, but it counts when the
execution time of the complex application is being
analyzed.

The design space exploration of the scenario presented

in the previous paragraphs and the tools to aid the
development of complex applications are the goal of this
work. A MIPS-like processor was connected to the
HERMES NoC and presented in [2]. In [2] the debug of
complex applications are implemented based on print
directives. The work presented here improves the
debugability by providing an Instruction Set Simulator
(ISS) for the MIPS processor while considering the
communication time and traffic under simulation in the
NoC.

The ISS used in this work is the MARS ISS, developed
by the Missouri State University [3]. This ISS was
connected the RENATO NoC model [4], which is an actor-
oriented model based on the HERMES NoC. The
simulation environment used to control both the simulation
of the NoC and the ISS is the Ptolemy II [5], developed by
the EECS department at UC Berkley.

The rest of this work is divided as follows. Section 2
presents other ISSs targeting MPSoC architectures. A
background about the tools and basic information required
to understand this work is presented in Section 3. Section 4
presents how the communication among ISSs takes place.
Section 5 presents timing delays of the system and Section
6 concludes this work.

2. Related Works

In this section different MPSoCs that have tools for
debugging their embedded software are presented. Table 1
summarizes the most important information of these works
and adds the work proposed in this paper. As presented in
Table 1, all works use SystemC as simulation engine and
memory mapped techniques to communicate with other
processors, except the work proposed on this paper that
uses the Ptolemy II simulation engine and the message
passing technique to communicate with other processors.

MPARM [6] uses ARM processors connected through
AMBA bus to compose the MPSoC. Multiprocessor
applications are debugged with the SWARM ISS, which is
developed in C++ and was wrapped to communicate with
the MPSoC simulated in SystemC. The platform allows
booting multiple parallel uClinux kernels on independent
processors.

STARSoC [7] uses OpenRisc1200 processors connected
through Wishbone bus. Debugging is implemented with the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 7

OR1Ksim ISS, which is implemented in C language. The
OR1Ksim also allows to be remote operated using GDB.
Operating System is not yet supported.

HVP [8] supports several processors and therefore
several ISSs. The work presented MPSoCs that contain
ARM9 processors using ARM’s ISS and in-house VLIW
and RISC processors debugged by the LisaTek ISS. The
ARM processors execute a lightweight operating system
(name was not disclosed). The communication among
processors was reported to be AMBA among ARM
processors and SimpleBus among the in-house processors
used.

SoClib [9] is a project developed jointly by 11
laboratories and 6 industrial companies. It contains
simulation models for processor cores, interconnect and
bus controllers, embedded and external memory
controllers, or peripheral and I/O controllers. The MPSoC
accepts the following processor cores: MIPS-32, PowerPC-

405, Sparc-V8, Microblaze, Nios-II, ST-231, ARM-7tdmi
and ARM-966. The GDB client/server protocol has been
implemented to interface with these processors. The
following operating systems are supported: DNA/OS,
MutekH, NetBSD, eCos and RTEMS. Several bus and
NoCs with different topologies wrapped with the VCI
communication standard were ported and presented at
www.soclib.fr.

The proposed work is based on a MIPS-like processor,
implemented in hardware by the Plasma processor
available for free at Opencores [10] and implemented by
MARS [3] when simulating the processor as an ISS. All
previous works used SystemC as simulation environment;
this work uses Ptolemy II [5]. This work also differs from
the others because it exchanges data between processors by
using the native protocol of the NoC, therefore no extra
translation is needed before sending and receiving packets.

Table 1 – MPSoCs that have tools for debugging embedded software.
Work ID Simulation engine Processor Communication Data exchange ISS OS

MPARM SystemC ARM Bus (Amba) Memory SWARM uClinux

STARSoC SystemC OpenRisc 1200 Bus (Wishbone) Memory OR1Ksim No

HVP SystemC Several Bus (several) Memory Several Yes

SoClib SystemC Several Bus / NoC (several) Memory GDB several

Proposed Ptolemy II Plasma (MIPS) NoC (Hermes) Message MARS No

3. Background

This session reviews the required infrastructure to build
our MPSoC simulation environment.

