
An Application Adaptive Generic Module-based
Reflective Framework

for Real-time Operating Systems
Ameet Patil and Neil Audsley

Real-Time Systems Group,
Department of Computer Science, University of York, York, UK - YO10 5DD.

Email:{appatil,neil}@cs.york.ac.uk

Abstract— In low-resource real-time embedded systems, dy-
namically changing demands of applications in the form of re-
source requests, strict deadlines, fault recovery, etc. are non-
deterministic in nature. It is difficult for the underlying real-time
operating system (RTOS) to satisfy such demands of each and
every application. There is no single existing solution to overcome
this problem.

This paper proposes a generic module-based reflective frame-
work for an RTOS that self modifies and adapts itself to the
dynamically changing demands of applications.

I. INTRODUCTION

Complex applications running on low-resource Real-time
embedded systems face severe constraints, including the need
to meet strict deadlines, cope with system faults, low resource
availability, etc. The demands of such applications are mainly
non-deterministic in nature and are often poorly met by
the underlying Operating system (OS). For example: real-
time multimedia applications often demand resources non-
deterministically and have to compete for them along with
other applications [1]. For a few applications the runtime
changes in the events and the data contents of these events
lead to significant changes in the resource requirements (eg.
RADAR systems, Robot control, etc.). Operating systems
on the other hand are built without the knowledge of the
applications and the constraints involved (eg. no knowledge of
the amount of memory, needs of applications that would run
on it, availability of various resources, etc.). The OS is built
for the general case, rather than the specific requirements of
an application.

Applications may want to impose certain changes in the
OS inorder to increase efficiency in functioning predictably
and attain their deadline. For example: a complex real-time
security database application would want as much of its data
as possible to be present on the physical memory at all
times. It would do no good if the OS implements a virtual
paging memory management algorithm that would swap the
physically present data for some other pages required by other
applications. The application would hence require to impose
a change in the memory management policy.

Most real-time OSs implement a fixed static model having
a fixed memory management algorithm, scheduling algorithm,
etc. However, several solutions have also been proposed and

implemented to solve the above issues individually. There has
been no all-in-one single solution. For example: components
called ‘configurator’ have been implemented to take care of
the demands of multimedia applications and provide better
Quality of Service (QoS) [1]; Adaptive Resource Allocation
(ARA) mechanisms have been developed to predictively and
efficiently handle resource management for the dynamic needs
of complex real-time applications [2]. Having implemented the
solutions before hand would be of no use. Also, it is impossible
to build an OS consisting of all the possible solutions.

The real-time OS needs to be flexible enough to dynamically
adapt to changes in the internal(eg. application needs) and
external environments. We employ reflection mechanism to
design a generic reflective framework for such an RTOS.
Although there has already been much work done on reflective
OSs (eg. ApertOS [3], Spring [4]) but as we pointed out earlier
they concentrate on particular problems alone. For example:
ApertOS was mainly built for mobile computing environment
where object needs to migrate from one environment to other.
Spring was developed to be a distributed OS to support fast
and efficient cross address space calls.

This paper proposes a generic module-based reflective
framework for an RTOS which caters to all the application
needs (eg. memory management, resource management, etc).
The Applications would thus be able to bring about change in
the OS thereby, making the OS adapt itself dynamically to the
changing demands of applications. The framework focuses on
building each individual system module to be reflective with
support for reflection built into the kernel. We also introduce
as an example, the design of two reflective system modules:
a Reflective Scheduler and a Reflective Virtual Memory Man-
ager (VMM).

II. BACKGROUND ON REFLECTION

The mechanism of Reflection is not new to the world of
programming languages and also OSs. Languages like Java,
Smalltalk, CLOS have support for reflection; OSs like Aper-
tOS [3], Spring [4] are reflective OSs [5]. Reflection essentially
is a mechanism by which a program code or application
becomes ‘self-aware’, checks its progress and can change itself
or its behaviour [6]. This change can occur by changing data
structures, the program code itself, or sometimes even the



semantics of the language its written in. To facilitate this, the
application or program code has to have knowledge about the
data structures, language semantics, etc. The process by which
this information is provided to it is called ‘Reification’.

Often we find cases where the application needs to
change its course of execution depending on some unpre-
dictable/unknown run-time conditions. Reflection comes to
rescue here. It allows to make this change dynamically(there
are some exceptions to this however) at runtime with/without
the knowledge of the application program.

The Reflection model consists of a base-level (which is
the application code), and one or more meta-level forming a
structure called Reflective tower. The code in the meta-level is
responsible to intercept the necessary calls from or to the base
level, analyse the reified information and affect any change if
required. A protocol defined so as to establish a mechanism
by which the meta-level entities introspect (analyse), intercede
(eg. by intercepting calls to or from base-level) and affect
change to the base-level is called the ‘Meta-Object Protocol
(MOP)’ [7].

III. OUR REFLECTIVE FRAMEWORK

As shown in figure 1, the generic module-based reflective
framework is based on the micro-kernel architecture with
all system modules running as separate individual processes
outside the base kernel.

PSfrag replacements

interference

Fig. 1. Generic Reflective OS framework

The kernel provides basic support for reflection such as
interface for system modules/applications to reify information,
interface for reflective module to introspect and intercept. One
or more or all system modules can be individually designed to
be completely reflective. A reflective system module (eg. a re-
flective scheduler) is responsible to analyse reified information
and take intuitive steps to intercept and change its behaviour.

