
Extending Java for Heterogeneous Embedded
System Description

Gary Plumbridge
Department of Computer Science

University of York, York, UK, YO10 5GH
gp@cs.york.ac.uk

Neil Audsley
Department of Computer Science

University of York, York, UK, YO10 5GH
neil@cs.york.ac.uk

Abstract—This paper introduces Machine Java, a framework
of classes for the Java programming language that enable the
description of software for systems with heterogeneous processing
elements (such as CPUs, microcontrollers and function acceler-
ators). Intended for the behavioural description of embedded
systems, Machine Java encapsulates both the data and control
aspects of computation into ‘machine’ objects that are appropri-
ate for mapping onto architecturally diverse multiprocessors.

System descriptions in Machine Java avoid the need for a
separate programming language for each processing element, and
makes explicit description of communications between processors
unnecessary. Suitability for a wide variety of hardware platforms
is enhanced by avoiding dependence on notions of shared memory
or shared timing resources.

I. INTRODUCTION

The multiple heterogeneous components of a typical em-
bedded platform usually require programming with several
different language environments. In this paper we propose
potential extensions via class libraries to Java to enable the
description of whole heterogeneous embedded systems with-
out compromising Java’s sound software engineering support.
The result is a Java program that can be still executed upon a
conventional Java Virtual Machine (JVM) but contains enough
information for translation to directly execute on hardware
platforms.

The approach taken in this paper is comparable in ethos
to previous approaches presented to translate single software
programming languages (such as C[4], Ada[27] and SR[11])
to single hardware devices. However, the work presented in
this paper is differentiated by translating a single program to
a set of parallel executing devices and their interconnection
pathways. These devices include CPUs, microcontrollers and
FPGAs.

Good programming languages and environments already ex-
ist for many of the different classes of configurable embedded
hardware, including VHDL[5] for digital circuitry description,
C[15] for microprocessor programming, EDK[30] for FPGA
system configuration. However, in spite of adequate tools for
each system component design for a heterogeneous composite
embedded system is still difficult for three primary reasons:

• Each of the heterogeneous components need different
skills and knowledge to use effectively.

• Connections between the distinct components must still
be explicitly defined and managed.

• Mapping of required functionality onto available hard-
ware components must be done by hand.

In this paper we present a small set of class library exten-
sions to the Java[12] programming language to facilitate the
description and implementation of heterogeneous embedded
systems in event driven style. Our primary addition to Java is
a class to represent independent execution and storage, referred
to as a Machine. Each machine embodies a computationally
discrete element that can operate concurrently with every other
machine in a system. A major distinction between machines
and ordinary threads in Java is that machines may not share
any memory with one another and interaction is restricted
to well defined channels. The isolation between separate
components represented by machines enables the possibility
of mapping them effectively to both hardware devices and
execution in software.

The remainder of this paper is structured as follows: Back-
ground and related work is provided in section II, the additions
to Java and their implications are detailed in section III, and
section IV discusses how the framework can be translated to
hardware.

II. BACKGROUND AND RELATED WORK

This paper is primarily concerned with systems constructed
from mixed collections of processors and reconfigurable logic,
but does not exclude systems composed exclusively from
either processors or logic devices. Heterogeneous system-on-
a-chip architectures and systems containing CPUs or grids of
FPGAs such as those used in high performance computing are
of particular interest, for example the CoSMoS multi-FPGA
simulation facility[28]. It is not assumed that these systems
will have to be able to run a Java Virtual Machine (JVM), nor
is it assumed that these hardware systems will be destined for
safety critical applications.

The idea of describing a heterogeneous or multiprocessor
system using a single idea has been investigated several times
previously both in academia and industry. A summary of the
most relevant approaches is provided in Table I. Harmonic[18]
has the most similar design goals to the proposal in this paper,
Machine Java.