3.1. Ptolemy II

Ptolemy II [5] is a framework developed by the
Department of Electrical Engineering and Computer
Sciences of the University of California at Berkeley and it
is implemented in Java. The key concept behind Ptolemy II
is the use of well-defined models of computation to
manage the interactions between various actors and
components. In this work only the Discrete Event (DE)
model of computation was used, but others are available on
Ptolemy II.

In DE, the communication between actors is modeled as
tokens being sent across connections. The sent token and
its timestamp constitute an event. When an actor receives
an event, it is activated and a reaction might occur, which
may change the internal state of the actor and / or generate
new events, which might in its turn generate other
reactions. The events are processed chronologically [5].

3.2. MARS ISS

MARS [3] is a MIPS Instruction Set Simulator (ISS).

This means that MARS simulates the execution of
programs written in the MIPS assembly language. MARS
can be executed by command line or Graphical User
Interface. MARS was developed by Peter Sanderson and
Kenneth Vollmar, from the Missouri State University, and
is written entirely in Java and distributed in an executable
Jar file. MARS can simulate 155 basic instructions from
the MIPS-32 instruction set, as well as about 370 pseudo-
instructions or instruction variations, 17 syscall functions
for console and file I/O and 21 syscalls for other uses.

3.3. RENATO NoC

RENATO NoC [4] was developed using the Ptolemy II
framework and its behavior and timing constraints are
based on the HERMES NoC. The basic element of the NoC
is a five bi-directional port router, which is connected to 4
other neighbor routers and to a local IP core, following a
MESH topology. The router employs a XY routing
algorithm, round-robin arbitration algorithm and input
buffers at each input port.

The RENATO NoC model can be connected to a
debugging tool called NoCScope [11]. NoCScope provides
improved observability of RENATO routers and overall
resources in use. Seven scopes are currently available,
allowing the user to see information about hot spots, power
consumption, buffer occupation, input traffic, output
traffic, end-to-end and point-to-point communications.

8 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

PE

PE

PE PE

PE

PE

PE

PE
Network
Interface
Output Buffer

Input Buffer

Processor

.

.
 SENDFLIT:
lb $s0, 0($t7)
mtc0 $s0, $s0
addi $t7, $t7, 4
subi $t0, $t0, 1
bgtz $t0, SENDFLIT
.
.
 RCVDFLIT:
bgtz $t6, SIZE
mfc0 $t0, $t0
move $s1, $t0
li $t6, 1
eret
.
.

9 4 7 1 3 8 2

9 8 7 4 3 2 1

Processing Element (PE)

Ptolemy II

LN

S

W E11

00 10 20

01 21

02 12 22

Figure 1 – Block diagram of the proposed multiprocessor ISS.

4. Communication among processors

This section presents how the MARS ISS was connected
to the RENATO NoC to allow the creation of a
multiprocessor ISS. Figure 1 shows a block diagram of the
system that will be used in the next subsections to guide the
explanation of each component.

4.1. Processor to NI

In the current version of this work, each processor
executes the MIPS assembly code of one task of the
application. Communication between tasks happens by
exchanging packets. In order to send a packet to another
task, the header of the packet and the packet data need to
be first stored in the data memory of the processor. The
header of the packet is composed by the address of the
target router where the processor is connected and the
number of data flits this packet contains. After that, the
send packet subroutine is called.

The send packet subroutine first reads the size flit of the
packet stored in the memory to a register and reads to
another register the output buffer size available in the NI. If
there is enough space available in the NI to store the
packet, the subroutine proceeds sending the packet flit by
flit to the NI. The process of “reading” a flit from the NI
uses the instruction “move from coprocessor 0” (mfc0),
while the process of “sending” a flit to the NI uses the
instruction “move to coprocessor 0” (mtc0). Thus, from the

point of view of the processor, coprocessor 0 is now the NI.

