
Efficient Constraint Handling during Designing

Reliable Automotive Real-Time Systems

Florian Pölzlbauer1, Iain Bate2, and Eugen Brenner3

1 Virtual Vehicle, Graz, Austria
2 University of York, Department of Computer Science, York, United Kingdom

3 Graz University of Technology, Institute for Technical Informatics, Graz, Austria

Abstract. In modern embedded systems, e.g. avionics and automotive,
it is not unusual for there to be between 40 and 100 processors with a
great deal of the software having hard real-time requirements and con-
straints over how, when and where they execute. The requirements and
constraints are essential to the overall systems dependability and safety
(e.g. to ensure replicas execute on different hardware). This leads to a
complex design space exploration (DSE) problem which cannot be prac-
tically solved manually especially if the schedule is to be maintained.

In this paper it is shown that dealing with the constraints using a
conventional state of the art “System Configuration Algorithm” is less
efficient, less effective and does not scale well. This issue can be improved
by performing constraint pre-processing as well as constraint encoding.
It is shown that our approach can handle typical industrial requirements
that come from the automotive industry’s AUTOSAR standard in an
efficient way.

Keywords: design constraints, system configuration, task allocation,
efficient design space exploration, real-time systems.

1 Introduction

In the past, automotive electronics were designed in a federated manner. Most
functionality was implemented by special-purpose hardware and software. There-
fore one control unit performed only one or at most a limited number of individ-
ual functions, and functions had their own dedicated hardware. As the function-
ality steadily increased, the number of control units has also increased. Nowadays
cars contain up to 80 control units.

During the last several years, a paradigm shift has occurred in the automotive
domain. The design of electronics has moved from a hardware-oriented to a
software/function-oriented approach. This means that the functionality is mainly
based on software that is executed on general-purpose hardware. In order to
enable this trend a middleware (AUTOSAR [1]) was introduced, which separates
the application software from the underlying hardware.

In order to develop such reliable and safety-relevant software-based systems,
several engineering steps have to be performed. Besides developing the systems

M. Brorsson and L.M. Pinho (Eds.): Ada-Europe 2012, LNCS 7308, pp. 207–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 F. Pölzlbauer, I. Bate, and E. Brenner

functionality, designing the software architecture and implementing software
components, several configuration steps have to be performed. These are es-
sential if systems are to meet their reliability requirements (e.g. in the form
of timing requirements being met), availability requirements (e.g. where task
replicas have to be placed on different processors), and safety requirements (e.g.
where tasks have to be allocated and executed in a particular way).

– task allocation: local assignment of tasks to processors
– data routing: finding a route (via buses and gateways) for data transmission

between tasks that reside on different processors
– frame packing: packing application messages into bus frames
– scheduling: planning of the temporal attributes of the system (e.g. priority

assignment to tasks and frames)
– system performance evaluation: schedulability, resource utilization, etc.

Due to the increasing system complexity, high number of design constraints and
safety as well as reliability demands, finding feasible system configurations is a
challenging and error-prone task, if performed manually. In order to disburden
engineers from these tasks, automized system configuration generation is needed.
This will enable the engineers to spend more time on actually designing the
systems functionality.

1.1 Related Works

In the literature, the task of finding a system configuration is often referred to
as the task allocation problem (TAP). The TAP consists of two principal parts:
allocating tasks to processors and messages to communication buses, and then
assigning attributes such as the priority to tasks and messages. The TAP should
be solved such that all essential requirements (or constraints) are met (e.g. task
deadlines) and that the objectives are optimized (e.g. the minimum number of
processors are used).

The TAP has been the subject of a great deal of research over the last couple
of decades ranging from the early works that dealt with independent tasks to
later work that handles more complex requirements, e.g. dependent tasks (or
transactions) in [4, 6]. More recent work has considered other constraints, such
as tasks having to reside on a particular processor [11].

In [16] the aspect of extensibility is tackled. Thereby system configurations
are optimized to tolerate increasing worst-case execution times (WCET). This
metric can be used to estimate how many tasks and messages could be included in
future systems. In [9] even more attributes (e.g. periods) are subject to variation,
and multi-dimensional robustness analysis is performed.

