
Generating and Maintaining a Safety Argument
for Integrated Modular Systems

Mark Nicholson, Philippa Conmy, Iain Bate, John McDermid
Department of Computer Science, University of York, York, YO10 5DD, UK

Email: mark | philippa | ijb | jam @cs.york.ac.uk
Tel: (+44) 1904 432789

Abstract

The aerospace industry has been investigating
integrated modular systems (IMS) for some years. These
systems offer valuable capabilities including flexibility,
software/hardware abstraction, and incremental
upgrades. However, in order to benefit from the
technology a safety case must be generated which can
be maintained incrementally with system changes,
otherwise certification will be prohibitively expensive.
This paper investigates the different types of upgrade
that an IMS may be subject too. A method is proposed
for determining the impact of a proposed upgrade. A
baseline safety case for IMS in which evidence can be
separated between different stakeholders in the system
is presented. This separation facilitates incremental
certification by allowing the impact of a change on the
baseline safety case to be minimised.

1. Introduction

The current generation computer based systems in
commercial jet aircraft are federated, with each major
function, or application, in a separate hardware unit.
These units may be interconnected, but each is
essentially considered independently from the point of
view of certification. Federated systems are expensive
to develop and certify. As a result there has been a
move towards an alternative approach known as
Integrated Modular Systems (IMS). A number of
current military aircraft, such as the F-18, have a
mixture of federated and IMS like systems. The aim of
this paper is to show how to approach certification for
aircraft computer based systems that employ IMS.

Federated systems generally have software which is
tightly coupled to the underlying hardware platform.
They are relatively inflexible in that small functional
changes can give rise to significant amounts of rework
to the certification basis (safety case) of the aircraft.
Platform changes necessitated by hardware
obsolescence can also lead to considerable effort and
rework to re-certify. Even if a batched change mid life

update (MLU) approach is employed the difficulty of
analysing the effects on the certification basis, and other
factors such as loss of knowledge about the design,
means that a new, rather than reworked, safety case is
often produced. Thus, much of the previous information
is either lost, or work undertaken that is not required.

In the aircraft industry the term commonly used for
an IMS is Integrated Modular Avionics (IMA). We
believe that the comments made in this paper are
relevant for non aircraft sector specific systems as well,
and therefore the term IMS is used.

With IMS a number of functions or applications
run on a processor, communicating via services
provided by an operating system. IMS has many
potential benefits including simplifying software
upgrades, making it feasible to add new applications
without recertifying the whole IMS (incremental
certification), and assisting in meeting requirements for
maintenance free operating periods (MFOPs). The
overarching aim is to reduce the cost of developing and
maintaining a system through its lifetime with
consequent reduction in cost of ownership.

The use of IMS changes traditional system
architectures. For example, there will be no physical
boundaries between applications. A logical separation
approach, called partitioning, is employed instead. Also,
sensors and actuators may be interfaced to buses via
remote data concentrators, rather than linked directly to
the hardware unit where they are used.

However, in this paper, our main focus is on the
impact that the introduction of IMS has on the safety
certification of the system and the maintenance of that
certification through the lifetime of a platform. Then
Section 2 presents background information on IMS,
certification of an IMS, and the issues arising from
modifications to such systems. In Section 3 we propose
a process for handling the impact of a modification on
the safety certification basis of an IMS.

 Section 4 investigates the use of Goal Structuring
Notation (GSN) as a basis for developing and
maintaining the safety arguments on which the safety
certification of a system is based. The GSN
representation facilitates the process presented in
Section 3. Emphasis is placed in this section on the
ability to separate the safety arguments relating to the

core services provided by the IMS, and the applications
that reside on the IMS, for initial certification. The
concept of a set of "logically equivalent" systems
(Nicholson, Hollow et al. 2000), and system safety
arguments, is then used as a unifying theme for
maintaining the safety arguments, and hence safety
certification, in the face of incremental modifications to
the system.

Finally, in Section 5 a case study is presented. This
study looks at the impact of a change on the timing
characteristics of an IMS.

2. Background and Problem
Statement

Equipment and Interactions in IMS
One of the issues surrounding IMS that makes safety
argument production and maintenance difficult is that
the exact form of IMS to be employed in complex
computer based control systems has not yet been
resolved. At a recent workshop on IMS the number one
question on the brainstorming list was "What is IMS"?
Therefore, we have chosen one particular exemplar that
has the advantage of being based on a standard, ARINC
653 (ARINC 1999).