4.2. NI to NoC

With the packet stored in the NI output buffer, the NI
sends the packet flit by flit to the input local port of the
router where this NI is connected. This happens following
the flow control protocol in use by the NoC and using the
timing delays set on the NoC model being executed by
Ptolemy.

4.3. NoC to NI

When packets are being received from the NoC into the
NI, a different buffer (input buffer) is used, thus allowing
parallel sending and receiving of packets. The receiving of
packets also occur following the flow control in use by the
NoC and using the timing delays set on the NoC model.

4.4. NI to processor

As soon as the flits of the packet arrive in the input
buffer of the NI, the NI launches a specific interruption to
the processor meaning that a new packet has arrived. The
MARS ISS, which was executing its task, saves its context
and receives the interruption in the form of a Java
exception. The standard routine for handling exceptions is
called. By the ID of the specific exception, the exact
exception is found out to be the “new message from
network exception”. The specific subroutine of this
exception is launched. This subroutine mainly reads the

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 9

complete packet from the NI using the “move from
coprocessor 0” (mfc0) instruction to read each flit of the
packet. After the complete packet was read from the NI and
stored in the processor’s memory, the processor’s context
is restored and it can now continues with its execution
possibly using the data that was received.

5. Synchronization

The straightforward solution in Java to connect more
than one MARS ISS to the NoC is to create a new MARS
instance object for every new MARS instantiated in the
NoC. However, this alternative failed due to the fact that
MARS has been programmed using several static classes,
attributes and methods. All of its main resources, such as
the memory and the register bank, are declared as static.
Therefore, if one tries to run more than one instance of
MARS concurrently inside a single Java Virtual Machine
(JVM), all the running instances will share the same
resources, which will lead to unexpected behavior.

One possible workaround for this problem is to run each
MARS instance in a different JVM. Java does not directly
share memory between multiple VMs, so by running each
MARS in a different JVM, one is safely isolating each
instance of MARS. One problem with this approach is that
the exchange of messages between different JVMs is only
possible by using APIs such as Java Remote Method
Invocation (RMI) and sockets, which would greatly
increase the complexity of the system.

Another solution would be to reprogram MARS to
remove the problematic static attributes and make them
unique for each instance. However, this solution was also
not optimal, considering the large number of static
members declared in MARS and that every new future
version of MARS would also require these modifications.

A better solution is to instantiate isolated ClassLoaders,
one for each instance of MARS to be loaded. This works
because a static element in Java is unique only in the
context of a ClassLoader, therefore the static elements will
not interfere with the other instances of MARS called by
other ClassLoaders. By using this approach, the task of
exchanging messages between the MARS instance and its
corresponding NI also becomes trivial, and can be done
simply by injecting a NI object when instantiating MARS.

A side effect of this solution is that each MARS instance
and the NoC are considered as different threads by Java,
and this would require extra algorithms based on wait and
notify directives to maintain the time constraints followed
by the NoC. As the main goal of this work is not provide
good latency figures to the multiprocessor system
application under simulation, we proceeded without the
extra algorithms, aiming a faster simulation. Figure 2
presents a printout of the most important events occurred
during the transfer of a packet composed by 2 header flits
and 10 payload flits from MARS #1 to MARS #2. MARS
#1 is connected to router 00 as illustrated in Figure 1 and
MARS #2 is connected to router 21. No extra traffic is
currently occupying the NoC.