In [8] the issue of system configuration upgrade is tackled. Starting from a
given initial system configuration, the search algorithm (based on simulated an-
nealing (SA)) searches for an improved/optimized system configuration. Thereby
minimal changes between the initial and the optimized system configuration are
preferred.

Efficient Constraint Handling 209

Although the TAP has been addressed from different perspectives, some com-
mon issues can be identified: Firstly, almost all works focus on creating a new
system configuration “from scratch”. Although the configuration may be de-
signed with respect to extensibility [9, 15, 16], the necessary design steps to ac-
tually perform a system configuration upgrade are not shown. Only [8] tackles
this issue. Secondly, the works only deal with simple design constraints that are
insufficient for the needs of many critical systems including those based on the
AUTOSAR standard. However, when designing dependable, real-life, reliable,
long-life software-based systems, more sophisticated design constraints need to
be taken into account (for details see table 1).

1.2 Contribution and Outline

The contributions of this work are:

– provide an overview of industrial relevant design constraints
– provide methods that satisfy these constraints in an efficient way
– show how these methods can be incorporated into system configuration op-

timization frameworks
– present experimental results that evidence the efficiency of the approach

The work is structured as follows: In section 2 we present an overview of de-
sign constraints that typically are present in industrial system configuration
problems. Then we present when each of these constraints can be satisfied (=
constraint satisfaction time). Later we show how each of these constraints can
be satisfied. In section 3 we present an optimization framework for finding near-
optimal system configurations, which incorporates the methods for satisfying the
design constraints. In section 4 we present experimental results that evidence the
efficiency of the proposed methods. Finally we draw our conclusions and provide
an outlook on future research directions.

The following symbols and abbreviations are used in this work.

Symbol Description Symbol Description Symbol Description

t task B set of bus systems adm admissible
c task cluster P set of processors ded dedicated
m message dyn dynamic ex excluded

2 Design Constraints

Design constraints may have a wide variety of sources. Most relevant are:

– safety considerations: If safety analysis of the entire system has been per-
formed (e.g. hazard and risk analysis, in accordance with ISO 26262 [2]),
safety requirements can be derived. These impose constraints on design
decisions.

210 F. Pölzlbauer, I. Bate, and E. Brenner

– compatibility to legacy systems: Automotive systems are usually designed in
an evolutionary fashion. A previous version of the system is taken as a start-
ing point and is extended with additional features, in order to satisfy current
demands/requirements. Thus, legacy components may impose constraints on
design decisions.

– engineer’s experience: Engineers who have been designing similar systems
typically have figured out “best practices”. These may exclude certain design
decisions, thus imposing additional constraints.

Within the automotive domain, the AUTOSAR standard [1] has positioned itself
as a leading standard. Within the AUTOSAR standard, design constraints which
might occur have been specified in the AUTOSAR system template. Therein, a
variety of constraint-types can be found. However, these constraints are not
only relevant for automotive systems, and could easily be applied to other do-
mains (e.g. rail, aerospace, automation, ...). Table 1 provides a summary of the
constraint-types. They can be categorized within 6 classes.

Table 1. Constraint-Types specified within AUTOSAR System Template

Constraint-class Constraint-type Literature

A: limited resources
A-1: processor CPU speed yes
A-2: processor memory yes
A-3: bus bandwidth yes

B: real-time behaviour
B-1: task deadline yes
B-2: communication deadline yes
B-3: end-to-end deadline yes

C: allocation (task to processor)
C-1: dedicated processors yes
C-2: excluded processors yes
C-3: fixed allocation yes

D: dependencies (task to task)
D-1: grouping no*
D-2: separation yes

E: data routing (data to bus)

E-1: processor-internal only no*
E-2: dedicated buses no
E-3: excluded buses no
E-4: same bus no
E-5: separated buses no

F: frame packing (data to frame)
F-1: dedicated frame no
F-2: same frame no
F-3: separated frames no