An ARINC 653 IMS contains a number of
computing modules that are grouped within cabinets
that are positioned throughout the platform. Modules
and cabinets are linked via a computer network to each
other and to various input/output (IO) devices such as
sensors and actuators. Within each module there is at
least one partition containing application data to run on
that module. A partition is an area logically separated
from other application areas and the operating system,
both for scheduling purposes and to protect data/code
memory space.

The partitions on a module are scheduled in a
cyclic manner, allowing each to access the core
processor. Within the allotted time slot there is another
schedule controlling individual processes in the
partition. An application may be divided into more than
one partition. We will return to this issue in section5.

The computing elements can be divided into three
sets. These are application elements (e.g. specialised
computing), the IMS computing supporting elements
(e.g. processors, operating system), and input/output
devices (e.g. sensors/actuators, display devices). These
elements are not physically isolated within the system,
but are logically mapped; for example applications are
data-loaded into partitions on the IMS bare platform
(BP) modules. The intersections of the sets represent
the various (logical) interactions of the elements, see
Figure 1 and Table 1.

6

3
Input/Output

Devices

1
IMS Support

5

4 2
Applications

7

Figure 1: Computing elements of an IMS and
their interactions

Set Elements

1 BP, comprising of API, OS, CO/EX, Health
Monitoring, BITE, and computer module
hardware resources with no mapped applications.

2 Applications, comprising of computing code,
development environment and analysis tools.

3 Input/Output (IO) devices, comprising of sensors,
actuators, display units, error logs, data loaders,
and all network hardware.

4 The mapping of applications to BP computing
resources, and usage of API by applications.

5 Communications between the applications and IO
devices, where BP provides mechanism for
passing data between the two.

6 BP interaction with relevant IO devices
comprising of error logging, and data loading.

7 Applications outside of IMS with direct access to
IO devices, includes device drivers.

Table 1: IMS computing elements

The term IMS BP within this document refers to set
1, the bare computing modules with the layered IMS
architecture. The term IMS within this document refers
to those elements in sets 1, 4, 5 and 6. These elements
can be seen as the finally configured IMS, ready to run,
including all applications and interactions with IO
devices.

The next grouping is the set of all IMS computing
support elements including those IO devices used for
IMS BP support, but without the mapped applications.
These are sets 1 and 6. The final group is the
application elements mapped onto the modules and the
connections with the IO devices used for application
support. These are sets 4 and 5. Whilst the modules

must provide a robust communications system for set 5,
it is appropriate to list this as application dependent as
the application ultimately must use or produce the data.

An ARINC 653 (ARINC 1997) variant of an IMS
Module model is shown in Figure 2. This model shows
several application partitions, and indicates that all data
flow from the applications should be through an
Application Programming Interface (API). All data flow
from the operating system (OS) to hardware should go
via the Core Executive (CO-EX) layer in order to
maintain software portability.

Application
partition 1

Application
partition 2

Application
partition N

API Layer

Operation System

Hardware

CO-EX

Data
Flow

Figure 2: IMS Module

If this form of module is employed it becomes, at
least for some levels of abstraction, possible to separate
out the safety arguments relating to the applications (set
2) and the BP (sets 1 and 6). This separation is possible
because the failure modes of the BP will not propagate
to the application level. In other words, the system must
be designed to safely support this separation. This also
supports the arguments for incremental maintenance/
certification. We will return to this issue in Section 4.

Certification of Avionics Systems
Under current civil aviation certification

procedures each computer-based system on an aircraft
is assessed in isolation and the certification process
assumes that the software behaves in a deterministic
manner. Recent international standards such as ARP-
4754 / 4761 (SAE 1996) are intended to deal with
“complex and integrated systems” for commercial
aircraft. However they do not explicitly deal with
issues such as IMS and, implicitly, they still reflect the
“system at a time” approach to certification. Military
standards such as DS 00-55 (MoD 1997) and DS 00-56
(MoD 1996) in the UK, and MilStd 882C (DoD 1996)
in the USA are similarly mute on the subject of
certification of IMS.

Bradley (Bradley, J. et al. 1996) lists seven areas of
avionics system certification which are affected

significantly by the use of IMS principles and
technology:
• Isolation can no longer purely be provided by

physically separating the system functions.
• Non-cyclic scheduling, such as priority based

scheduling (Burns 1995), will be required to
support varying workloads (this is non-
deterministic, although it is predictable) and to
allow the worst case timing characteristics of the
system to be determined.

• Common cause failures may be introduced by
means of the management units employed to
provide isolation and reconfiguration.

• Safety critical application functions will be placed
on standard commercial processors.

• Hardware modules will need to be interchangeable
for ease of maintenance.

• Reconfiguration can affect system safety analyses,
e.g. zonal analyses, as well as just properties local
to a “system”.