Harmonic provides the ability to map a program written
in a single, standard programming language, C99 onto a
system composed of mixed general purpose processors and

Name Target composition Input language Partitioning Mapping Logic generation

3L Diamond [2] DSPs & FPGAs C & VHDL Manual Manual None
Compaan [23], [9] FPGAs & GPPs C & KPN Manual Manual to VHDL
Hy-C [25] FPGAs & GPPs C Automatic Automatic to VHDL
Harmonic [18] FPGAs & GPPs C Automatic or manual Automatic or manual to Handel-C
SCF [3] Any Any Manual Manual None

Machine Java JVM, GPPs, µCs & FPGAs Java Manual Automatic[to VHDL[

TABLE I
RELATED HETEROGENEOUS CO-DESIGN APPROACHES CONTRASTED WITH THE MACHINE JAVA FRAMEWORK. [INDICATES FUTURE WORK.

FPGAs. Harmonic uses source-level transformation to translate
input to C code that can be compiled to any GPP, and can
generate Handel-C[4] code for synthesis to FPGAs. The use
of standard C in Harmonic is motivated by the ability to
retain compatibility with corpora of existing code. The same
motivation applies to Machine Java which applies very few
restrictions to the use of the Java programming language.

Both Harmonic and Hy-C[25] provide automatic partition-
ing of the input source code into tasks that can be mapped onto
the target system’s different processing elements. In Harmonic
this is enabled by their use of OpenMP[20] annotations to
indicate data dependancies in the code, and in Hy-C by the
use of feedback of power and performance estimation from
the later stages of translation to targets to inform partitioning
of the source code. In contrast Machine Java does not intend
to automatically partition the input system but provides con-
structs to the programmer to identify natural partitions in their
system. The commercial approaches, Compaan [23], [9] and
3L Diamond [2] both require manual partitioning but Compaan
is distinguished by it’s use of Kahn Process Networks as an
intermediate form for the system description.

Several of the previous approaches are capable of generating
logic for FPGAs from the input system description. This
enables the mapping from tasks to processing elements to be
performed automatically by the toolset. Compaan is unusual in
that it is capable of generating synthesisable VHDL but does
not perform automatic mapping. Neither 3L Diamond nor SCF
[3] are capable of automatic mapping as they require input
for different target architectures to be implemented in separate
programming languages. SCF is notable for addressing hetero-
geneous platforms by describing a common interface between
components in the ‘native’ language of each component. SCF
replaces instances of these interfaces with automatically gen-
erated code to enable the distinct components to communicate
without burdening the component programmers with concrete
details of the communications topology.

All of the previous approaches considered have identified
that communications between unlike components is an issue
and have attempted to provide abstracted communications
mechanisms, but only Hy-C and Harmonic addressed the issue
of having to describe the behaviour of unlike components
with separate programming languages and in this way have
abstracted the component-specific differences of the heteroge-
neous platform. However, the seemingly default choice of C

as a programming language causes additional issues because
of the C memory model. C depends on an assumption that
memory is uniform, integrally addressed, and accessible from
anywhere that code is executing. Heterogeneous platforms
are likely to have memory areas that are entirely private to
components or prohibitively expensive to access remotely.
In the former case of private memory this does not map
cleanly to the C memory model, and in the latter enables
the system engineer to easily implement suboptimal memory
access patterns. Additionally, two other C assumptions do
not necessarily hold on some architectures such as FPGAs:
That program code is in memory and that pure functions are
reentrant. These assumptions do not hold when source code
is synthesised to circuitry or when there is no call stack,
respectively.

Java to Hardware
Perhaps the most direct Java to hardware approach was

accomplished by JOP[21], an implementation of a Java virtual
machine that can be synthesised onto an FPGA to provide
time-predictable Java bytecode execution. Java virtual ma-
chines have been implemented in hardware many times with
different design goals[19], [13], [14] indicating the plausibility
of this approach. Further work has since built on JOP to enable
the processor to interface with external hardware accelerators
through ‘hardware objects’[22] and ‘hardware methods’[29].
The first abstracts hardware as objects where fields are mapped
to registers in the external device, and the second interfaces
with hardware by representing interaction as native methods in
a similar way to the Java Native Interface (JNI)[6] in software
JVMs.