* not stated as a constraint, but used as means to reduce bus utilization

Some of these constraints are relevant for a wide range of software systems.
E.g. all embedded software must content itself with limited resources. Thus these
constraints are well studied in the literature. However, for reliable systems, ad-
ditional constraints need to be taken into account. Most safety-related systems
must guarantee real-time behaviour, especially if human life is at risk (e.g. drive-
by-wire application in a car). Hence, safety analyses are performed in order to

Efficient Constraint Handling 211

identify potential risks, and derive adequate safety goals how to address these
risks. A strategy (safety concept) is derived, how to achieve these safety goals.
The safety concept must be satisfied/implemented by the architecture. This im-
poses additional design constraints on the architecture. E.g. a typical safety
concept is to use redundancy and replication [7]. If a triple modular redundant
approach is used to improve availability and reliability then different physical
processors and communication paths need to be enforced in order to avoid com-
mon mode failures or byzantine effects. Therefore replicated tasks must not reside
on the same processor (task separation), certain processors are inadequate for
handling certain tasks (excluded processors), and data must be transferred via
separated buses, probably even within separated bus frames.

Concluding: In order to satisfy the safety goals and thus comply to safety stan-
dards [2] and legal regulations, a set of highly heterogeneous design constraints
need to be handled. This imposes significant effort on engineers. Therefore meth-
ods for efficient constraint handling are needed.

It is interesting to note, that several constraint-types are not addressed in the
literature. Especially constraints that focus on the configuration of the commu-
nication infrastructure have not been tackled. This can be explained, because
most works on system configuration (e.g. task allocation) use simplified mod-
els for cross-processor communication. These models do not cover all relevant
details of the communication infrastructure, and thus the use of detailed con-
straints seems obsolete. In real dependable systems though, these constraints are
of high importance.

2.1 How to Satisfy Constraints in an Efficient Way

During designing safety-relevant distributed real-time systems, that are mainly
empowered by the use of software architectures (like the AUTOSAR middle-
ware), the question arises: How can the set of highly heterogeneous constraints
be handled and satisfied in an efficient way? By analysing the constraints, we
can identify two concepts to satisfy these constraints. Each concept can be ap-
plied to a sub-set of the constraints. By combining both concepts, all relevant
constraints can be handled and satisfied.

1. pre-processing: Certain constraints can be resolved before the DSE. This way,
the constraints are always satisfied during the DSE. Figuratively speaking:
The constraints are removed from the design space, thus reducing the design
space by removing infeasible regions.

2. encoding: Constraints that cannot be resolved have to be encoded into the
search algorithm, e.g. into the objective-function. This way the search is
guided towards configurations that satisfy the constraints.

Basically, each constraint-type could be addressed by “encoding”. However, this
option is not very efficient, since no guarantee of constraint satisfaction can be
given. “Resolving” a constraint-type can give that guarantee. Thus the goal is
to resolve as many constraints as possible.

212 F. Pölzlbauer, I. Bate, and E. Brenner

Resolve Constraints before Design Space Exploration

Table 2 shows, which constraints can be resolved, which constraints cannot be
resolved, and why that is the case. In order to resolve constraints before per-
forming the DSE, the following rules have to be applied:

Table 2. Constraint Satisfaction Time: “before” or “during” Design Space Exploration

Type before during Rationale

A-1 x CPU utilization can only be checked after task allocation
A-2 x memory utilization can only be checked after task allocation
A-3 x bus utilization can only be checked after message routing

and frame packing
B-1 x can only be checked after scheduling
B-2 x can only be checked after scheduling
B-3 x can only be checked after scheduling
C-1 x a set of admissible processors can be calculated
C-2 x a set of admissible processors can be calculated
C-3 x allocation algorithm does not modify the allocation
D-1 x tasks can be grouped (forming a task cluster); task clusters

are handled as “single elements” by task allocation
D-2 x a set of excluded processors can be derived dynamically
E-1 x sender- and receiver-tasks can be grouped
E-2 x a set of admissible buses can be calculated
E-3 x a set of admissible buses can be calculated
E-4 x group sender-tasks; group receiver-tasks
E-5 x message routing results from task allocation
F-1 x only the dedicated frame will be used
F-2 x demand E-4; perform frame packing in two phases
F-3 x perform frame packing in two phases

F-1: Dedicated frame packing is typically used, because the same frame catalog
is used within different cars. To satisfy this constraint, messages that have this
constraint associated, will only be packed into the dedicated frame.
E-1: By grouping the sender- and the receiver-task (forming a task-cluster),
we can make sure that the task allocation algorithm will allocate both tasks
to the same processor. Thus, the communication between these tasks is always
performed processor-internal.
D-1: Similar to E-1, this constraint can be resolved by grouping the associated
tasks (forming a task-cluster).
E-2 & E-3: Based on these sets, a set of admissible buses can be calculated for
each message.