A. MOP for the Reflective Modules

The MOP provides with the basic set of rules that decide
how the reflective framework will work. Following are various
rules defined:

exactly what and how much is reified?: the only factor
that affects this decision is the available memory resource.
Obviously we cannot fix memory size during design or imple-
mentation time (because systems change and so does memory

size vary for different systems). Hence, our approach would
be to make an initial decision on what information to reify and
later dynamically reify as much of this information as possible
in the order of importance so as to minimise the memory
utilisation. This way the model would suit all systems with
different memory sizes.

should there be implicit MOPs?: Implicit MOPs (i.e. the
base-level is intercepted and control transfered to the meta-
level without the knowledge of the base-level entity) have
their advantages over explicit MOPs (i.e. base-level explicitly
transfers control to meta-level) in that they do not require any
change in the module code. We provide implicit MOPs by
a ‘caller-registration’ mechanism that requires the meta-level
entities to register initially what calls need to be intercepted
and reflected upon. This information is registered in the kernel
which invokes the respective meta-level reflective modules
whenever it detects the registered calls.

should there be explicit MOPs?: Although implicit MOPs
have the advantage of providing transparency, there is no harm
in having explicit MOPs. Hence, the system designer is free
to make use of explicit MOPs in order to directly invoke the
Reflective modules in the meta-level.

how to define interface for introspection?: The interface
for introspection (i.e. the mechanism by which the meta-level
objects inspect/observe/analyse the base-level activities) would
be with a set of kernel shared functions or system calls that
help in retrieving the reified information from the kernel.

how many meta-levels should be allowed?: if a reflective
system module at one meta-level is sufficiently well designed
then there would be no need for more meta-levels above it.
But there might be cases where after the implementation of
the meta-level module there arises an extra requirement to be
met that has not been implemented. In such cases we could
have another meta-level above the existing one to provide
the required functionality. Thus, practically there would be
no limitation on the number of meta-levels a system module
could have at any time. It is also possible to share a meta-
level module among one or more system modules if need be.
This considerably reduces the accounting space required to
keep information about the modules inside the kernel, thereby
resulting in efficient use of memory resource.

B. Kernel support for Reflection

We have designed a minimal micro-kernel that implements a
fast inter-process communication (IPC) mechanism, keeps all
the process accounting information and provides support for
reflection. All other system modules (eg. scheduler, memory
manager, etc.) run as separate individual system processes. The
kernel keeps track of only the most important information rei-
fied as indicated in MOP above and supplies this information
to the system modules on request through the defined interface.

The interface consists of a set of common shared functions
like requestInfo(): used to read the reified information from
the kernel; linkData(): used to create a direct link with the
underlying information (data) in the kernel to form a causal
connection (two objects are said to be causally connected



to each other when a change initiated by one affects the
other). Such a connection helps the system modules to directly
inspect/analyse/modify the information without incurring any
extra overhead on the system; interceptCall(): allows the meta-
level code to register the details about the function call to
be intercepted; installCode(): used by applications to install
user-defined policies. The following two subsections describe
example design of reflective scheduler and reflective VMM in
brief.

C. Example 1: Reflective Scheduler

Figure 2 shows the structure of Reflective Scheduler. The
base-level implements a default scheduling policy (eg. Round
Robin, FIFO, etc.). The Reflective scheduling module (code
in the meta-level) analyses the reified information and accord-
ingly installs new scheduling policies as and when required.
An Application can request to install a user-defined scheduling
policy to schedule its child processes using the installCode()
interface.

PSfrag replacements

interference

Fig. 2. Reflective Scheduler

D. Example 2: Reflective VMM

Figure 3 shows the structure of the Reflective Virtual
Memory Manager (VMM). The design adheres to our generic
reflective framework and hence is very similar to the reflective
scheduler design described above. The base-level VMM would
implement a default policy, while the reflective code in the
meta-level affects any change in this default policy if required.
Again, an application may request to install its user-defined
VMM policy.

IV. SUMMARY AND FUTURE WORK

This paper outlines a generic module-based reflective OS
framework to build a small real-time embedded OS that
changes and adapts itself to the non-deterministic, dynamically
changing demands of applications. We also present the design
of a Reflective Scheduler and Reflective VMM. To evaluate
our approach, further work has to be done to implement a

PSfrag replacements

interference

Fig. 3. Reflective Virtual Memory Manager

small reflective RTOS that has kernel support for reflection
and has one or more reflective system modules. There is also
a need to determine the effect trade-offs involved in providing
such flexibility.

REFERENCES

[1] B. Li and K. Nahrstedt, “Dynamic Reconfiguration for Complex
Multimedia Applications,” in ICMCS, Vol. 1, 1999, pp. 165–170.
[Online]. Available: citeseer.ist.psu.edu/article/li99dynamic.html

[2] D. Rosu, K. Schwan, S. Yalamanchili, and R. Jha, “On Adaptive
Resource Allocation for Complex Real-Time Applications,” Georgia
Institute of Technology, Tech. Rep. GIT-CC-97-26, 1997. [Online].
Available: citeseer.ist.psu.edu/article/rosu97adaptive.html

[3] Y. Yokote, “The Apertos Reflective Operating System: The Concept
and Its Implementation,” in Conference Proceedings on Object-Oriented
Programming Systems, Languages, and Applications. ACM Press, 1992,
pp. 414–434.

[4] G. Hamilton and P. Kougiouris, “The Spring Nucleus: A Microkernel for
Objects,” in In Proceedings of the USENIX Summer Conference, 1993,
pp. 147–159.

[5] S. Son, Advances in Real-Time Systems. Prentice-Hall, 1994.
[6] Patrick Rogers, “Software Fault Tolerance, Reflection and the Ada

Programming Language,” Ph.D. dissertation, University of York, UK,
October 2003.

[7] J. Malenfant, M. Jaques, and F.-N. Demers, “A Tutorial on Behavioral
Reflection and its Implementation,” in Proceedings of the Reflection 96
Conference, Gregor Kiczales, editor, pp. 1-20, San Francisco, California,
USA, April 1996.