Java has also been successfully applied to microcontrollers
and other highly limited devices with the Java Card[24]
specification aimed at the use of Java within smart cards, and
the Mote Runner[7] virtual machine for ‘mote-class’ hardware
which they define as microcontrollers with as little as 4KiB
of ram and 32KiB of program memory. However, these ap-
proaches are not intended for multiprocessor or heterogeneous
systems, and also place considerable restrictions on the Java
features that can be used.

Direct synthesis of Java to digital logic for FPGAs has also
been demonstrated by Sea Cucumber[26] and Galadriel[8].
While these approaches have the advantage that application-
specific hardware can be described in Java itself, the supported
subset for synthesis is very limited. Neither approach supports

the manipulation of objects from synthesised Java methods,
exceptions are not supported, recursion is forbidden, and Java
synthesised into a hardware accelerator is not allowed to
call methods in software. The restricted synthesisable subset
of Java ultimately renders both approaches very similar to
Handel-C.

III. MACHINE JAVA

Machine Java (mJava) is a strict superset of standard Java
with additional classes added to enable Java to be mapped
more effectively to heterogeneous hardware. As heterogenous
platforms do not always have tightly coupled components, it
is considered that a programmer should be discouraged from
describing the behaviour of their system in a style that requires
tight coupling of processing elements either in memory or
time.

An mJava program contains a set of isolated, self-contained
machines that may only communicate via asynchronous
messages. This model of computation (which is essentially
an actor model of computation) motivates the following main
additions to Java: A Machine class to represent encapsulation
of data and control; Message boxes that are the commu-
nications primitive between machines; Ports which enable
interfacing to external hardware; and Timers for providing
periodic and one-time events. Intuitively, these machines are
indivisible and can be mapped to any single hardware unit
(such as a processor, microcontroller or FPGA). Multiple
machines could be mapped to the same hardware unit or in
the case of an FPGA suitable soft-cores could be instantiated
to host a machine. Figure 1 provides the mapping of a simple
system of machines onto a hardware device.

One of the most important aspects of the mJava framework
is that it retains compatibility with standard Java. A system
described with the mJava extensions is already an executable
model of the target system; it can be executed in a standard
JVM with approximately the same behaviour as if it were
executing on the target hardware. The additions principally
act as markers to assist the translation to hardware targets and
during translation the mJava code will be compiled to static
machine code for processors or VHDL for synthesis to an
FPGA. In this paper we constrain discussion to be about the
mJava framework design and semantics.

The naturally extensible nature of Java frameworks enables
additional features and behaviour to be added at a later date
without significantly disrupting the initial design.

A. Machine Classes

Machines provide the basis for all additions to Java and
represent the logical encapsulation of memory and execution.
Systems are represented in mJava as a collection of machines
that may each execute concurrently and can only communicate
asynchronously by sending messages to another machine’s
message box. An mJava system with exactly one Machine is
equivalent to standard Java and will support all of the standard
Java features and libraries when run in a JVM. See Figure 2 for
an example definition of a machine. This example code also

Logical Program Layout Key

Worker
WorkerDispatcher

Worker

Start
Number

Step Count
(result)

Machine

Message

Hardware Realisation
Mapping

FPGA

Worker

Worker

Worker

Dispatcher

Custom
Function

Accelerator

MicroBlaze
Processor

Fig. 1. The workflow of an example mJava system with a potential mapping
to an FPGA based hardware platform. In this example one manager issues
work over many workers.

1 p u b l i c c l a s s D i s p a t c h e r ex tends Machine
2 implements Handler<Envelope<D i s p a t c h e r .