Badm =

{
B \Bex if Bded = {}
Bded \Bex otherwise

(1)

This admissible message-routing implies a set of admissible processors X for
the sender- and receiver-task of this message. Only processors connected to the

Efficient Constraint Handling 213

admissible buses of the message are potential candidates for hosting the sender-
and receiver-task.

P
(t→m→t)
adm = P connected to Badm (2)

Since a task may send and receive several messages, only the intersected set X
is a potentially admissible processor for each task.

X =
⋂

P
(t→m→t)
adm (3)

C-1 & C-2: Based on these sets, a set of admissible processors can be calculated
for each task. Thereby, the set of admissible buses (derived from E-2 & E-3) of
the sent/received messages has also to be taken into account.

Padm =

{
(P ∩X) \ Pex if Pded = {}
(Pded ∩X) \ Pex otherwise

(4)

If tasks are grouped (forming a task cluster), the set of admissible processors for
a task cluster c is:

P
(c)
adm =

⋂
t∈c

Padm (5)

C-3: If an allocation is fixed, the task allocation algorithm will not modify that
allocation.
E-4: Two messages can only be routed via the same bus, if their sender-tasks
reside on the same processor and also their receiver-tasks reside on the same
processor. Thus, E-4 can be satisfied by two D-1 constraints.
F-2: Two messages can only be packed into the same frame, if both messages are
sent from the same processor and routed via the same bus. This can be stated by
E-4. In addition, frame packing is performed in two phases. In phase 1, messages
that must be packed into the same frame are packed into the same frame. In
phase 2, all remaining messages that have not been packed yet are packed into
frames (either into new frames or adding them into existing frames).
F-3: Frame packing is performed in two phases. In phase 1, messages that must
be packed into separated frames are each packed into a separate frame. In phase
2, all remaining messages that have not been packed yet are packed into frames
(either into new frames or adding them into existing frames).

Tackle Constraints during Design Space Exploration
Some of the constraints that cannot be resolved before performing the DSE, can
be addressed during the DSE, by applying the following rules:
D-2: The set of admissible processors can be updated dynamically (during the
DSE).

Padm.dyn = Padm \ Pex.dyn (6)

Pex.dyn = P of tasks that the current task must be separated from (7)

214 F. Pölzlbauer, I. Bate, and E. Brenner

Concluding: For a set of constraints (A-1, A-2, A-3, B-1, B-2, B-3, E-5) no rules
how to satisfy them, could be derived. Consequently, these constraints must be
tackled somehow else. An elegant way to do this, is to encode them into the
search algorithm. Thereby they can either be represented as a mandatory or as
desired. However, the following implications should be taken into account, when
deciding between these options:

– mandatory: If a mandatory constraint is violated, the configuration is treated
as being infeasible. Thus it will be rejected. Consequently, the configuration
is not considered as the starting point for generating new configurations.

– desired: A configurations that does not satisfy a desired constraint is not
rejected. Instead it is punished by a high cost value. However, the config-
uration can still be picked as the starting point for subsequent exploration
steps.

The difference may sound minor, but actually has significant impact on the
DSE. Using desired constraints enables the search to gradually traverse through
infeasible regions. However, even configurations with “moderate” cost may be
infeasible. Using mandatory constraints ensures that all constraints are satisfied
for feasible configurations.

