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Abstract—This paper discusses a strategy for translating the
Java programming language to a form that is suitable for
execution on resource limited embedded systems such as softcore
processors in FPGAs, Network-on-Chip nodes and microcon-
trollers. The translation strategy prioritises the minimisation of
runtime memory usage, generated code size, and suitability for a
wide range of small architectures over other desirable goals such
as execution speed and strict adherence to the Java standard.

The translation procedure, or Concrete Hardware Implemen-
tation of a software application first converts the application’s
compiled Java class files to a self-contained intermediate rep-
resentation conducive to optimisation and refactoring. The in-
termediate format is then serialised into a programming lan-
guage compilable to the target architecture. This paper presents
techniques for analysing whole Java applications, translating
Java methods and building a stand-alone translated application
with the same functional behaviour as the original Java. An
example C-code generator is described and evaluated against
similar previous approaches. An existing benchmark application,
JavaBenchEmbedded, is demonstrated to require less than 30KiB
of program code and 16KiB of runtime heap memory when
executing on a Xilinx MicroBlaze Processor.

I. INTRODUCTION

Small embedded processors such as those found in highly
parallel Network-on-Chip (NoC) designs or as softcore pro-
cessors in FPGAs typically only have tens of kibibytes of
local memory. The restricted code and data sizes of these
platforms has traditionally motivated the use of C and assem-
bly because of the ability of their compilers and assemblers
to produce compact binaries and to provide direct, low-level
interaction with the hardware. In addition to restricted memory
these processors may have low computational throughput and
reduced functionality. In this paper a technique is presented
for translating Java[8] applications so that Java can be used
for programming such highly resource constrained custom
systems.

Java has many advantages as a programming language for
embedded systems including: strong typing, object orientation,
exceptions and managed memory. Because of these features
application development in Java is more rapid and more robust
than using C.

Standard Java is compiled to an extremely compact
and high-level bytecode but this requires a Java Virtual
Machine[14] (JVM) and a large set of libraries1, together often

1with Java 1.6 on MacOS 10.6.7 the classes.jar of the runtime is 30MiB.

called a Java Runtime Environment (JRE), for execution. How-
ever, the size of the standard Java libraries is prohibitive in the
context of small processors and microcontrollers. In addition
to high memory costs, standard Java also has dependencies
on services usually provided by an operating system such
as console IO, concurrency, networking, and graphics. These
services may not be provided or appropriate in an embedded
processing context.

The general strategy for implementation of Java applications
on embedded systems is the Ahead-of-Time compilation and
optimisation of Java bytecode to compilable C. The code
generated by the approach in this paper does not depend on
any external libraries or the presence of an operating system.
To achieve this goal three main tactics are applied to reduce
the overhead of the Java environment. These are:

• Only including methods, objects and Java functionality
that is used by the application in the self-contained
output.

• Restricting the use of Java language features that present
an obstacle to compact code generation.

• Abstraction of fundamental target system characteristics
so that a code-generator can be reused for different
processor architectures.

As the work presented here allows the complete software
for a small embedded systems to be written in standard Java,
a new advantage becomes available to systems developers:
the application software will also run in a standard JRE
without modification. This enables considerably faster system
development and debugging of application code.

The remainder of the paper is structured as follows: Back-
ground and related works are described in section I, the
Concrete Hardware Implementation (Chi) strategy and in-
terpretation of Java programs is described in section III-B,
the generation of C code applications from Chi intermediate
form is detailed in section IV, a discussion of performance is
provided in section V and finally ongoing and future work is
described alongside the conclusions in section VI.

II. BACKGROUND AND RELATED WORK

The Java programming language[8] has proven an attractive
choice for the development of both desktop and server appli-
cations and this popularity is also reflected in the quantity
of related work. A summary of relevant and interesting prior



Name Purpose Retargettable? Standard Java? Self-contained
output?