Complet ionMessage>> {
3 p r i v a t e f i n a l i n t WORKER COUNT = 4 ;
4
5 @Override / / Genera te worker machines .
6 p r o t e c t e d void i n t e r n a l () {
7 f o r (i n t i =0 ; i<WORKER COUNT; i ++) {
8 Worker newWorker = newMachine (Worker . c l a s s) ;
9 newWorker . s t a r t V a l u e B o x . sendMessage (i ,

comple t ionBox) ;
10 }
11 }
12
13 f i n a l MessageBox<Complet ionMessage>

comple t ionBox = new MessageBox <
Complet ionMessage>(t h i s) ;

14
15 @Override
16 p u b l i c vo id h a n d l e (Envelope<Complet ionMessage>

i n f o) { . . . }
17 . . .

Fig. 2. A machine definition in mJava. A class extends
mjava.core.Machine to be recognised as a machine by the framework.

contains the definition of a message box and the prototype of
the message box’s handler. These are explained in detail in
sections III-C and III-B respectively.

The logical layout of machines is specified in the code
itself and not by some kind of auxiliary structure de-
scription file, in the example in Figure 2 it can be seen
that several ‘Worker’ machines are created using a static
‘newMachine(machineType)’ method. To prevent objects
from being ‘leaked’ from one machine to another, machines
are only allowed to define constructors with no arguments and
cannot be instantiated with the new keyword.

Execution and Concurrency:

The mjava.core.Machine class contains one abstract
method: internal(). This method is executed immediately
after the machine implementation has been initialised by the
runtime and before any event handlers are executed. Other
execution implications of machines include:

• Only sequential code is permitted within a machine; use
of the Java Thread class is forbidden1.

• Only one method can be executing within a machine
at once, and the currently executing method cannot be
interrupted by any other.

• There is no model of timing for code execution so the
speed of execution cannot be used to determine timing
or provide delays.

• Control flow is not allowed to move between machine
objects; one machine (or library method it invoked)
cannot call a method in another machine. All methods
in a machine class must either be private or protected.

• Alternate models of computation can be emulated by
chaining several machines to form a pipeline or multiple
copies of the same machine class can be instantiated to
loosely emulate thread-based concurrency.

Memory:
The mJava model of computation forbids machines to

share memory2, so object references cannot be freely passed
between machines. Additionally:

• Low-level synchronisation primitives are not provided
or needed in mJava as there is no mechanism for two
machines to have dependancies on the same data.

• Machines are prevented from sharing objects by forcing
all fields (except message boxes) in a machine class to
be private or protected. Static fields are also forbidden3

as they directly represent shared memory.
Although mJava’s model is to provide interprocess com-
munication via message passing it can be easily mapped
to platforms that have shared memory rather than point-to-
point communications links. It has been shown that in all
cases shared memory and message passing are equivalent
and interchangable[17]. While detection of memory sharing is
considerably easier in Java than C as object references cannot
be synthesised, the implementation of a shared memory model
on platforms without shared memory hardware is expensive as
updates must be propagated to every accessor of the shared
data.

B. Events

Machines respond to changes in their environment by
handling events which may be created by one of several
different sources in mJava: message boxes, ports and timers.
The notable aspects of events include:

• When an event source object is constructed an event
handler is supplied. See Figure 2 for an example of a

1Java standard libraries are allowed to use Thread and other forbidden
classes but only on a JVM

2Although a runtime may chose to use shared memory as an optimisation,
the code may never expect this.

3Again, except in Java standard libraries.

1 p u b l i c vo id h a n d l e (R e t u r n a b l e E n v e l o p e<I n t e g e r ,
Complet ionMessage> i n f o) {

2 i n t s t e p C o u n t = 0 ;
3 long onValue = i n f o . p a y l o a d ;
4 whi le (onValue>1) {
5 i f (onValue % 2 == 0) {
6 onValue / = 2 ;
7 } e l s e {
8 onValue=onValue ∗3+1;
9 }

10 s t e p C o u n t ++;
11 }
12 i n f o . r e p l y (new Comple t ionMessage (i n f o . pay load ,

s t e p C o u n t)) ;
13 }

Fig. 3. The message received handler in the Worker machine, ‘Comple-
tionMessage’ is a simple container class of two fields, see Figure 4

message box instantiation. Figure 3 shows the definition
of an event handler for a message received event.