Table 3. Constraint Encoding: as “mandatory” or as “desired”

Type mandatory desired Rationale

A-1 x utilization ≤ 100% required for schedulability
A-2 x utilization ≤ 100% not required for schedulability
A-3 x utilization ≤ 100% required for schedulability
B-1 x guide search through un-schedulable regions
B-2 x guide search through un-schedulable regions
B-3 x guide search through un-schedulable regions
D-2 xx x depending on source of constraint (e.g. safety analysis)
E-5 xx x depending on source of constraint (e.g. safety analysis)
F-3 xx x depending on source of constraint (e.g. safety analysis)

Note: All other constraint-types can be resolved, thus are always satisfied, and don’t
need to be encoded. Options marked as “xx” are preferred by the authors.

Table 3 provides a proposal, in which way each constraint-type could be en-
coded. The proposal tries to tackle the nature of the constraint-types as well
as efficiency considerations, in order to find the most appropriate encoding for
each constraint-type. If a constraint-type is encoded as “desired”, the following
representation is proposed/advised:

costi =
of elements that violate a constraint-type

of elements that have a constraint-type associated
→ min (8)

This way, each cost term is scaled between 0 and 1, which makes it easier to
incorporate the cost term into the cost function. The individual cost terms (for

Efficient Constraint Handling 215

constraint encoding) can then be grouped into a single cost term constraint
violation, using a scaled weighted sum, inspired by [10].

costconstraint violations =

∑
wi · costi∑

wi
→ min (9)

This cost term can then be included into the cost function, wherein the opti-
mization objectives (e.g. minimize bus utilization) are encoded. Finding ade-
quate weights for the individual cost terms is a challenging task. It is almost
impossible to find weights that perform well for all problems. Therefore weights
should be assigned to problem-classes. By applying a systematic experimental
approach [12], weights can be found that perform well for these problem-classes.

2.2 Implications on Design Space Exploration

Within the pre-processing phase, constraints are resolved. Therefore two meth-
ods are used:

1. grouping of tasks, forming task clusters
2. calculating a set of admissible processors for each task

In addition, a set of rules how to tackle certain constraints during the DSE were
presented. These information is exploited during the DSE. As a consequence the
following principles will be used during the DSE:

– Task clusters are treated as single elements during task allocation. Therefore,
if a task cluster is re-allocated, all tasks inside that task cluster will be re-
allocated to the same processor.

– When picking a “new” processor for a task / task cluster, only processors
from the set of admissible processors are used as candidates.

– Rules for satisfying constraints during the DSE are applied to the commen-
surate design steps (e.g. frame packing)

As a consequence, a large number of infeasible configurations is avoided, since
constraints are not violated. Thus, the efficiency of the DSE increases.

3 System Configuration – Optimization Framework

In order to actually perform the system configuration DSE, we are using a meta-
heuristic search algorithm called simulated annealing (SA), a well known algo-
rithm in the domain of artificial intelligence. Its name and inspiration come from
annealing in metallurgy, a technique involving heating and controlled cooling of
a material. The main reason for using SA is that it is shown in [8] how SA can be
tailored to address system configuration upgrade scenarios. To ensure that the
temporal attributes of the system meet the requirements, traditional methods
are used: WCET-analysis and WCRT-analysis. In order to apply SA to a specific
problem (here: system configuration), some methods have to be implemented:

216 F. Pölzlbauer, I. Bate, and E. Brenner

– neighbour: Which modification can be applied to a system configuration, in
order to get a new system configuration? These represent the modification
an engineer would perform manually.

– energy (cost): How “good” is a system configuration? This represents the
metrics that are used to evaluate a system configuration.

The following optimization objectives are encoded into the cost function. Again
a scaled weighted sum is used.

– number of needed processors → min
– bus utilization → min
– processor CPU utilization → max & balanced
– end-to-end delay → min
– constraint violations → min

In order to get a modified system configuration, the following neighbour steps
are applied: 1) A task / task cluster (whose allocation is not fixed) is randomly
picked. 2) A “new” processor is determined by randomly picking out of the set
of admissible processors for that task / task cluster.

When solving the underlying forward-problem for each allocation iteration,
the following assumptions are made and the following methodologies are used:

– Tasks are activated by the arrival of a message. Therefore, the task scheduling
problem is equivalent to finding adequate priorities for tasks. This problem
can be addressed by simple, yet efficient heuristics: rate monotonic (RM),
deadline monotonic (DM) or “deadline minus jitter” monotonic (D-JM) pri-
ority assignment [3].