Output Format

Toba [17] Java to C conversion Solaris & Linux Yes No C
Varma and Bhattacharyya, 2004[23] Java to C for embed-

ded systems, included in
PtolemyII[4]

Solaris, Cygwin
& DSP

Yes Yes, except na-
tive methods &
GC library.

C

GCJ [6] Compilation of Java to na-
tive code

Yes Yes Requires libgcj &
operating system.

Native code

Nilsson, 2004 [15] Compilation of Java for
hard realtime systems

Linux &
ATmega128[1]

Yes Requires a real-
time OS.

C

JEPES [21] Compilation of Java for
extremely restricted sys-
tems

Yes No Yes Native Code

Liquid Metal (Lime) [10] Compilation to embedded
JVMs and FPGA logic
(co-synthesis)

No No (Immutable
value-types
required)

No Java .classes
and Verilog

Jop [19] Java softcore processor n/a Simplified real-
time specification

n/a n/a

Chi Java to specialised, self-
contained C

Linux, MacOS
& Xilinx
MicroBlaze[24]

Yes Yes C

TABLE I
RELATED APPROACHES FOR IMPLEMENTATION OF JAVA IN EMBEDDED SYSTEMS.

approaches is provided in table I. The design goals of the work
by Varma and Bhattacharyya[23] is most similar to that of the
work presented in this paper. They detail a Java-to-C converter
to enable the an application written in Java to be compiled
‘though’ a C compiler to native code. The use of C[13] as
an intermediate language is a natural choice; practically every
processor, microcontroller and DSP will have a functional C
compiler. In addition to being widely supported, C compilers
such as the popular GCC[5] have sophisticated optimisations
built-in to minimise execution time and binary sizes without
the need to build these optimisations into the Java translator.

Java has previously been applied successfully to environ-
ments with as little as 512bytes of RAM and 4KiB of program
code through the use of the Java Card[22] specification,
or the JEPES[21] platform. However, both the Java Card
specification and the JEPES platform make significant changes
to the Java environment in to enable execution on such limited
hardware. In particular both of these approaches change the
available standard libraries and reduce the set of available
primitive types available to the programmer: Java Card simply
forbids several primitives including char, float and double.
JEPES makes the existence of floating point types dependent
on the target platform and reduces the widths of other primitive
types too.

In contrast to the use of a specifically cut-down Java
specification, Varma and Bhattacharyya[23] enable the use of
the full Java libraries by extensively pruning unused code
from application and libraries under translation such that
only used code is present in the resulting C code. Toba[17]
and GCJ[6] which are not intended for use in embedded
systems do not perform such code pruning. Toba, which is
no longer maintained, used a strategy of elaborating the full
class libraries into C. Translating a whole Java library greatly
simplifies compilation and saves time as this only need be
done each time the Java libraries are changed. The compiled
Java library can then be linked against the user’s own code

without any special consideration. This is also the approach
used by GCJ which requires that the user’s code be linked
against a large ‘libgcj.so’. As of GCJ 4.4 this shared object is
up to 34MiB putting it well out of reach of the capabilities of
small embedded systems.

In another similar work, Nilsson[15] presents a Java to C
compiler with an emphasis on support for hard real-time ap-
plications. Importantly, their work incorporates the implemen-
tation and evaluation of real-time garbage collectors suitable
for including on a sophisticated, the Atmel ATmega128[1],
although they report disappointing performance while the
garbage collector is enabled. Nilsson also confirm the ob-
servation that the virtual dispatch of Java methods can have
a significant impact in runtime performance (they observe
a 43% increase in execution time in one experiment when
dynamically dispatched methods are used compared the same
experiment with statically dispatched methods). While Schultz
et al.[21] in the JEPES work also recognise that dynamically
dispatched methods come at a significant runtime price, this
is dismissed as an unavoidable cost.

In spite of the aggressive code pruning employed by Varma
and Bhattacharyya[23], the costs associated with the dispatch
of virtual methods is not addressed and the runtime in-memory
class descriptor structures are verbose (including class names,
references to superclass structures, the size of instances, and
if the class is an array or not) considering that reflection is
not supported by their compilation process.