• When an event source triggers an event it is placed on
the machine’s event queue. These are modelled as being
unbounded and ordered by arrival time, but extended
implementations of the event queue can be used to change
this default behaviour.

• No event arrival can preempt a the method currently
executing in the machine.

• Currently executing code in a machine can chose to yield
and allow queued events to be processed, program flow
will continue where it stopped after the queued handlers
have been executed. The yielding method can chose to
execute events from a specific event source or all sources.

• Event sources can be paused to prevent the automatic
execution of their handler on event arrival.

C. Message Boxes

Message boxes are the only type of inter-machine com-
munication currently supported, they enable transfer of data
between machines of arbitrary size and complexity; Message
boxes are strongly typed point-to-point channels between
machines.

• A machine declares a message box as a public (or default)
field that can be accessed by any other machine with a
reference to the first. Figure 2 contains a message box
declaration.

• Message boxes use Java’s generic type mechanism to
specify what kind of message they are capable of re-
ceiving. However, only immutable types can be commu-
nicated via message boxes. These include Java’s boxed
primitive types, strings, enums, machine references and
classes that are annotated with @Immutable.

• The both bidirectional and unidirectional message boxes
are available. Figure 3 shows the event handler for a
bidirectional message box and how it has a typed return
path to the sending machine.

Extended functionality is likely to be required (such as
bounded box capacities, synchronous replies or flow control),

1 @Immutable
2 p u b l i c f i n a l s t a t i c c l a s s Comple t ionMessage {
3 f i n a l i n t s t a r t i n g V a l u e ;
4 f i n a l i n t s t e p C o u n t ;
5 p u b l i c Comple t ionMessage (i n t s t a r t i n g V a l u e , i n t

s t e p C o u n t) {
6 t h i s . s t a r t i n g V a l u e = s t a r t i n g V a l u e ;
7 t h i s . s t e p C o u n t = s t e p C o u n t ;
8 }
9 }

Fig. 4. A valid @immutable class. In the example this is used to encapsulate
results back to the Dispatcher machine.

then these would be implemented by extending the existing
MessageBox classes. Any functionality that is possible in a
JVM can be implemented for a message box but each message
box implementation with different semantics will require a
new driver for each hardware target unless it can be built from
more primitive boxes.

D. The Immutable Annotation:

The Immutable annotation can be applied to a class to
indicate that it is read-only after construction. This is not a
novel contribution as it has been proposed in JSR 308[10] and
by Zibin et al[32] but it is not yet part of the Java specification.
Immutability is useful for messages in Machine Java as it
ensures a programmer cannot send data to another machine in
a message that is then modifiable by both; this would violate
the isolation of the machines.

Classes that are annotated @Immutable must obey a strict
contract that dictates the class must be final and static, static
fields are forbidden, all fields must be final, all non-array fields
must be public and all arrays private. Array fields must be
copied from a source array on construction and copied again
in an accessor method. All non-array fields can only be of the
following types: primitives, boxed primitives, strings, enums,
machines and other @Immutable classes and array fields can
only be of these acceptable types.

E. External Interfacing (I/O)

The ability for a machine to interface to external devices
that are not abstracted by the message box mechanism is
provided by Port classes. Ports can provide access to any
hardware signals that can be represented as a collection of
bits, they have the same function as signals in VHDL. Ports
are intended to be the lowest level IO primitive possible and
it is intended that frameworks of higher level IO components
would be constructed (for serial ports, ethernet phys, ADCs,
etc.) with ports as the core method of interaction with the
hardware. An example input port is given in Figure 5.