– The bus protocol is CAN [5]. Therefore, the bus arbitration scheduling prob-
lem is equivalent to finding adequate priorities for bus frames. Thus, RM,
DM or D-JM can be applied as well.

– Data that is exchanged between processors via data buses is packed into bus
frames using a heuristic inspired by [13], but additionally incorporating the
methods for satisfying packing constraints.

– Schedulability of the system is checked using [14].

The simplifications and assumptions that are made within this work are only in-
troduced for the sake of simplicity. The proposed methods for satisfying the de-
sign constraints are independent of these assumptions. Thus more sophisticated
methodologies (e.g. for priority assignment) can be applied, if desired/needed.

4 Experimental Results

In section 2 we have presented a set of 19 constraint-types that may be present
in a system configuration problem. Later, we presented a set of rules that can be
used to resolve 11 constraint-types. In addition, we have presented rules that can
be used to dynamically satisfy 1 constraint-type. Assuming that each constraint-
type is used equally often, we can make sure that about 63% of the constraint-
types are satisfied during the DSE. Thus a high number of constraint-violations
can be avoided, making the DSE more efficient.

Efficient Constraint Handling 217

approach # %

resolve 11 57.89
dyn. satisfy 1 5.26
no guarantee 7 36.84

In order to show the impact of the design constraints on DSE efficiency, we
have performed several experiments. On the one hand, we tried to solve the
system configuration problem by state-of-the-art approaches. On the other hand,
we applied a pre-processing phase, during which constraints are resolved.

Due to the high number of different constraint-types, it is infeasible to demon-
strate all combinations of constraint-types here. Therefore, let us focus on a
problem instance of medium scale size

– hardware: 6 processors, 1 external data bus
– software: 30 tasks, 45 communication-links between tasks

and having the following constraints

– limited resources for all hardware elements (A-1 .. A-3)
– deadlines for all tasks and messages (B-1, B-2)
– 2 tasks already allocated (C-3)
– 4 task-groupings (D-1)
– 1 internal communication-link (E-1)

In order to reduce the uncertainties that are introduced by the used meta-
heuristic (SA) which uses random numbers, several solving-runs are performed.
The results of all these runs are shown in table 4. The most interesting results
are highlighted in bold.

Table 4. Impact of Resolving Constraints on DSE Performance and DSE Results
(min./median/max. of 10 runs per scenario)

criteria no pre-processing with pre-processing

iterations 10000 10000
unique allocations 9546 / 9588.5 / 9595 9423 / 9430.5 / 9469
feasible allocations 0 / 1 / 1 2026 / 2169 / 2231

infeasible, due to constr. D-1 & E-1 9541 / 9578.5 / 9589 0 / 0 / 0
infeasible, due to CPU overload 0 / 1.5 / 8 4050 / 4177 / 4335
infeasible, due to memory overload 1 / 1.5 / 7 2653 / 2693 / 2759
infeasible, due to deadline violation 0 / 2.5 / 6 385 / 406.5 / 421

used processors 5 / 6 / 6 (of 6) 4 / 4 / 4 (of 6)
bus utilization [%] 12.66 / 13.73 / 14.61 7.52 / 8.23 / 9.87
CPU utilization [%] (average) 47.69 / 47.69 / 57.23 71.54 / 71.54 / 71.54
Δ CPU utilization [%] (average) 7.69 / 10.77 / 20.25 3.85 / 5.19 / 8.08

218 F. Pölzlbauer, I. Bate, and E. Brenner

The results impressively show the negative effect that the set of design con-
straints has on the DSE performance, if state-of-the-art solving approaches are
used (see: no pre-processing). Almost no feasible configuration can be found. The
main reason is that some constraints are violated. This is even more impressive
if we consider that only a small number of constraints is used.