Huang et al. [10] introduce the Liquid Metal framework
for the generation of JVM bytecode and synthesisable Verilog
from a Java-like input language called Lime. The Liquid
Metal procedure is able to automatically generate the interface
between the synthesised hardware functional units and the
software running on a JVM. While not explicitly intended
for embedded systems this is a promising approach for im-
plementing Java applications in systems with spare FPGA
resources. A potential drawback of the Lime language is that
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Fig. 1. An example high-level workflow of the Chi tool targetting a Xilinx
MicroBlaze[24] archtecture.

the programmer is required to make use of immutable value
types, this implies a different style of coding compared to
standard Java.

Another technique for enabling Java in embedded systems
is to create a processor to natively execute Java bytecodes.
JOP[19] is an implementation of a Java virtual machine that
can be synthesised for to FPGA to provide time-predictable
Java bytecode execution. Java virtual machines have been
implemented in hardware many times with different design
goals[18], [9], [11] indicating the plausibility of this approach.
Where an embedded system is being built around an FPGA
the use of a Java machine directly is attractive as it simplifies
the tool-flow from Java code to execution in the target system.
However, the use of a Java softcore does not necessarily help
with the problem of unsuitably large Java libraries.

III. THE CONCRETE HARDWARE IMPLEMENTATION

The Concrete Hardware Implementation (Chi) is a strategy
and related toolset geared towards enabling the full imple-
mentation of small embedded systems with Java as the input
programming language. It achieves this by translating the input
Java application into a target language for which a compiler
already exists. All of the original behaviour of the application
as it would have executed in a JVM are maintained while not
requiring either a JVM or a Java standard library at runtime.
Chi is able to create small, fast program code by performing
operations at translation-time that would ordinarily be deferred
to runtime: The interpretation of Java bytecode is performed
Ahead-of-Time (AoT) during translation as opposed to Just-
in-Time (JIT) compilation at runtime favoured by modern
JVMs. Chi also performs AoT linking of required class files in

contrast to the standard runtime demand-loading of referenced
classes.

The primary intended target systems are softcore processors
for FPGAs such as Xilinx’s MicroBlaze[24]. Secondary targets
include Xilinx’s highly restricted PicoBlaze[25] processor and
Plasma processing elements in the HeMPS[3] NoC archi-
tecture. In both the cases of the MicroBlaze and Plasma
processors the amount of local memory available is extremely
limited and of the order of 64KiB.

A. Workflow

The general workflow of Chi can be seen in Figure 1, with
the five main steps being:

1) Java Compilation In the first stage the user compiles
their Java application using the standard java compiler
and libraries.

2) Chi: Application building The .class (JVM byte-
code container) files generated by the Java compiler are
fed to the Chi tool. The first stage of Chi is to generate
an internal model of the application without including
any unreachable code or unused classes. Section III-B
describes this process.

3) Chi: Transformation After an internal ‘Application’ has
been assembled transformations are applied to remove
features unsupported by the target or code generator,
perform optimisations, and prepare the application for
being serialised into another programming language.

4) Chi: Code generation The final step in the Chi tool is
to generate compilable code (in this paper, this is C).
All required runtime is also generated and integrated
specifically for the application at this stage. Section IV
describes this process.

5) Compilation Finally, the target architecture specific
compiler (such as GCC[5]) is invoked on the generated
code.

As Chi is a translation framework for multiple different
target architectures the differences between these platforms are
abstracted by a ‘ComputationalModel’ class. The model de-
scribes to the code generator the differentiating characteristics
of the target platform including native data types, endianness,
alignments, available memory and peripherals. The model
also describes the capabilities of the target such as support
for floating point arithmetic, recursion and dynamic method
dispatch.

