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Abstract 
Even though Multiprocessor System-on-Chip (MPSoC) is a 
hot topic for a decade, Instruction Set Simulators (ISSs) for 
it are still scarce. Data exchange among processors and 
synchronization directives are some of the most required 
characteristics that ISSs for MPSoCs should supply to 
really make use of the processing power provided by the 
parallel execution of processors. In this work a framework 
for instantiating ISSs compatible with the MIPS processor 
is presented. Communication among different ISS instances 
is implemented by message passing, which is actually 
performed by packets being exchanged over a NoC. The 
NoC, the ISS and the framework that controls the co-
simulation between them are all implemented in Java. Both 
ISS and the framework are free open-source tools 
implemented by third parties and available on the internet.  

1. Introduction 

Multiprocessor systems have become a standard in the 
computer industry since the release of the Intel Pentium D 
in 2005 [1]. Since then, processor manufacturers have 
focused in multi-core architectures to raise the processing 
power, favoring a larger number of cores instead of trying 
to achieve higher clock speeds, avoiding also the 
complexity of superscalar pipelines. While executing 
several small applications in parallel have a significant 
improve in performance with actual multiprocessor 
systems, a unique complex application needs a careful 
development to use wisely this processing power. It is not 
simply to write the application code with multiple threads, 
but each thread has to be really executing in the same time 
as the other threads, instead of paused in a wait directive.  

While communication infrastructures based on bus have 
been sufficient for multiprocessor systems so far, the 
increase of number of cores and data transfer associated 
will demand a more complex on-chip interconnection. For 
this purpose Networks-on-Chip (NoCs) have arisen as a 
scalable solution to future increase of number of cores. The 
use of a NoC represents no direct changes to the developer 
of the complex application, but it counts when the 
execution time of the complex application is being 
analyzed. 

The design space exploration of the scenario presented 

in the previous paragraphs and the tools to aid the 
development of complex applications are the goal of this 
work. A MIPS-like processor was connected to the 
HERMES NoC and presented in [2]. In [2] the debug of 
complex applications are implemented based on print 
directives. The work presented here improves the 
debugability by providing an Instruction Set Simulator 
(ISS) for the MIPS processor while considering the 
communication time and traffic under simulation in the 
NoC.

The ISS used in this work is the MARS ISS, developed 
by the Missouri State University [3]. This ISS was 
connected the RENATO NoC model [4], which is an actor-
oriented model based on the HERMES NoC. The 
simulation environment used to control both the simulation 
of the NoC and the ISS is the Ptolemy II [5], developed by 
the EECS department at UC Berkley. 

The rest of this work is divided as follows. Section 2 
presents other ISSs targeting MPSoC architectures. A 
background about the tools and basic information required 
to understand this work is presented in Section 3. Section 4 
presents how the communication among ISSs takes place. 
Section 5 presents timing delays of the system and Section 
6 concludes this work. 

2. Related Works 

In this section different MPSoCs that have tools for 
debugging their embedded software are presented. Table 1 
summarizes the most important information of these works 
and adds the work proposed in this paper. As presented in 
Table 1, all works use SystemC as simulation engine and 
memory mapped techniques to communicate with other 
processors, except the work proposed on this paper that 
uses the Ptolemy II simulation engine and the message 
passing technique to communicate with other processors. 

MPARM [6] uses ARM processors connected through 
AMBA bus to compose the MPSoC. Multiprocessor 
applications are debugged with the SWARM ISS, which is 
developed in C++ and was wrapped to communicate with 
the MPSoC simulated in SystemC. The platform allows 
booting multiple parallel uClinux kernels on independent 
processors. 

STARSoC [7] uses OpenRisc1200 processors connected 
through Wishbone bus. Debugging is implemented with the 
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OR1Ksim ISS, which is implemented in C language. The 
OR1Ksim also allows to be remote operated using GDB. 
Operating System is not yet supported. 

HVP [8] supports several processors and therefore 
several ISSs. The work presented MPSoCs that contain 
ARM9 processors using ARM’s ISS and in-house VLIW 
and RISC processors debugged by the LisaTek ISS. The 
ARM processors execute a lightweight operating system 
(name was not disclosed). The communication among 
processors was reported to be AMBA among ARM 
processors and SimpleBus among the in-house processors 
used.

SoClib [9] is a project developed jointly by 11 
laboratories and 6 industrial companies. It contains 
simulation models for processor cores, interconnect and 
bus controllers, embedded and external memory 
controllers, or peripheral and I/O controllers. The MPSoC 
accepts the following processor cores: MIPS-32, PowerPC-

405, Sparc-V8, Microblaze, Nios-II, ST-231, ARM-7tdmi 
and ARM-966. The GDB client/server protocol has been 
implemented to interface with these processors. The 
following operating systems are supported: DNA/OS, 
MutekH, NetBSD, eCos and RTEMS. Several bus and 
NoCs with different topologies wrapped with the VCI 
communication standard were ported and presented at 
www.soclib.fr.  