• If systems are to be allowed to evolve, then it must
be possible to re-use certification evidence for
those parts of a system that have not changed –
even though the old and the new functions may
share resources – otherwise certification will be
prohibitively expensive.

In this paper we concentrate on the last of Bradley's
issues. For example, modifications are considered in
section 11 of ARP 4754. However, this section does not
explicitly address the implications of incremental
modification, including the need to maintain the safety
argument through the lifetime of the IMS. Thus, the
standards do not help when considering this aspect of
IMS. There is a need to go back to more basic
principles. This boils down to providing a safety
argument and maintaining it throughout the lifetime of
the system via a process of incremental certification.

Incremental Modification and Certification
Incremental certification provides the ability to

integrate and qualify new applications, and maintain
existing applications, without the need to re-qualify the
whole platform. The principle of incremental
modification has been used on previous projects, such
as the F-18. However, the impact on the safety
arguments resulting from these changes is not well
understood.

A method of determining the set of changes that
can be undertaken on an incremental basis, and the
impact on the safety case of such changes, is therefore
required. In the remainder of this section the types of
changes that an IMS will be subjected to are presented.

The lifetime of a modern jet is typically 20 to 30

years and during this time the requirements of the
computer based systems, and the platform technology
this functionality will employ, are subject to change.

Two types of maintenance activity can be identified
for systems: unplanned and planned. In this context
unplanned maintenance relates to changes initiated as
necessary during the operational life of the system, such
as the replacement of a failed processor. Planned
maintenance refers to batches of maintenance actions
that are undertaken at one time. Currently, mid life
updates are undertaken as planned maintenance actions.

In some cases the impact of a change may be
extensive and have far-reaching effects on the safety
case and as such will not be amenable to incremental
certification. These changes are better undertaken as
part of a planned maintenance and re-certification
process. The trick is to maximise the number of changes
that can be executed with minimum impact, via an
incremental certification process. This is the basis of the
approach presented in Sections 3 and 4.

Consideration of the characteristics of the ARINC
653 IMS has led to eight categories of change being
identified:

1. A change to an application, where change effects
are contained within a single partition (could
include the removal of an application)

2. A change to an application where change effects
cross partition boundaries (for instance requiring
the movement of an application to a different
module)

3. An addition (i.e. involving extra application(s))
where change effects are contained within a
partition

4. An addition (i.e. involving extra application(s))
where change effects are not contained within a
partition

5. A change / addition of an application that requires
the partition boundaries to be altered

6. A change to the hardware platform (involves a
change to the Core Executive Interface (coex))

7. A change to the API implementation
8. A change to the operating system

Note that if a change does not cross a partition
boundary, this means that the change does not alter any
functional or resource dependency external to the
changed partition. Some of these changes will need to
be undertaken as planned activities, that require re-
certification, and others as unplanned activities, that can
be accomplished via incremental certification.

These categories can be related to the sets of
computing elements presented in Figure 1. For instance
change category one may only affect a single element of

set 2. Other categories may have an impact on other
sets. For example, a change to the API may potentially
have an impact on the safety arguments relating to the
IMS set (1,4,5 and 6) presented in Figure 1.

The ability of a change to impact other functional
elements of the system depends on the nature of the
functional dependencies in the system and the API and
partitioning mechanisms (see Figure 2) in the system.
For example, if the safety argument for an application
relies on it having access to a particular piece of data,
that as a result of a modification is also used by another
application, incremental certification can be achieved if
the modified application cannot significantly affect the
ability of the existing application to access that data.

In the next section means of identifying the impact
of a modification on an IMS is presented. Particular
emphasis is given to the ability to identify the impact of
a proposed modification on the safety arguments that
form the basis of the safety certification for an IMS.
Some of the eight change types identified above will
have minimal impact on the safety arguments and
therefore will be amenable to incremental certification.
Others will have a wider impact and will require re-
certification via a planned maintenance activity. A key
element of IMS design is to minimise the number of
changes which fall into this class.

3. Process for Handling Change

The impact of a modification is dependent on a
number of factors. One of these is the amount of "slack"
in the system. It is clear that for an incremental update
to be viable for IMS a system should be built with some
slack in the size of the memory and time partitions. This
is known as the design for growth strategy. For instance,
a reservation based scheduling approach (Grigg and
Audsley 1997) could be adopted. This approach gives
each schedulable entity a budget. It can be shown that if
each of the budgets is met then the timing requirements
for the system are met. For each modification, evidence
must be provided that each budget is still met. As a
result of this approach modifications can be
accommodated with minimum impact on the system
(i.e. without requiring partition boundaries to be
moved). The impact on the safety basis of the system
can then be assessed via an incremental certification
process.