These models are used during the application building
procedure to verify that the input application is compatible
with the capabilities of the target architecture. For example, if
the model describes an architecture that would prefer to only
statically dispatch method invocations then the application
building procedure will issue an error if the application under
translation requires dynamic dispatch to be behaviourally
consistent with standard Java.

B. Application Building

Application building is the first stage of the Chi translation
procedure where standard Java .class files are used to build
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Fig. 2. A simplified illustration of the procedure used to fully elaborate only
the used methods and classes in a Java application.

a complete internal representation of the user’s application in
memory. This internal representation includes all code that
is reachable from the entry point of the user’s application,
including used code in the standard Java libraries if necessary.

The transformation process uses compiled Java classes to
avoid the complexity associated with parsing and to take
advantage of the sophisticated verification and optimisation
that compliant Java compilers perform. Additionally, a consid-
erable number of Java’s language features are handled in the
source compilation and are no longer present in the Java class
files. Some of these features include: class nesting, generics,
autoboxing, monitor handling for synchronized methods,
and multidimentional array accesses.

The purpose of application building is to aggregate enough
information about the methods and classes used such that
subsequent translation steps do not have to refer back to
the class files. Application building gathers the following
information about a Java application:

• The entry point of the application.
• Every method callable by the application in a form called

an ‘Itinerary’ (see section III-B). Itineraries describe the
list of actions a method performs when invoked.

• Every class initialiser method (<clinit>) present from
all classes used by the application. Class initialiser meth-
ods are used by Java to initialise default values for class
static fields.

• The graph of all Java classes used by the application.
This type graph considers interfaces to be superclasses
of their implementations.

• The set of callable native methods. These cannot be
automatically translated so subsequent code-generation
has an instance specific strategy for dealing with native
methods.

The application building procedure is an iterative process
that can be seen in Figure 2. This procedure is essentially
a variant of Bacon’s Rapid Type Analysis[2] algorithm for
analysis of whole applications in statically typed languages.
The primary, although minor, difference is that Chi does
not require an enumerable Call Hierarchy Graph (CHG) nor
a Program Virtual-call Graph (PVG) as these are produced
during the exploration of the input application. The application
is elaborated by finding new references to classes from the
currently discovered classes. This has two main advantages:
Firstly that only classes actually used by the application
are incorporated into the model which minimises application
translation times. Secondly, the discovery procedure is able
to use the running JVM’s own built in class loaders. Using
the JVM’s class loaders to lookup classes and their bytecode
allows the use of prepackaged and networked class repositories
in the input application.

After all of the used classes have been discovered (including
both the application’s classes and those included in the JRE)
they are assigned fixed, application-specific integer type identi-
fiers. These integers are used to reduce the overhead of runtime
type identification compared with retaining full information
about the class hierarchy at runtime.

C. Replacements

Method calls within an application to even
a seemingly innocuous library method such as
System.out.println("Hello World!") causes
a vast number of classes2) to become required due to
transitive dependencies. This runaway in class dependencies
is addressed by a framework for replacing classes and
methods. Importantly, replacement classes and methods are
completely transparent to the input Java application.

The computational model classes described previously con-
tain information about which classes and methods need to
have alternative implementations in order for Java to tar-
get their platform. All targets are assumed to have both
java.lang.Object (the eventual ancestor of all classes)
and java.lang.Class replaced. The standard implemen-
tations of Object and Class contain multiple native meth-
ods and these are either replaced with stubs to do nothing
in the case of Class (as reflection is not implemented), or
replaced with a method annotated with @ChiNative to indi-
cate that the code generator must implement the functionality
itself rather than use the translated the body of the method.

2581 classes loaded: as determined by “java -verbose
chi.tests.HelloWorld | grep Loaded | wc -l” on Java
1.6 on MacOS 10.6.7
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Fig. 3. The procedure used to translate Java methods in JVM bytecode to Chi
‘itineraries’. Note that the greyed section of the diagram denotes a subroutine
that is recursively invoked.

The method “java.lang.Object.hashCode()" is an
example of such an annotated method.