The proposed work is based on a MIPS-like processor, 
implemented in hardware by the Plasma processor 
available for free at Opencores [10] and implemented by 
MARS [3] when simulating the processor as an ISS. All 
previous works used SystemC as simulation environment; 
this work uses Ptolemy II [5]. This work also differs from 
the others because it exchanges data between processors by 
using the native protocol of the NoC, therefore no extra 
translation is needed before sending and receiving packets.  

Table 1 – MPSoCs that have tools for debugging embedded software. 
Work ID Simulation engine Processor Communication Data exchange ISS OS 

MPARM SystemC ARM Bus (Amba) Memory SWARM uClinux 

STARSoC SystemC OpenRisc 1200 Bus (Wishbone) Memory OR1Ksim No 

HVP SystemC Several Bus (several) Memory Several Yes 

SoClib SystemC Several Bus / NoC (several) Memory GDB several 

Proposed Ptolemy II Plasma (MIPS) NoC (Hermes) Message MARS No 

3. Background 

This session reviews the required infrastructure to build 
our MPSoC simulation environment. 

3.1. Ptolemy II 

Ptolemy II [5] is a framework developed by the 
Department of Electrical Engineering and Computer 
Sciences of the University of California at Berkeley and it 
is implemented in Java. The key concept behind Ptolemy II 
is the use of well-defined models of computation to 
manage the interactions between various actors and 
components. In this work only the Discrete Event (DE) 
model of computation was used, but others are available on 
Ptolemy II. 

In DE, the communication between actors is modeled as 
tokens being sent across connections. The sent token and 
its timestamp constitute an event. When an actor receives 
an event, it is activated and a reaction might occur, which 
may change the internal state of the actor and / or generate 
new events, which might in its turn generate other 
reactions. The events are processed chronologically [5]. 

3.2. MARS ISS 

MARS [3] is a MIPS Instruction Set Simulator (ISS). 

This means that MARS simulates the execution of 
programs written in the MIPS assembly language. MARS 
can be executed by command line or Graphical User 
Interface. MARS was developed by Peter Sanderson and 
Kenneth Vollmar, from the Missouri State University, and 
is written entirely in Java and distributed in an executable 
Jar file. MARS can simulate 155 basic instructions from 
the MIPS-32 instruction set, as well as about 370 pseudo-
instructions or instruction variations, 17 syscall functions 
for console and file I/O and 21 syscalls for other uses. 

3.3. RENATO NoC 

RENATO NoC [4] was developed using the Ptolemy II 
framework and its behavior and timing constraints are 
based on the HERMES NoC. The basic element of the NoC 
is a five bi-directional port router, which is connected to 4 
other neighbor routers and to a local IP core, following a 
MESH topology. The router employs a XY routing 
algorithm, round-robin arbitration algorithm and input 
buffers at each input port.  

The RENATO NoC model can be connected to a 
debugging tool called NoCScope [11]. NoCScope provides 
improved observability of RENATO routers and overall 
resources in use. Seven scopes are currently available, 
allowing the user to see information about hot spots, power 
consumption, buffer occupation, input traffic, output 
traffic, end-to-end and point-to-point communications.
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Figure 1 – Block diagram of the proposed multiprocessor ISS. 

4. Communication among processors 

This section presents how the MARS ISS was connected 
to the RENATO NoC to allow the creation of a 
multiprocessor ISS. Figure 1 shows a block diagram of the 
system that will be used in the next subsections to guide the 
explanation of each component. 

4.1. Processor to NI 

In the current version of this work, each processor 
executes the MIPS assembly code of one task of the 
application. Communication between tasks happens by 
exchanging packets. In order to send a packet to another 
task, the header of the packet and the packet data need to 
be first stored in the data memory of the processor. The 
header of the packet is composed by the address of the 
target router where the processor is connected and the 
number of data flits this packet contains. After that, the 
send packet subroutine is called. 

The send packet subroutine first reads the size flit of the 
packet stored in the memory to a register and reads to 
another register the output buffer size available in the NI. If 
there is enough space available in the NI to store the 
packet, the subroutine proceeds sending the packet flit by 
flit to the NI. The process of “reading” a flit from the NI 
uses the instruction “move from coprocessor 0” (mfc0),
while the process of “sending” a flit to the NI uses the 
instruction “move to coprocessor 0” (mtc0). Thus, from the 

point of view of the processor, coprocessor 0 is now the NI. 