The groundwork for incremental certification is
presented in the baseline safety argument. In other
words the designers and system integrators provide an
argument showing that suitable provision for
incremental certification has been made. Furthermore, a
process or roadmap for each of the eight categories of
change identified in Section 3 is required. The exact

nature of each roadmap is not obvious. These processes
must be acceptable to the certification authorities prior
to use. Note that in some cases the roadmap will imply
full re-certification rather than incremental certification.
Work remains on developing the details of the
roadmaps.

To maximise the number of types of modification
that can be addressed via incremental certification the
impact of a change on the safety basis for the aircraft
should be minimised. This is facilitated by employing
the concept of "logical equivalence". Under logical
equivalence a “family” of variants of an IMS is certified
by showing that each member of the family has
acceptably similar properties. For in a family instance,
response times of the applications meet their timing
requirements and hence the timing strand of the safety
argument is not broken, although the evidence required
to support it will be different, see Section 5.

If we can show that the impact of the modification
is such that the safety argument for the new system is
logically equivalent to the old argument then
incremental certification can be undertaken. Thus, this
equivalence family represents the set of changes that
can be made in accordance with the original safety
basis.

Consider a modification that is likely to be
amenable to incremental certification: a modification to
an application. A process of the kind outlined in Table 2
could be employed. This process considers the steps
required to undertake the modification and the impact
on the safety arguments/evidence of the application
modification. Similar approaches can be undertaken for
other modifications, such as the introduction of a new
application.

The steps in Table 2 are required to show whether
the modified system is logically equivalent to the old
system and therefore can be certified under the original
safety basis. Note that this does not imply that there will
be no impact on the arguments and evidence in the
safety case, only that the new safety case is logically
equivalent to the old one.

In step 2 the impacts of the proposed modification
are assessed. Two types of impact on the safety
argument can be envisaged: those that directly challenge
the arguments or evidence provided in the baseline
argument and those that indirectly challenge the
baseline via their impact on the underlying assumptions
within the baseline argument.

1: Confirm that modified/new elements conform to
appropriate design assurance level (design rules) and
API usage criteria for an ARINC653 application

2: Analyse existing system to identify the impact of the
proposed modification. Functional, non-functional (e.g.
timing) and safety argument impacts should be
investigated.

3: Identify the certification requirements for this change.
That is the certification roadmap for an application
modification in an ARINC 653 system

4: Instantiate the roadmap to provide arguments /
evidence for the certification authorities. The roadmap
will:

4a: Provide analysis of any potential safety
implications. For instance, check that assumptions
are not invalidated. This should include an analysis
of initialisation, fault tolerance and operational
running of the system

4b: Provide a qualified data loading process to ensure
actual upgrade does not introduce any hazardous
conditions.

4c: Provide a configuration management process to
ensure that the master configuration list is updated
with the modified configuration.

4d: Provide evidence of suitable testing to ensure the
unaffected applications really have been unaffected
and any incorrect operation of the affected
applications is detected on initialisation.

4e: Provide evidence to show any impacts on the flying
characteristics of the aircraft implied by a given
modification. Show that any changes in
understanding required by the aircrew of how the
systems operate in both normal and failure
conditions have been addressed.

Table 2: Incremental Certification Process

In Figure 3 (Kelly 1999) a generic impact analysis
is presented. This analysis can be tailored to consider
the direct impact of a modification on the safety
arguments and safety evidence provided in the baseline
safety case, in support of step 2 above.

(i) Identify
potential
impact

(ii) Identify
actual impact

(iii) execute
step (i) for all

impacted
items

Figure 3: Impact Analysis

Step (i) investigates the "damage" to a system that
may result from a modification. Analysis starts at the
intra-partition effects, then the inter-partition, inter
module and inter cabinet effects via the recursive call in
step (iii).

Step (ii) considers the scope of the impacts in terms
of the safety case for an IMS. A benign impact is one
where logical equivalence can be shown between the
existing and new safety arguments. That is the safety
evidence implies the safety characteristics of the
modified system are acceptably similar to those of the
original system.

Step (iii) is a recursive call that allows knock-on
effects of a modification to be tracked. The process
stops when either the impacts of a modification cannot
be propagated any further or all remaining impacts are
considered to be benign.