Other classes in the set of default replacements include
String, System, and PrintStream. The implementation
of String in Java has an extraordinary number of dependen-
cies rendering it far too large for small embedded systems. A
considerably simpler (although non-unicode capable) replace-
ment implementation is applied by default. In total only seven
classes are in the default replacement set and these only have
minor changes to remove further library dependencies (such
as on system properties or security).

D. Itinerary Generation

Within the Chi tool method bodies are represented as ob-
jects called ‘itineraries’ which describe a sequence of actions
(derived from the original Java bytecodes) upon objects and
registers. The itinerary representation of methods is somewhat
different to the JVM model of computation. Itineraries do not
use an operand stack to pass information between actions, and
there is no notion of a program counter. Where a JVM in-
struction would receive its operands on the operand stack, the
corresponding action in an itinerary will expect its operands in

specific registers (of which there are an unlimited number), and
it will place any result into another specific register. Likewise
Branch actions do not have program counter addresses of
their branch targets but symbolic references to the action that
would execute next depending on the situation.

The procedure used to generate Chi itineraries from a Java
method is illustrated in Figure 3.

Chi uses 29 different action classes to represent the 201
valid JVM instructions. The reason for this reduction is
that whole categories of JVM instructions become single
actions (almost all arithmetic instructions are implemented by
a TwoOperandArithmetic action) and all stack manip-
ulation instructions are removed during itinerary building as
there is no runtime operand stack in Chi.

All actions in an itinerary contain information such as the
exception handlers that will catch an exception they might
happen to throw at runtime, and the line number in the original
Java source code that they were derived from.

Itinerary generation is used to gather the following infor-
mation about a method:

• An ordered list of actions performed by the method.
• A list of input registers this itinerary will use to receive

its arguments.
• An output register if the method is non-void to return the

result.
• A set of all temporary registers used by the actions of

this itinerary.
During itinerary building a notional operand stack and

local variable table is maintained in a structure called the
Data State. The data state keeps a mapping from the JVM
operand stack and local variables to the registers which now
represent the storage in the itinerary. JVM instructions that
would modify either local variables or the operand stack in fact
make modifications to the data state instead. When an action is
generated the data state is checked to ensure that it is consistent
with expectations and when the control-flow analysis leads the
itinerary generation procedure back to an instruction already
translated the current data state is reconciled with how the
state was at the time when the instruction was first translated.
Both local variable tables are compared and incompatible vari-
ables are marked as unreadable then both operand stacks are
compared for consistency. If the stacks contain incompatible
types in any identical positions or are different lengths then the
bytecode does not meet JVM specifications and translation is
aborted. This procedure is very similar to bytecode verification
from the JVM specification[14].

Exception handlers appear to be unreachable code as there
is no branching control flow that is able to reach them in the
bytecode so they are specifically translated to actions. If the
computational model has all exceptions disabled then excep-
tion handlers are indeed unreachable and they are removed as
dead code.

E. Application Transformation

This paper focuses on C code generation from Java but
the internal representation in the translator is not designed to



be specific to any target language. In the inevitable case that
the target language has differences in operation compared to
Java transformations are used to convert between JVM-like
operations and the techniques used by the target language.

Action-replacement transformations are used in the cases
where a target architecture does not support an operation (such
as floating point arithmetic). Where these operations are used
the unsupported action is replaced with a static invocation
action that implements the same functionality but without
using unsupported features.

Many instructions in the JVM and their correspond-
ing actions are able to throw an exception (such as an
ArithmeticException) without the programmer having
to surround the operation in a try{}catch{} block. Code
generation is simplified by replacing instances of these actions
with a compound action that explicitly tests for the exceptional
condition and then explicitly throw the exception if the con-
dition happened.