On the contrary, the results clearly evidence the positive effect of the pre-
processing phase on the DSE performance (see: with pre-processing). If the
pre-processing rules are applied, no more constraint violations stem from these
constraint-types (here: C-3, D-1, E-1). As a consequence, more feasible configu-
rations are generated and evaluated during the DSE. The median feasibility ratio
is 0.217 (= feasible vs. all iterations). Overall, the DSE efficiency is significantly
improved. In addition, the best obtained configuration is significantly improved,
if pre-processing is applied: Fewer processors are needed, a lower bus utilization
can be achieved, and processor utilization is more balanced.

However, it seems that pre-processing has a negative impact on resource
utilization and real-time behaviour. Though, this is not the case, and can be
explained: In these experiments we applied a hierarchical evaluation-schema.
Constraints are checked in the following sequence: allocation, dependency, rout-
ing, packing, resource, timing. Thus, if allocation constraints are violated, other
constraints (e.g. resource utilization or timing) are not checked/counted any
more, since the configuration is already infeasible. This helps to speed up the en-
tire evaluation process (since time-consuming schedulability-tests are performed
only if all other constraints are satisfied). However, as a consequence resource
overload and deadline violations are only counted if all the other constraints are
satisfied. To get a more general comparison, the sum of all infeasible configura-
tions can be taken as a metric.

Generality. In order to evaluate the generality of the proposed approach, sev-
eral experiments have been performed. Therein, we varied both the size and
structure of the problem instances, as well as the imposed design constraints.
The problem sizes vary within the following ranges:

– 30..90 tasks / 45..135 messages
– 6..12 processors / system utilization: 0.331..0.493 per processor, if all proces-

sors would be used. Typically, a good configuration will not use all processors.

Besides limited resources and real-time behaviour, the following constraint-types
are imposed on the systems:

1. scenario-type I: fault-tolerant system
– excluded processors, for 15..25% of tasks (C-2)
– task-separation, for 10..20% of tasks (D-2)
– internal messages, for 5..10% of messages (E-1)
– separated frames, for 10..15% of messages (F-3)

2. scenario-type II: system upgrade
– fixed allocations, for 20..30% of tasks (C-3)
– dedicated processors, for 10..20% of tasks (C-1)

Efficient Constraint Handling 219

– task-grouping, for 10..15% of tasks (D-1)
– dedicated frame, for 10..15% of messages (F-1)

10 examples of each category have been generated. For reason of space the full
results cannot be presented. However the trends are similar to those in table 4.
In summary: Without pre-processing almost no feasible configurations can be
found, because of constraint violations. With pre-processing a significant larger
number of feasible configurations can be found. The median feasibility ratio
is 0.240, its min is 0.229, and its max is 0.547. So in general, the proposed
method provides quite reproducible performance and results. This indicates the
robustness of the method.

An even more general view can be derived from the results: All constraint-
types can be categorized into 3 classes: (I) Those that can be resolved, (II) those
that can be dynamically satisfied, and (III) those where no guarantee can be
given. By applying the rules we have presented (I) and (II) will be satisfied.
Thus only (III) are left. This means that any system configuration problem
which contains the constraints presented in table 1 can be transformed into
a problem where constraints of type (I) and (II) are no longer present. This
transformation is performed by applying the presented resolving methods. Our
experiments suggest that it is a robust method.

5 Conclusion

During the design of reliable software-based systems, a set of heterogeneous de-
sign constraints must be satisfied. These constraints stem from different sources.
Most safety-relevant systems must guarantee real-time behaviour during oper-
ation, thus no deadline must be missed. Reliability is often enforced by apply-
ing replication. Consequently, replicated elements must be independent of each
other. E.g. replicated tasks and messages must be assigned to separated re-
sources. Manual configuration of such complex systems is time consuming and
error-prone. Thus methods for automated system configuration are needed.

We have presented methods, how each of the relevant constraint-types can be
addressed and satisfied. Several constraints can be resolved before the DSE, some
can be dynamically satisfied, and for some no guarantee can be given. Experi-
mental results evidence that by applying a pre-processing phase, during which
constraints are resolved, significantly improves DSE performance. In addition,
the quality of the best obtained configuration is improved.