One aim of IMS is to reduce the propagation of
impacts on the safety arguments / evidence, resulting
from a modification, as much as possible. This
represents a key difference between IMS and federated
systems. IMS polices the segregation between
applications and provides hardware abstraction,
bounding the propagation of the impact of a change.
Federation on the other hand is implemented in a way
that means that the dependencies between applications,
the data they use and the non-functional characteristics
of the system (e.g. timing) are not easily identified. As a
result re-analysis, reconstruction of a significant part of
the safety arguments, and evidence, and hence
recertification is often undertaken.

Impact analysis can also be used to investigate the
impact of the modification on the function, timing and
data attributes of the IMS. The impact paths from this
analysis provide the indirect challenges to the safety
argument. For instance a challenge to an assumption
that the probability of a failure of the IMS infrastructure
is less than 10-9. It may also be the case that
combinations of failures introduced by the modification
are worse than any existing failures. Using impact
analysis, along with the boundaries that the effects cross
(application, partition, API, OS, platform) will help
determine the ability to produce a logically equivalent
safety argument.

Once the impact of the modification has been
addressed and the potential impacts on the baseline
safety case have been determined recovery actions are
required to produce an equivalent safety case. Step 3 of
the process in Table 2 introduces the concept of a
certification roadmap for a modification. In Figure 4 the
roadmap for a change is presented in terms of the
recovery actions required to maintain the safety
arguments for the system being modified. This set of

actions forms the basis of step 4 in the process. A
different roadmap is needed for each of the categories
of change.

Decide on
certification

argument
recovery

action

Provide
evidence of
recovery of

affected
argument

Step 3 Step 4

Figure 4: Maintaining the Safety Basis

Consider the introduction of a modification to an
application that does not cross partition boundaries. In
this case the appropriate strategy is to separate the
application arguments from each other and from the
IMS service arguments. Thus, arguments relating to the
IMS structures (sets 1 and 3 to 7) will not be directly
challenged by the change. In Section 4 we contend that
separating application and IMS structure safety
arguments is an important step towards incremental
certification of an IMS.

Once all the challenges to the baseline safety case
have been addressed the modification can go ahead. As
a result of this activity the safety basis of the system can
be maintained.

Incremental modification, incremental certification
and the processes required to undertake them are central
to the gains that can be made from adopting an IMS
approach to constructing computer based systems on
aircraft. The framework presented above provides the
basis of this work. It is clear that there is a need to be
able to quickly identify the potential impacts
(challenges) to the safety basis posed by a modification.
This is by no means a trivial requirement. However,
techniques exist to present safety arguments. In the next
section we consider how the incremental certification
process can be supported by the use of Goal Structuring
Notation.

4. Safety arguments to Support
Change

The Goal Structuring notation (GSN) (Kelly 1999)
can be used to present the arguments for the initial
certification of the platform. It can also be used to
investigate the impact of a modification on this safety
argument, step 2 of the process introduced above. Let
us first consider the production of a GSN representation
of the "baseline" safety argument for an IMS.

A "baseline " safety argument
For the ARINC IMS model presented in Section 2

the skeleton of a safety argument has been produced. It
is called the baseline argument because it provides an
index to the safety argument and evidence for the
system when it goes into service. The aim is to maintain
this argument basis through the lifetime of the system
through an incremental maintenance process.

The top level GSN argument structure for an
ARINC 653 IMS is presented in Figure 5. This shows
the various argument sections required to support the
overall goal (G.TOP), “IMS is acceptably safe”. A goal
is a requirements statement expressed as a claim
concerning some aspect of the system design,
implementation, operation or maintenance. It is
represented in GSN by a rectangle. The arrowed lines
between goals indicate that the higher level goal is at
least partly solved by the lower level goal.

G.TOP
Top Level

G.TOP.USE
IMS In Use

G.TOP.TL
Total Loss of IMS

G.CFM.INF
Infrastructure

Errors

G.CFM.PM
Protection

mechanisms

G.CFM.ERR
Error recovery/

Close Down

G.UPD.AU
Application
Upgrade

G.TL.UPD
Incremental

updates

G.TOP.CFM
Credible failure

modes

G.PM.COM
Communications

G.PM.MEM
Memory

partitioning

G.PM.TME
Time Partitioning

& scheduling

G.INF.INI
Initialisation

G.INF.CFG
Configuration

Figure 5: GSN Structure for IMS Model

Note that the structure in Figure 5 contains a goal
for incremental update. This goal is met by presenting
an argument for the maintenance of the safety basis, via
a certification roadmap, for each of the eight types of
modification. The application modification goal is
shown as an example.