F. Chi Runtime

The runtime architecture of a Chi application is extremely
simple compared to a standard JVM. All objects and arrays
are stored in memory and code generators are free to chose
how to represent temporary registers. The internal arrangement
of objects in memory is defined by the ConcreteBinaryObject
(CBO) format. This format is used for all code generators
and target architectures as the specific sizes of fields is
dependent on the active computational model. The model
provides helpers for encoding and decoding primitive types
for its specific architecture. The in-memory layout of objects
uses only one integer field to represent the runtime type of
the object, and then each of the object’s fields, in alphabetical
order grouped by the class they were declared in ancestor-first
order (ie: java.lang.Object’s fields first). If the target
architecture requires data alignment then padding fields are
inserted into the CBO before each unaligned field.

Arrays have one extra integer of overhead which is the
number of items the array can store. This is placed after the
type identifier and before the array data. It is safe for an
object to omit an“isArray?” field because array manipulation
operations can only be used in Java on an array typed variable.
Any time there is a narrowing cast of a reference in Java, such
as an Object reference to a variable of type Object[] the
compiler emits a checkcast instruction that would throw an
exception if the cast is found to be invalid. Because of these
guards it is always safe to assume that a reference points to
the correct type of object, even in the case of arrays.

The main operational components of the Chi runtime are
the entry point and the heap allocator, both are written in
Java and undergo translation along with the user’s program
code. The Chi entry point becomes the generated source
code’s entry point and performs duties such as initialising the
heap allocator, initialising any device drivers that the target
architecture uses, calling each class initialiser present in the
application, and finally invoking the entry point specified in
the user’s application. This generated entry point contains

the top-level exception handler responsible for catching all
Throwable objects and printing a message to the system’s
console (if one exists) if an uncaught exception has propagated
out of the user’s application.

G. Deviations from Standard Java

Not all features of Standard Java are supported by Chi but
supported features function as would be expected of a Java
1.6[8] implementation.

As a consequence of runtime types being represented by
fixed integers, Java features that depend on introducing new
classes into the hierarchy at runtime (such as dynamic class
loading and proxy classes) are not supportable. This is because
runtime type conditional behaviour is implemented as tests
against constant integers which cannot be changed at runtime.
To introduce a new class into an application the output code
must be regenerated with the new type identification integers.

Reflection is not appropriate for deeply embedded systems
due to its high memory costs and is therefore not provided.
If reflection were to be supported the runtime Class objects
must have the ability to lookup the names and offsets of all
fields in an object. Reflecting on methods and constructors is
also problematic as a significant portion of Chi’s application
minimisation depends on knowing at compile time which
methods are capable of being executed. By allowing methods
to be invoked reflectively all possible targets of the reflection
must also be included in the output code substantially increas-
ing code size.

Garbage collection (GC) is not yet supported but remains
a matter of priority as presently applications must be very
careful about allocating new objects so that heap space is
not exhausted over the lifetime of a system. GC support in
an embedded context has been demonstrated[15], [23] and
will be implemented in due course. The Scoped and Immortal
memory concepts from the Real-Time Specification for Java[7]
are also a potential alternative to standard garbage collection
techniques.

Support for multitasking such as threading has not
been included in the current Chi procedure. Although
threading is part of the Java specification it is not
clear that this is the most useful model of concurrency
for very limited processors, or highly distributed systems
such as network on chips. Candidate multitasking ap-
proaches include the standard java.lang.Thread classes,
javax.realtime.RealtimeThread from the RTSJ, or
a Machine[16] abstraction of tasking.

IV. C-CODE GENERATION

A flexible C code generator has been implemented with
support for a wide variety of target architectures. Computa-
tional models have been created to enable code generation for
little endian 32-bit architectures (Intel architecture) and Xilinx
MicroBlaze architectures.