Register classes allow the representation of a bit vector with
more structure than simply representing the data as an integer.
In a similar way to Structs in C and representation clauses
in Ada, structure is provided in a register implementation by
declaring fields and annotating them with their bit width and
logical index within the bit vector.

1 p u b l i c c l a s s ADC10 ex tends I n p u t P o r t<ADC10 . Value>
{

2 p u b l i c s t a t i c c l a s s Value ex tends R e g i s t e r {
3 @Field (i n d e x =0 , wid th =10 , u n s i g n e d = t rue)
4 s h o r t v a l u e ;
5 }
6
7 p u b l i c ADC10(S t r i n g p o r t R e f , Handler<Value>

l i s t e n e r) {
8 super (p o r t R e f , l i s t e n e r) ;
9 }

10
11 p u b l i c f l o a t g e t R e s i s t a n c e (f l o a t upperRV) {
12 f l o a t r a t i o = g e t V a l u e () . v a l u e /1024 f ;
13 re turn ((r a t i o ∗upperRV) /(1− r a t i o)) ;
14 }
15 }

Fig. 5. A basic representation of a 10-bit Analog-to-Digital converter in
mJava. This implementation contains a convenience method to calculate the
value of a resistor attached to the external device.

1 p u b l i c s t a t i c c l a s s PWM8Config ex tends R e g i s t e r {
2 @Field (i n d e x =0 , wid th =8 , u n s i g n e d = t rue)
3 s h o r t d u t y C y c l e = 0 ;
4 @Field (i n d e x =1 , wid th =20 , u n s i g n e d = t rue)
5 i n t f r e q u e n c y = 0 ;
6 }

Fig. 6. A register expression of the interface to a PWM-unit in Machine
Java

F. Timing

Timers in mJava are event sources that are capable of
triggering events without any external interaction with the
machine. Three types of timer are provided in the mJava
framework:

Delays provide a constant delay between the reset of the
timer and the next event arrival.

Periods provide constant delays between arrival of each
event regardless of when the timer is reset as long as the
timer is reset before the next event arrival is due. Period
timers enable the implementation of accurate fixed-rate timers
without needing to calculate the execution overheads of the
event handler.

Alarms provide a single event at a fixed absolute point in
the future. Resetting an alarm has no effect unless the alarm
time is also changed.

IV. TRANSLATION TO TARGETS

While no specific classes of hardware have been intention-
ally excluded from consideration, it is envisaged that Machine
Java will primarily target a mixture of JVMs, Processors,
Microcontrollers and reconfigurable logic devices (FPGAs).
To avoid the pitfalls of either pitching a framework at the
lowest common denominator features supported by all classes
of processing device or committing to implement all of Java’s
functionality on every target, a set of contentious features
has been derived that would represent unacceptable problems
during the implementation of the Machine Java translator if

Feature JVM Processor Microcontroller FPGA

RT class loading 3 7 7 7
RT Reflection ≈ 7 7 7
RT Polymorphism 3 3 3 7
Threads 3 7 7 7
RT shared Code 3 3 ≈ 7
Heap allocation 3 3 3 7
Recursion 3 3 3 ≈
RT Machine allocation 3 3 3 ≈
Ports 7 ≈ 3 3
Accurate timing ≈ ≈ 3 3

TABLE II
FEATURES LIKELY TO BE SUPPORTED BY VARIOUS CLASSES OF TARGETS,

‘RT’ STANDS FOR RUN-TIME. ≈ INDICATES POOR SUPPORT.

all target architectures supported the feature. A table of these
features cross-referenced with the class of device can be seen
in Table II.

The processor class of device in Table II loosely refers to
modern, high-performance general purpose processors such
as those with 32-bit words or more, either with or without
an operating system between the Machine Java output binary
and the hardware. The microcontroller class refers to an
equally broad collection of devices that are typically harvard
architecture with little memory, no external memory bus, and
8-bit or 16-bit words. Finally, the FPGA class refers to devices
that can have VHDL synthesised for them.