Developing the safety arguments in such a way that
the impact of a modification is minimised supports
incremental certification. One clear division in an IMS
is between the bare platform and the applications. If the
safety argument for the platform is developed so that
the arguments relating to these two elements are
separated then a substantial reduction in the amount of
reworking of the certification basis can be achieved. It
might for example be that some modifications to the
bare platform, such as a bug fix to the OS, may be
transparent to the applications. As a result of the

separation of the safety arguments there would be no
need to revisit the strands of the baseline safety
argument relating to the applications.

In Figure 5 the goal G.PM.TME relates to the
safety of the timing characteristics of the system. This
goal may be broken into two sub-goals relating to the
timing requirements of the BP (G.TME.1) and the
timing requirements of the applications (G.TME.ATR).
In Section 5 we show how this separation facilitates
impact analysis and incremental certification of an
application modification.

The GSN representation of the safety argument for
an IMS can be used to investigate any challenges to the
validity of a safety argument, and the evidence
employed to substantiate it. In GSN terms a cross
through the challenged link represents a potential
challenge to an element of an argument. Suppose that a
modification challenges the basis of the argument for a
safe initialisation process (G.INF.INI). In this case the
arrow between G.CFM.INF and G.INF.INI will be
"crossed out". The impact of a modification can be
propagated up the goal structure. In this case
propagation will only occur if G.INF.CFG is also
challenged. This propagation is a specialisation of step
2 in our process.

Once any challenges to the safety basis of the IMS
have been identified steps 3 and 4 of the process
outlined in Figure 4 can be implemented. That is a
recovery action decided on and evidence that it has
been successful provided. For instance, one action may
be to change the initialisation procedures to overcome
the challenges identified above. This action forms part
of the roadmap in step 4 of the process. Note that the
change in procedures may be extensive enough to
require recertification. In this case logical equivalence
cannot be maintained in an incremental manner.
However, deciding whether this is the case is we believe
easier using our approach than is currently the case.

The aim of any approach to incremental
certification therefore must first be to structure the
attributes of the IMS and its accompanying safety
argument in such a way that the challenges to these
structures are minimised for a feasible system change.
The explicit use of an OS and API should make this
much easier for changes to an application. This puts an
onus on the system designers to devise interfaces that
support the safety argument. Second, a way of
indicating the impact of the different types of change
should be devised. This would also indicate how much
effort is likely to be needed to maintain the certification
basis in an incremental manner. We maintain that an
incremental certification roadmap for each type of
change will facilitate this process.

The approach presented above represents the first
steps towards an analytical framework for these

activities. It is therefore worth introducing an example
and looking at the areas where effort must be placed if
the aims of incremental certification are to be achieved.

5. Case Study - Changes within the
Timing Domain

Consider the safety argument relating to goal
G.PM.TME, which considers the response time
characteristics of the system. The safety argument
presented in this section is not complete as work is
ongoing into the structure of the safety arguments for
IMS. For instance, it does not cover the issues of timely
detection of failures. However, it is sufficient for our
current purpose, i.e. to illustrate the approach.

The argument relating to G.PM.TME can be split
into two elements: one relating to the timing
characteristics of the Bare Platform (IMS services) and
one relating to the applications that will be resident on
the platform. These structures are presented in Figures 6
and 7 respectively. These argument structures have been
simplified for purposes of explanation.

G.TME.1
BP timing requirements

are met

G.TME.5
All other BP

configurations provide
more than minimum
operating capacity

G.TME.2
BP timing requirements

are provided

G.TME.3
BP timing requirements
are met for the chosen
set of configurations

G.TME.4
BP timing requirements

are met for set of
minimum

configurationsS.TME.1
Correct

requirements are
provided by BP

designers

S.TME.2
Evidence of

reuirements being
met for set of

minimum
configurations

S.TME.3
Evidence from

system integrator
of configuration

capacity

Figure 6: Safety argument for IMS Timing

Figure 6 indicates that the BP timing requirements
have been met if an appropriate set of timing
requirements are provided and that these requirements
can be met by the implemented system. The circles,
such as S.TME.1, represent solutions; that is an
immediate source of information that can be used to
show the relevant goals have been met.

Note that the evidence required to substantiate a
solution may be provided by different stakeholders in

the system. In this case the BP designers must provide
evidence of correct timing requirements and the system
integrators must provide evidence that BP
configurations with more than minimal functionality
still meet their timing requirements.

Who provides, and maintains, safety evidence is an
important issue in incremental maintenance and
certification. This is a contractual and operational
process issue that is outside the scope of this paper.
However, for incremental maintenance and certification
to be successful it must be addressed.

One of the required features of IMS is the ability to
provide a look up table of valid system configurations
(Nicholson, Hollow et al. 2000). These can be used if a
failure is detected in flight to facilitate reconfiguration
to a new, and acceptably safe, configuration. Thus,
timing requirements must be shown to be met for all
chosen configuration sets. The timing requirements
issue is partly eased by the time partitioning philosophy
employed by the ARINC IMS.