The general code generation strategy is to map itineraries
to C functions, registers in itineraries are mapped to function-
local variables of the correct type and object references are



Benchmark JVM – JIT JVM – Interpreted Intel@2.4GHz Intel – NIE MicroBlaze@50MHz MicroBlaze – NIE

Sieve 1,210,000 (3,470) 1,060,000 (6,270) 639,000 (49,800) 1,190,000 (138,000) 2398 3750
Kfl 6,460,000 (154,000) 220,000 (6,270) 2,710,000 (69,600) 2,860,000 (83,400) 18,886 23,355
UdpIp 1,620,000 (5,930) 95,600 (342) 1,970,000 (4,900) 2,400,000 (43,100) 6,277 9,834
Random 15,400 (262) 3,130 (11.8) 33,900 (523) 35,100 (188) 230 262
jLinpack D 425,000 (250,000) 50,900 (1,990) 418,000 (195,000) 687,000 (0) 118 128
jLinpack F - - - - 823 1,579

TABLE II
A COMPARISON OF EXECUTION PERFORMANCE OF THE BENCHMARK APPLICATIONS ACROSS A SAMPLE OF ARCHITECTURES. SECTION V DESCRIBES

THE INTERPRETATION OF THESE VALUES.

mapped to the architecture’s native pointer type. For each
class used in the system a struct is defined according to the
corresponding concrete binary object layout. Each class that
has static fields is also generated a ‘class instance’ struct
too, and for every class and array type used the integer type
identifier defined in a header file.

The itinerary action structure maps very easily onto C. Each
action that is an exception handler or could be the target of
a branch is assigned a C label and branch actions generate
optionally guarded goto statements.

The C generator is complicated by Java behaviours that
change depending on the runtime type of an object. To
save runtime data memory the code generator does not use
dispatch tables to lookup which method to execute for a virtual
dispatch, and the ‘class instance’ objects that contain the static
fields of a class do not contain any information about their
interface implementations or superclass. Each time a type-
dependent action is encountered in an itinerary, all of the
possible outcomes as determined by the previous application
building procedure are enumerated. For virtual method invoca-
tions where it is determined the object on which the method is
to be executed can only be of one type, the virtual dispatch is
eliminated and replaced with a static dispatch instead. Where
it cannot be statically determined which type an object is at
translation time a switch statement is emitted that tests the
runtime type field of the object against each of the possibilities
determined by the type analysis.

In most cases it can be determined ahead of time what
the runtime type of an object will be, but some cases such
as Object.toString() result in huge switch statements
being emitted.

All code generated depends on stdint.h and math.h for
their definitions of the standard integer types and their most
extreme values. The Intel architecture model also requires
stdio.h and time.h for console access and determining
the time, respectively. The MicroBlaze model has no extra C
dependencies as it uses drivers written in Java (hidden to the
user application) to provide IO and timing functionality.

The generated C application is entirely self-contained, re-
quiring no ‘libchi.a’ or similar to be linked against. Each
class in the original Java application (and one for each system
library class used) is allocated its own C file containing method
implementations. All methods, classes and types are declared
across three header files. Compilation can be performed on
either platform with just gcc -std=c99 *.c.

V. RESULTS

To evaluate the runtime performance and memory overheads
of the Chi process a number of benchmark applications were
used across three platforms. The benchmark tests were:

• Schoeberl’s JavaBenchmarkEmbedded[20] suite includ-
ing a sieve of eratosthenes (Sieve), a simulation of a node
in a distributed motor control network (Kfl), and a small
TCP/IP stack with two UDP clients communicating with
each other via a loopback network interface (UdpIp).
These were packaged into a single binary. Numbers in
table II indicate the number of executions per second3.

• Random is a test of java.util.Random, primitive
autoboxing and ArrayList collections. Numbers in table
II indicate the number of executions per second.

• jLinpack[12] is a port of the common Linpack linear
algebra benchmark to Java. jLinpack D uses double
precision floating point arithmetic, jLinpack F uses
single precision. Numbers in table II indicate the number
of thousands of floating point operations (kFlops) per
second. There are no single precision results for the JVM
or Intel architecture because the results are so large that
they overflow the counter in the benchmark.

The three trial platforms used are:
1) A JVM running the input Java code, with and without

Just-in-Time compilation enabled. This is on a MacOS
machine with an Intel Core2 Duo@2.4GHz processor.