V. CONCLUSION

The Machine Java framework described in this paper pro-
vides the foundations necessary to describe heterogeneous
distributed systems within a single program by encouraging
a programmer to solve the most challenging aspects of multi-
processor system design themselves. By providing the machine
abstraction of computation a programmer partitions their own
system into sections that can be much more easily distributed.
The restrictions on shared memory and common notions time
allow a great deal of flexibility in both compiler design and
target hardware architecture.

A large amount of prior work in the fields of heterogeneous
system description, compiler infrastructures, and high-level
synthesis provide confidence in the feasibility of the mJava
endeavour. The value of a Java based system description
framework remains open to investigation, but the general no-
tion of extending Java’s ‘write-once, run-anywhere’ principle
to hardware remains the ultimate goal.

REFERENCES

[1] “Online Encyclopedia Of Integer Sequences: A006877.” [Online].
Available: http://oeis.org/A006877

[2] 3L, “Diamond User Guide,” 2010. [Online]. Available: http://3l.com/
technical/user-guides/3l-diamond

[3] V. Aggarwal, R. Garcia, G. Stitt, A. George, and H. Lam, “SCF:
a device- and language-independent task coordination framework for
reconfigurable, heterogeneous systems,” in Proceedings of the Third In-
ternational Workshop on High-Performance Reconfigurable Computing
Technology and Applications, ser. HPRCTA ’09. New York, NY, USA:
ACM, 2009, pp. 19–28.

[4] Agility, Handel-C Language Reference Manual. Agility Design Solu-
tions Inc., 2008.

[5] P. J. Ashenden, The Designer’s Guide to VHDL, Second Edition (Systems
on Silicon). Morgan Kaufmann, 2001.

[6] C. Austin and M. Pawlan, JNI Technology, 2000, pp. 207–230.
[Online]. Available: http://java.sun.com/docs/books/jni/download/jni.pdf

[7] A. Caracas, T. Kramp, M. Baentsch, M. Oestreicher, T. Eirich, and
I. Romanov, Mote Runner: A Multi-language Virtual Machine for Small
Embedded Devices. IEEE, June 2009.

[8] J. Cardoso and H. Neto, “Towards an automatic path from Java byte-
codes to hardware through high-level synthesis,” in IEEE International
Conference on Electronics, Circuits and Systems, vol. 1. Citeseer, 1998,
pp. 85–88.

[9] Compaan, “Products,” 2010. [Online]. Available:
http://www.compaandesign.com/index.php?option=com content&task=
view&id=3&Itemid=4

[10] M. D. Ernst, “Type Annotations (JSR 308) and the Checker
Framework.” [Online]. Available: http://types.cs.washington.edu/jsr308/

[11] N. Gasson and N. Audsley, “Synthesis of the SR programming lan-
guage for complex FPGAs,” 2009 International Conference on Field
Programmable Logic and Applications, pp. 617–621, Aug. 2009.

[12] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java(TM) Language
Specification, The (3rd Edition). Addison-Wesley, 2005.

[13] D. Hardin, Real-time objects on the bare metal: an efficient hardware
realization of the Java Virtual Machine. IEEE Comput. Soc, 2001.

[14] S. Ito, L. Carro, and R. Jacobi, “Making Java work for microcontroller
applications,” IEEE Design & Test of Computers, vol. 18, no. 5, pp.
100–110, 2001.

[15] B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Prentice Hall, 1978.

[16] J. C. Lagarias, “The 3x+1 problem: An annotated bibliography
(1963–1999),” p. 65, Sept. 2003. [Online]. Available: http://arxiv.org/
abs/math.NT/0309224

[17] H. Lauer and R. Needham, “On the Duality of Operating Systems Struc-
tures,” Proc. Second International Symposium on Operating Systems,
1978.

[18] W. Luk, J. Coutinho, T. Todman, Y. Lam, W. Osborne, K. Susanto,
Q. Liu, and W. Wong, “A high-level compilation toolchain for hetero-
geneous systems,” 2009 IEEE International SOC Conference (SOCC),
pp. 9–18, Sept. 2009.