3002 MARS #1 sending target flit (21) to NI #1
3002 MARS #1 sending size flit (10) to NI #1
3002 MARS #1 sending payload flit #0 (9) to NI #1
3003 MARS #1 sending payload flit #1 (9) to NI #1
3003 MARS #1 sending payload flit #2 (4) to NI #1
3003 MARS #1 sending payload flit #3 (7) to NI #1
3003 MARS #1 sending payload flit #4 (1) to NI #1
3003 MARS #1 sending payload flit #5 (3) to NI #1
3003 MARS #1 sending payload flit #6 (8) to NI #1
3003 MARS #1 sending payload flit #7 (2) to NI #1
3003 MARS #1 sending payload flit #8 (6) to NI #1
3086 MARS #1 sending payload flit #9 (5) to NI #1
3087 NI #1 sending target flit (21) to NoC
3089 NI #1 sending size flit (10) to NoC
3091 NI #1 sending payload flit #0 (9) to NoC
3093 NI #1 sending payload flit #1 (9) to NoC
3095 NI #1 sending payload flit #2 (4) to NoC
3097 NI #1 sending payload flit #3 (7) to NoC
3099 NI #1 sending payload flit #4 (1) to NoC
3101 NI #1 sending payload flit #5 (3) to NoC
3103 NI #1 sending payload flit #6 (8) to NoC
3105 NI #1 sending payload flit #7 (2) to NoC
3107 NI #1 sending payload flit #8 (6) to NoC
3109 NI #1 sending payload flit #9 (5) to NoC
3112 NoC sending target flit (21) to NI #2
3116 NoC sending size flit (10) to NI #2
3120 NoC sending payload flit #0 (9) to NI #2
3120 NI #2 sending payload flit #0 (9) to MARS #2
3124 Noc sending payload flit #1 (9) to NI #2
3128 Noc sending payload flit #2 (4) to NI #2
3132 Noc sending payload flit #3 (7) to NI #2
3136 Noc sending payload flit #4 (1) to NI #2
3140 Noc sending payload flit #5 (3) to NI #2
3144 Noc sending payload flit #6 (8) to NI #2
3148 Noc sending payload flit #7 (2) to NI #2
3152 Noc sending payload flit #8 (6) to NI #2
3156 Noc sending payload flit #9 (5) to NI #2
3166 NI #2 sending payload flit #1 (9) to MARS #2
3170 NI #2 sending payload flit #2 (4) to MARS #2
3172 NI #2 sending payload flit #3 (7) to MARS #2
3174 NI #2 sending payload flit #4 (1) to MARS #2
3175 NI #2 sending payload flit #5 (3) to MARS #2
3177 NI #2 sending payload flit #6 (8) to MARS #2
3178 NI #2 sending payload flit #7 (2) to MARS #2
3180 NI #2 sending payload flit #8 (6) to MARS #2
3181 NI #2 sending payload flit #9 (5) to MARS #2

Figure 2 – Timing delays of the most important
events during the transfer of a packet between two

processors.
All the following comments presented in this paragraph

refer to Figure 2. Between times 3002 and 3086 MARS #1
sends the packet to the NI connected to it (NI #1), exactly
as explained in Section 4.1. Eleven of the twelve flits of the
packet were sent in the first 2 simulation cycles, and the
last flit of the packet at time 3086. This strange behavior
implies the following results: (1) MARS #1 thread was
executed two times concurrently to Ptolemy thread,
between times 3002-3003 and 3086; (2) MARS thread can
be faster enough to execute at least 11 mtc0 instructions in
a row during 2 simulation cycles of Ptolemy; (3) MARS
thread was not called again during 83 simulation cycles
(3086-3003). Between times 3087 and 3109 each flit of the
packet was sent constantly every 2 simulation cycles from
NI #1 to the NoC, exactly as explained in Section 4.2. This
behavior is equal to the real HERMES NoC that needs 2
clock cycles to transfer a flit using handshake flow control.
Between time 3112 and 3156 all the flits from the packet
were delivered from the NoC to NI #2 as explained in
Section 4.3. However, due to some technical difficulties in
the current version, it was not possible to deliver each flit
every 2 simulation cycles, but 4 simulation cycles in this

10 May 17-19, 2010, Karlsruhe, Germany ReCoSoC 2010

case. At time 3120 it is possible to see that NI #2 delivered
the first payload flit immediately to MARS #2. Between
times 3166 and 3181 the rest of the payload flits were
delivered to MARS #2 as described in Section 4.4. Here
again it is possible to see that the data transfer did not
follow a constant pattern, similar to one the occurred
between times 3002 and 3086. This unpredictable behavior
is a side effect of running multiple threads with no proper
synchronization.