2) The output of the Chi tool compiled with GCC using
the -Os option, and the binary is executed on the same
machine as the JVM test. Chi was configured to use
1MiB of runtime heap. This platform is provided to
enable a comparison between standard Java performance
and the same application post-translation. The ‘NIE’
(No Instruction Exceptions) columns of table II indicates
performance when runtime JVM instruction exceptions
(null pointer checks, array bounds checks, checkcast,
etc) are disabled.

3) A Xilinx MicroBlaze 7.30.b processor on a XC3S4000
FPGA clocked at 50Mhz.

The code sizes and runtime heap usage for these benchmark
trials on the MicroBlaze architecture can be seen in table III. It
should be noted that these sizes are well within the capability
of most small embedded processors but are still too large for

3Ten trials were run in the JVM and on the Intel architecture. The figures
are the mean of the trials and the figures in parenthesis in table II indicate
the standard deviation of the ten trials.



Code Size (KiB)
Instruction Exceptions

Benchmark Enabled Disabled Heap (KiB)

JavaBenchEmbedded 29.0 (1.58) 20.4 (1.58) 13.7
Random 35.7 (2.47) 20.7 (2.47) 801
Random (Standard Integer) 60.5 (2.45) 23.8 (2.45) 4.51
jLinpack 38.9 (1.87) 23.8 (1.87) 323

HelloWorld 5.64 (1.00) 4.00 (1.00) 68bytes

TABLE III
THE SIZES OF OUTPUT BINARIES AND RUNTIME HEAP USAGE.

MICROBLAZE ARCHITECTURE.

very low-end devices. The values in table III are the size of the
.text section of the MicroBlaze binary. Values in parenthesis
are the sizes of the .data section of the binary.

The two code sizes for the Random test in table III are
for when the standard java.lang.Integer has been
replaced with a less code-size intensive version and when
the original class is being used. Although using the stan-
dard java.lang.Integer requires a lot of code with
instruction exceptions enabled4, the heap usage caused by the
replacement class which does not cache autoboxed integer
objects is unacceptably high.

It is clear from the tables that a significant performance
benefit and reduction in code size is available if instruction
exceptions are disabled, however without these exceptions
much of Java’s safety is lost. These can only be disabled if
there is confidence in the correctness of the application.

Performance tests were not repeated on the MicroBlaze
architecture because there is no source of non-determinism in
the architecture; each execution would be clock-cycle identical
to every previous one. The MicroBlaze compares favourably
with results collected by Schoeberl[20] for the Jop processor
at 100MHz, with Kfl and UdpIp scoring 16,591 and 6,527
respectively.

It can be seen from table II that the compiled output
of Chi is similar in performance to a JVM with JIT and
considerably faster than interpreted Java execution, especially
when instruction exceptions are disabled. However, in three of
the five comparable benchmarks JIT is faster than the compiled
Java. This is likely due to the ability of the JIT to dynamically
optimise the machine code dependent on the known runtime
type of an object.

VI. CONCLUSION

A procedure and toolset has been presented for the execution
of Java applications on highly limited hardware platforms.
Code size has been effectively minimised without the use
of extensive variable type analysis used in [23], providing a
promising avenue for further reductions in code output code
size. Execution performance was shown to be comparable
between a JVM with Just-in-Time compilation and the output
of Chi compiled with GCC. The minimal object representation
and inline virtual method dispatch techniques do not appear to

4 java.lang.Integer uses large lookup tables to accelerate toString(),
but Java class files do not have the ability to initialise arrays from a constant
resulting in a huge <clinit> method to initialise each member individually.

have a severely deleterious impact on runtime performance or
output code size while providing substantial runtime memory
savings.

The Concrete Hardware Implementation differentiates itself
from similar previous approaches by an emphasis on a high-
level intermediate representation useful for future investiga-
tions into both further optimisations for the reduction of
resulting executable sizes and runtime memory requirements.
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