4.2. NI to NoC 

With the packet stored in the NI output buffer, the NI 
sends the packet flit by flit to the input local port of the 
router where this NI is connected. This happens following 
the flow control protocol in use by the NoC and using the 
timing delays set on the NoC model being executed by 
Ptolemy. 

4.3. NoC to NI 

When packets are being received from the NoC into the 
NI, a different buffer (input buffer) is used, thus allowing 
parallel sending and receiving of packets. The receiving of 
packets also occur following the flow control in use by the 
NoC and using the timing delays set on the NoC model.

4.4. NI to processor 

As soon as the flits of the packet arrive in the input 
buffer of the NI, the NI launches a specific interruption to 
the processor meaning that a new packet has arrived. The 
MARS ISS, which was executing its task, saves its context 
and receives the interruption in the form of a Java 
exception. The standard routine for handling exceptions is 
called. By the ID of the specific exception, the exact 
exception is found out to be the “new message from 
network exception”. The specific subroutine of this 
exception is launched. This subroutine mainly reads the 
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complete packet from the NI using the “move from 
coprocessor 0” (mfc0) instruction to read each flit of the 
packet. After the complete packet was read from the NI and 
stored in the processor’s memory, the processor’s context 
is restored and it can now continues with its execution 
possibly using the data that was received. 

5. Synchronization 

The straightforward solution in Java to connect more 
than one MARS ISS to the NoC is to create a new MARS 
instance object for every new MARS instantiated in the 
NoC. However, this alternative failed due to the fact that 
MARS has been programmed using several static classes, 
attributes and methods. All of its main resources, such as 
the memory and the register bank, are declared as static. 
Therefore, if one tries to run more than one instance of 
MARS concurrently inside a single Java Virtual Machine 
(JVM), all the running instances will share the same 
resources, which will lead to unexpected behavior.  

One possible workaround for this problem is to run each 
MARS instance in a different JVM. Java does not directly 
share memory between multiple VMs, so by running each 
MARS in a different JVM, one is safely isolating each 
instance of MARS. One problem with this approach is that 
the exchange of messages between different JVMs is only 
possible by using APIs such as Java Remote Method 
Invocation (RMI) and sockets, which would greatly 
increase the complexity of the system. 

Another solution would be to reprogram MARS to 
remove the problematic static attributes and make them 
unique for each instance. However, this solution was also 
not optimal, considering the large number of static 
members declared in MARS and that every new future 
version of MARS would also require these modifications. 

A better solution is to instantiate isolated ClassLoaders, 
one for each instance of MARS to be loaded. This works 
because a static element in Java is unique only in the 
context of a ClassLoader, therefore the static elements will 
not interfere with the other instances of MARS called by 
other ClassLoaders. By using this approach, the task of 
exchanging messages between the MARS instance and its 
corresponding NI also becomes trivial, and can be done 
simply by injecting a NI object when instantiating MARS. 

A side effect of this solution is that each MARS instance 
and the NoC are considered as different threads by Java, 
and this would require extra algorithms based on wait and 
notify directives to maintain the time constraints followed 
by the NoC. As the main goal of this work is not provide 
good latency figures to the multiprocessor system 
application under simulation, we proceeded without the 
extra algorithms, aiming a faster simulation. Figure 2 
presents a printout of the most important events occurred 
during the transfer of a packet composed by 2 header flits 
and 10 payload flits from MARS #1 to MARS #2. MARS 
#1 is connected to router 00 as illustrated in Figure 1 and 
MARS #2 is connected to router 21. No extra traffic is 
currently occupying the NoC. 