[19] W. Puffitsch and M. Schoeberl, “picoJava-II in an FPGA,” in Proceed-
ings of the 5th international workshop on Java technologies for real-time
and embedded systems. ACM, 2007, p. 221.

[20] M. Quinn, Parallel Programming in C with MPI and OpenMP.
McGraw-Hill Science/Engineering/Math, 2003.

[21] M. Schoeberl, “JOP : A Java Optimized Processor for Embedded Real-
Time Systems,” Vienna University of Technology, no. 8625440, 2005.

[22] M. Schoeberl, C. Thalinger, S. Korsholm, and A. P. Ravn, Hardware
Objects for Java. IEEE, May 2008.

[23] T. Stefanov, C. Zissulescu, A. Turjan, B. Kienhuis, and E. Deprette,
“System design using Khan process networks: the Compaan/Laura
approach,” Design, Automation and Test in Europe Conference and
Exhibition, 2004. Proceedings, pp. 340–345, 2004.

[24] Sun Microsystems, “Virtual Machine Specification: Java Card Platform,
Version 3, Classic Edition,” 2008.

[25] P. H. Sweany, “Hy-C Overview,” 2010. [Online]. Available: http:
//www.cse.unt.edu/∼{}sweany/research/hy-c/

[26] J. L. Tripp, P. A. Jackson, and B. L. Hutchings, Sea Cucumber: A
Synthesizing Compiler for FPGAs, ser. Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, Aug. 2002,
vol. 2438, no. 2438, pp. 875–885.

[27] M. Ward and N. Audsley, “Hardware implementation of the Ravenscar
Ada tasking profile,” in Proceedings of the 2002 international conference
on Compilers, architecture, and synthesis for embedded systems. New
York, New York, USA: ACM, 2002, p. 68.

[28] J. Whitham, “The Cosmos multi-FPGA simulation facility,” CoSMoS
Workshop, 2008. [Online]. Available: http://www.jwhitham.org.uk/pubs/
cosmos08.pdf

[29] J. Whitham, N. Audsley, and M. Schoeberl, “Using hardware
methods to improve time-predictable performance in real-time Java
systems,” Time and Embedded Systems, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1620405.1620424

[30] Xilinx, “Platform Studio and EDK Documentation.” [Online]. Available:
http://www.xilinx.com/ise/embedded/edk docs.htm

[31] ——, “MicroBlaze Processor Reference Guide,” 2008. [Online].
Available: http://www.xilinx.com/support/documentation/sw manuals/
mb ref guide.pdf

[32] Y. Zibin, A. Potanin, M. Ali, S. Artzi, A. Kieun, and M. D. Ernst, “Ob-
ject and reference immutability using java generics,” ESEC/FSE 2007:
Proceedings of the 11th European Software Engineering Conference and
the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pp. 75–84, 2007.

http://oeis.org/A006877
http://3l.com/technical/user-guides/3l-diamond
http://3l.com/technical/user-guides/3l-diamond
http://java.sun.com/docs/books/jni/download/jni.pdf
http://www.compaandesign.com/index.php ?option=com_content&task=view&id=3&Itemid=4
http://www.compaandesign.com/index.php ?option=com_content&task=view&id=3&Itemid=4
http://types.cs.washington.edu/jsr308/
http://arxiv.org/abs/math.NT/0309224
http://arxiv.org/abs/math.NT/0309224
http://www.cse.unt.edu/~{}sweany/research/hy-c/
http://www.cse.unt.edu/~{}sweany/research/hy-c/
http://www.jwhitham.org.uk/pubs/cosmos08.pdf
http://www.jwhitham.org.uk/pubs/cosmos08.pdf
http://portal.acm.org/citation.cfm?id=1620405.1620424
http://www.xilinx.com/ise/embedded/edk_docs.htm
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/mb_ref_guide.pdf