The time partitioning philosophy where partitions
are scheduled in a cyclic fashion, each with their own
internal schedule should provide some protection from
partitions which are behaving incorrectly. For example
a partition which is stuck in an infinite loop should not
dominate the processor preventing a different partition
from meeting its deadlines. However, this philosophy
will increase the amount of jitter (Audsley and Wellings
1996) in the schedule at least by an amount equal to the
time taken for the other partitions to be executed and
the modules have to be configured carefully with this in
mind.

Figure 7 indicates that the timing requirements of
the applications can be shown to be met if an
appropriate set of timing requirements are provided and
it can be shown that these requirements can be met by
the implemented system. Within the goal structure
presented in Figure 7 an arrow with no decoration and a
filled arrowhead represents one to one mapping
between goals. One too many mappings are also used,
and are represented by an arrow with a small circle on
the arrow line. This type of mapping indicates that the
following goal will need to be met numerous times. In
this case it shows that a set of evidence will be required
from each application manufacturer.

G.TME.ATR
All application timing

requirements are
provided and met for
each configuration

G.ATR.1
Application N timing

requirements are
provided correctly

G.ATR.2
Application N timing

requirements met for a
chosen set of
configurations

G.ATR.3
Application N timing

requirements are met
for set of configurations
with minimum operating

capacity

G.ATR.4
All other application

configurations
provide more than
minimum operating

capacity

S.ATR.1
Correct

requirements
provided by
application
designers

S.ATR.2
Evidence of them

being met by
configuration and

schedules

S.ATR.3
Evidence from

system integrator
of configuration

capacity

N

N

Figure 7: Safety argument for Application
Timing Requirements

Consider the potential impact of a modification to
an application on the safety arguments presented in
Figures 6 and 7. Goal G.TME.1 is not challenged by a
change to an application that conforms to the API
guidelines, see Figure 8. This shows the advantage of
structuring the safety argument so that arguments about
the IMS structure are not affected by changes to the
applications that use the facilities.

G.TME.ATR
All application timing

requirements are
provided and met for
each configuration

G.ATR.1
Application N timing

requirements are
provided correctly

G.ATR.2
Application N timing
requirements met for

the chosen sets of
configurations

G.ATR.3
Application N timing

requirements are met
for set of configurations
with minimum operating

capacity

G.ATR.4
All other application

configurations
provide more than
minimum operating

capacity

S.ATR.1
Correct

requirements
provided by
application
designers

S.ATR.2
Evidence of them

being met by
configuration and

schedules

S.ATR.3
Evidence from

system integrator
of configuration

capacity

N N

G.PM.TME
Time partitioning and

scheduling

G.TME.1
BP timing requirements

are met

Figure 8: Challenges to Application Timing

The goal G.TME.ATR is potentially challenged by
the change, see Figure 8. For instance, the evidence that
appropriate timing requirements for the application
have been provided is challenged. Furthermore, the
evidence that the requirements are met has also been
challenged. As a result of the challenge to S.ATR.3 and
S.ATR.4 the goal G.ATR.2 is also challenged.

Note that this argument is structured in such a way
that those applications whose response time
characteristics are not impacted by the change need not
be re-evaluated. Even those that are impacted if they
continue to meet their deadlines are said to be subject to
a benign impact.

Approaches to Scheduling to aid Incremental
Certification

The scheduling approach employed in an IMS can
reduce the impact of a modification on the timing
characteristics of the applications, and hence the
system. Consider, the problem of handling applications
in a distributed system where it is required for a
message generated on one processor to carry useful
information to a function on another processor. The
latter function in this application should not be released
until the message has arrived. One approach was
suggested by Liu and Sun (Sun and Liu 1996), and was
referred to as the Phase Modification Approach.

By giving a function an offset such that its dispatch
(release) is always greater than the worst case response
time of the event trigger (i.e. the worst case arrival time
of the message) precedence is maintained, even across a
distributed system. A similar analysis can be undertaken
to investigate best case response times. This approach
requires a global time base.

Another way of handling distributed transactions is
to use sporadic functions that are triggered when the
message has arrived. However this suffers from the
same problem as Sun and Liu’s approach. That is, a
change on one processor means that the timing
characteristics of the whole system have to be re-
analysed. Therefore, these approaches are inappropriate
for our needs.