3002 MARS #1 sending target  flit   (21) to NI #1 
3002 MARS #1 sending size    flit   (10) to NI #1 
3002 MARS #1 sending payload flit #0 (9) to NI #1 
3003 MARS #1 sending payload flit #1 (9) to NI #1 
3003 MARS #1 sending payload flit #2 (4) to NI #1 
3003 MARS #1 sending payload flit #3 (7) to NI #1 
3003 MARS #1 sending payload flit #4 (1) to NI #1 
3003 MARS #1 sending payload flit #5 (3) to NI #1 
3003 MARS #1 sending payload flit #6 (8) to NI #1 
3003 MARS #1 sending payload flit #7 (2) to NI #1 
3003 MARS #1 sending payload flit #8 (6) to NI #1 
3086 MARS #1 sending payload flit #9 (5) to NI #1 
3087 NI #1   sending target  flit   (21) to NoC 
3089 NI #1   sending size    flit   (10) to NoC 
3091 NI #1   sending payload flit #0 (9) to NoC 
3093 NI #1   sending payload flit #1 (9) to NoC 
3095 NI #1   sending payload flit #2 (4) to NoC 
3097 NI #1   sending payload flit #3 (7) to NoC 
3099 NI #1   sending payload flit #4 (1) to NoC 
3101 NI #1   sending payload flit #5 (3) to NoC 
3103 NI #1   sending payload flit #6 (8) to NoC 
3105 NI #1   sending payload flit #7 (2) to NoC 
3107 NI #1   sending payload flit #8 (6) to NoC 
3109 NI #1   sending payload flit #9 (5) to NoC 
3112 NoC     sending target  flit   (21) to NI #2 
3116 NoC     sending size    flit   (10) to NI #2 
3120 NoC     sending payload flit #0 (9) to NI #2 
3120 NI #2   sending payload flit #0 (9) to MARS #2
3124 Noc     sending payload flit #1 (9) to NI #2 
3128 Noc     sending payload flit #2 (4) to NI #2 
3132 Noc     sending payload flit #3 (7) to NI #2 
3136 Noc     sending payload flit #4 (1) to NI #2 
3140 Noc     sending payload flit #5 (3) to NI #2 
3144 Noc     sending payload flit #6 (8) to NI #2 
3148 Noc     sending payload flit #7 (2) to NI #2 
3152 Noc     sending payload flit #8 (6) to NI #2 
3156 Noc     sending payload flit #9 (5) to NI #2 
3166 NI #2   sending payload flit #1 (9) to MARS #2
3170 NI #2   sending payload flit #2 (4) to MARS #2
3172 NI #2   sending payload flit #3 (7) to MARS #2
3174 NI #2   sending payload flit #4 (1) to MARS #2
3175 NI #2   sending payload flit #5 (3) to MARS #2
3177 NI #2   sending payload flit #6 (8) to MARS #2
3178 NI #2   sending payload flit #7 (2) to MARS #2
3180 NI #2   sending payload flit #8 (6) to MARS #2
3181 NI #2   sending payload flit #9 (5) to MARS #2

Figure 2 – Timing delays of the most important 
events during the transfer of a packet between two 

processors. 
All the following comments presented in this paragraph 

refer to Figure 2. Between times 3002 and 3086 MARS #1 
sends the packet to the NI connected to it (NI #1), exactly 
as explained in Section 4.1. Eleven of the twelve flits of the 
packet were sent in the first 2 simulation cycles, and the 
last flit of the packet at time 3086. This strange behavior 
implies the following results: (1) MARS #1 thread was 
executed two times concurrently to Ptolemy thread, 
between times 3002-3003 and 3086; (2) MARS thread can 
be faster enough to execute at least 11 mtc0 instructions in 
a row during 2 simulation cycles of Ptolemy; (3) MARS 
thread was not called again during 83 simulation cycles 
(3086-3003). Between times 3087 and 3109 each flit of the 
packet was sent constantly every 2 simulation cycles from 
NI #1 to the NoC, exactly as explained in Section 4.2. This 
behavior is equal to the real HERMES NoC that needs 2 
clock cycles to transfer a flit using handshake flow control. 
Between time 3112 and 3156 all the flits from the packet 
were delivered from the NoC to NI #2 as explained in 
Section 4.3. However, due to some technical difficulties in 
the current version, it was not possible to deliver each flit 
every 2 simulation cycles, but 4 simulation cycles in this 
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case. At time 3120 it is possible to see that NI #2 delivered 
the first payload flit immediately to MARS #2. Between 
times 3166 and 3181 the rest of the payload flits were 
delivered to MARS #2 as described in Section 4.4. Here 
again it is possible to see that the data transfer did not 
follow a constant pattern, similar to one the occurred 
between times 3002 and 3086. This unpredictable behavior 
is a side effect of running multiple threads with no proper 
synchronization. 

6. Conclusion and Future Work 

This work presented an ISS for multiprocessor systems 
based on the MIPS processor. In this work the RENATO 
NoC model was connected to two instances of the MARS 
ISS and as result applications based on more then one 
processor can be easily debugged with the presented 
approach. The most important contribution of this work is 
the NI, which allows both systems to communicate, thus 
creating a more realistic multiprocessing system model 
composed by computation and communication.  

Initial figures regarding latency between processors’ 
communication through the NoC were measured and we 
report to be insufficient in the current version. In order to 
have a good latency figure we must: (1) back annotate the 
timing delays of each assembly instruction from a real 
MIPS processor to MARS; (2) add extra synchronization 
logic to mimic the timing delays between processor and NI. 
In the current version of this work we guarantee only the 
NoC timing delays as presented in [4].  Future works will 
be related to steps 1 and 2. 
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