In future research, the proposed methods will be incorporated into the DSE
for system configuration upgrade (such as [8]) in order to make this DSE more
efficient. Also, there are some indications that the presented approach can also
be applied to (distributed) multi-core systems.

Acknowledgment. The authors would like to acknowledge the financial
support of the “COMET K2 - Competence Centres for Excellent Technolo-
gies Programme” of the Austrian Federal Ministry for Transport, Innovation

220 F. Pölzlbauer, I. Bate, and E. Brenner

and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family
and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the
Province of Styria and the Styrian Business Promotion Agency (SFG). We also
thank our supporting industrial (AVL List) and scientific (Graz University of
Technology) project partners.

References

1. AUTOSAR (automotive open system architecture), http://www.autosar.org
2. ISO 26262: Road vehicles – functional safety
3. Audsley, N., Burns, A., Richardson, M.F., Wellings, A.J.: Hard real-time schedul-

ing: The deadline-monotonic approach. In: IEEE Workshop on Real-Time Operat-
ing Systems and Software, pp. 133–137 (1991)

4. Chu, W.W., Holloway, L.J., Min-Tsung, L., Efe, K.: Task allocation in distributed
data processing. Computer 13(11), 57–69 (1980)

5. Davis, R., Burns, A., Bril, R., Lukkien, J.: Controller area network (CAN) schedu-
lability analysis: Refuted, revisited and revised. Real-Time Systems 35(3), 239–272
(2007)

6. Efe, K.: Heuristic models of task assignment scheduling in distributed systems.
Computer 15(6), 50–56 (1982)

7. Emberson, P., Bate, I.: Extending a task allocation algorithm for graceful degra-
dation of real-time distributed embedded systems. In: IEEE Real-Time Systems
Symposium (RTSS), pp. 270–279 (2008)

8. Emberson, P., Bate, I.: Stressing search with scenarios for flexible solutions to real-
time task allocation problems. IEEE Transactions on Software Engineering 36(5),
704–718 (2010)

9. Hamann, A., Racu, R., Ernst, R.: Multi-dimensional robustness optimization in
heterogeneous distributed embedded systems. In: IEEE Real Time and Embedded
Technology and Applications Symposium (RTAS), pp. 269–280 (2007)

10. Pölzlbauer, F., Brenner, E., Magele, C.: A transparent target function and evalu-
ation strategy for complex multi-objective optimization problems. In: IEEE Real-
Time Systems Symposium (RTSS) – Work-in-Progress, pp. 77–80 (2009)

11. Pop, P., Eles, P., Peng, Z., Pop, T.: Analysis and Optimization of Distributed Real-
Time Embedded Systems. ACM Transactions on Design Automation of Electronic
Systems 11(3), 593–625 (2006)

12. Poulding, S., Emberson, P., Bate, I., Clark, J.: An efficient experimental method-
ology for configuring search-based design algorithms. In: IEEE High Assurance
Systems Engineering Symposium (HASE), pp. 53–62 (2007)

13. Sandström, K., Norström, C., Ahlmark, M.: Frame packing in real-time communi-
cation. In: International Conference on Real-Time Computing Systems and Appli-
cations (RTCSA), pp. 399–403 (2000)

14. Tindell, K., Clark, J.: Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming – Parallel Processing in
Embedded Real-Time Systems 40(2-3) (1994)

15. Zheng, W., Zhu, Q., Di Natale, M., Sangiovanni-Vincentelli, A.: Definition of task
allocation and priority assignment in hard real-time distributed systems. In: IEEE
International Real-Time Systems Symposium (RTSS), pp. 161–170 (2007)

16. Zhu, Q., Yang, Y., Scholte, E., Di Natale, M., Sangiovanni-Vincentelli, A.: Opti-
mizing extensibility in hard real-time distributed systems. In: IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pp. 275–284 (2009)

http://www.autosar.org

	Efficient Constraint Handling during Designing Reliable Automotive Real-Time Systems
	Introduction
	Related Works
	Contribution and Outline

	Design Constraints
	How to Satisfy Constraints in an Efficient Way
	Implications on Design Space Exploration

	System Configuration – Optimization Framework
	Experimental Results
	Conclusion
	References