6. Conclusion and Future Work

This work presented an ISS for multiprocessor systems
based on the MIPS processor. In this work the RENATO
NoC model was connected to two instances of the MARS
ISS and as result applications based on more then one
processor can be easily debugged with the presented
approach. The most important contribution of this work is
the NI, which allows both systems to communicate, thus
creating a more realistic multiprocessing system model
composed by computation and communication.

Initial figures regarding latency between processors’
communication through the NoC were measured and we
report to be insufficient in the current version. In order to
have a good latency figure we must: (1) back annotate the
timing delays of each assembly instruction from a real
MIPS processor to MARS; (2) add extra synchronization
logic to mimic the timing delays between processor and NI.
In the current version of this work we guarantee only the
NoC timing delays as presented in [4]. Future works will
be related to steps 1 and 2.

References

[1] Intel Corporation. Intel Pentium D (Smithfield) Processor.
Available at: http://ark.intel.com/ProductCollection.aspx?
codeName=5788.

[2] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. “HeMPS -
A Framework for NoC-Based MPSoC Generation”. In:
ISCAS’09, 2009, pp. 1345-1348.

[3] Vollmar, D. and Sanderson, D. “A MIPS assembly language
simulator designed for education”. Journal of Computing
Sciences in Colleges, vol. 21(1), Oct. 2005, pp. 95-101.

[4] Indrusiak, L.S.; Ost, L.; Möller, L.; Moraes, F.; Glesner, M.
Applying UML Interactions and Actor-Oriented Simulation
to the Design Space Exploration of Network-on-Chip
Interconnects. In: ISVLSI’08, 2008, pp. 491-494.

[5] Eker, J.; Janneck, J.; Lee, E.; Liu, J.; Liu, X.; Ludvig, J.;
Neuendorffer, S.; Sachs, S.; Xiong, Y. “Taming
Heterogeneity - The Ptolemy Approach”. Proceedings of the
IEEE, vol. 91 (2), Jan. 2003, pp. 127-144.

[6] Benini, L.; Bertozzi, D.; Bogliolo, A.; Menichelli, F.;
Olivieri, M. “MPARM: Exploring the Multi-Processor SoC
Design Space with SystemC”. The Journal of VLSI Signal
Processing, vol. 41 (2), Sep. 2005, pp. 169-182.

[7] Boukhechem, S.; Bourennane, E. “SystemC Transaction-
Level Modeling of an MPSoC Platform Based on an Open
Source ISS by Using Interprocess Communication”.
International Journal of Reconfigurable Computing, vol.
2008, Article ID 902653, 2008, 10 p.

[8] Ceng, J.; Sheng, W.; Castrillon, J.; Stulova, A.; Leupers, R.;
Ascheid, G.; Meyr, H. “A high-level virtual platform for
early MPSoC software development”. In: CODES+ISSS'09,
2009, pp. 11-20.

[9] Pouillon, N.; Becoulet, A.; Mello, A.; Pecheux, F.; Greiner,
A. “A Generic Instruction Set Simulator API for Timed and
Untimed Simulation and Debug of MP2-SoCs”. In: RSP'09,
2009, pp. 116-122.

[10] Opencores. Available at: http://www.opencores.org.
[11] Möller, L.; Indrusiak, L.S.; Glesner, M. “NoCScope: A

Graphical Interface to Improve Networks-on-Chip
Monitoring and Design Space Exploration”. In: IDT'09,
2009.

ReCoSoC 2010 May 17-19, 2010, Karlsruhe, Germany 11