In (Bate 1998), an alternative approach was
proposed to help solve these problems and to reduce
pessimism. This approach makes the offset greater than
the worst case response time of the event trigger, based
on a number of timing-related criteria. One of the
benefits of doing this is that re-verification effort is
reduced when the system changes. The reason is that
within defined bounds a change on one processor does
not necessitate a system wide re-verification, i.e. it is
not holistic. As a result showing that the new schedule
is equivalent to the old one is relatively easy.

Figure 9 illustrates how the timing characteristics

of processor 1 may be modified until RA ≥ OB, without
affecting the scheduling of processor 2, since DA = OB.
Therefore, if the software on one processor is modified,
then only that processor needs to be re-analysed as long
as the overall system is schedulable. When the timing
requirements are no longer met the timing analysis and
function attribute assignment for the whole system is
repeated. At this point G.TME.ATR is challenged, see
Figure 8. In Sun and Liu’s approach RA = OB and
reanalysis is required each time a change is made.

Function A

Function B

WCRT=RA

OFFSET=OA

Processor
1

Processor
2

Figure 9: Non-holistic scheduling

The action required to repair the requirements goal
(G.ATR.1) is to provide evidence for the requirements
implied by the modification. The repair action to show
that application timing requirements have been met,
goal G.ATR.3, is dependent on the impact of the
change. If sufficient leeway has been provided under the
design for growth strategy then Bate’s analysis can be
used to produce a new schedule that can be shown to be
logically equivalent to the old schedule.

As the disruption to other applications increases
more analysis is required. If, for instance, the time
partitioning boundaries need to be changed, e.g. to
accommodate a greater worse case execution time, then
considerable re-analysis effort may be required to fix
the safety argument presented by G.ATR.2. A change to
the API, for instance, may mean that the timing
properties of all applications must be reassessed. Thus
the further down the list of changes the more effort is
required to show logical equivalence.

The challenges to the argument for goal
G.TME.ATR do not require a structural change to the
safety argument to be resolved. It is therefore possible
to show that the new argument is logically equivalent to
the old one.

6. CONCLUSIONS

Producing and maintaining a safety case for IMS is
non-trivial. We have highlighted some of the difficulties
and possible approaches to the production of an
appropriate argument and accompanying evidence that
could form the safety basis for the certification of an
IMS. Furthermore, we have shown that the structure of
this argument, such as splitting the core IMS and
application arguments can facilitate the objective of

incremental certification for a subset of the possible
changes to an IMS. In particular, we have shown that
incremental certification can only be achieved if the
design supports the incremental certification process.

However, if the promise of incremental
maintenance and certification is to be realised a number
of issues remain to be resolved. These include accepted
roadmaps for each type of change to the system, which
changes can be dealt with by an incremental process
and which need re-certification, detailed analysis of
activities to be undertaken during the change process,
etc. The synthesis of the certification basis and
incremental certification is the focus of our future
research activities. We aim to show that this synthesis
will benefit both the designers and maintainers of
integrated modular systems.

References
ARINC (1997). Avionics Application Software Standard

Interface, ARINC.
ARINC (1999). Design Guidance for Integrated Modular

Avionics, ARINC.
Audsley, N. and A. J. Wellings (1996). Analysing APEX

Applications. Proceedings of Real-Time Systems Symposium.
Bate, I. (1998). Scheduling and Timing Analysis for

Safety-Critical Systems. Department of Computer Science.
York, University of York.

Bradley, H. J., F. J., et al. (1996). Integrated Modular
Avionics & Certification - An IMA Design Team’s View. IEE
Seminar: Certification of Ground/Air System, Savoy Place,
London, WC2R 0BL.

Burns, A. (1995). “A Preemptive Priority-Based
Scheduling: An Appropriate Engineering Approach.”
Advances in Real-Time Systems 239.

DoD (1996). Mil-std 882C.
Grigg, A. and N. C. Audsley (1997). Towards the

Timing Analysis of Integrated Modular Avionics Systems.
ERA Avionics Conference and Exhibition, ERA.

Kelly, T. (1999). Arguing Safety: A systematic Approach
to Managing Safety Cases. Computer Science. York,
University of York.

MoD (1996). Safety Management requirements for
defence Systems, MoD.

MoD (1997). Requirements for Safety Related Software
in Defence Equipment, MoD.

Nicholson, M., P. Hollow, et al. (2000). Approaches to
Certification of Reconfigurable IMA Systems. INCOSE,
Minneapolis, USA, INCOSE.

SAE (1996). Aerospace Recommended Practice ARP
4754: Certification considerations for highly complex aircraft
systems.

Sun, J. and J. W. S. Liu (1996). Synchronization
protocols in distributed real-time systems. 16th International
Conference on Distributed Computing Systems.

