
1

Optimised Frame Packing for Embedded Systems
Florian Pölzlbauer (Student Member, IEEE), Iain Bate (Member, IEEE), Eugen Brenner

Abstract—During system synthesis (e.g. task allocation) the
transmission of messages between tasks is usually addressed in a
simplistic way. If a message is exchanged via an external bus, it
is assumed each message is packed in an individual frame. This
assumption leads to an over-estimation of bus bandwidth demand
and frame response time. For some systems this pessimism is not
acceptable (e.g. automotive), therefore frame packing is often per-
formed where multiple messages are packed into a single frame.
In this paper an improved frame packing approach is provided.

Keywords-real-time systems; frame packing; minimize band-
width demand; heuristic; automotive; bin packing;

I. INTRODUCTION

In the literature the Task Allocation Problem (TAP) has been
addressed many times. Although the approaches differ in sev-
eral aspects, one common issue can be identified: If a message
(that is exchanged between tasks) is sent via an external serial
bus, it is assumed that the message is either transmitted in a
separate frame (message.size ≤ frame.payload.max) or split
into several frames (message.size > frame.payload.max) and
joined to one message again at the receiving processing node.
For embedded real-time systems, the schedulability (i.e. ability
to meet the system’s timing requirements) is of upmost im-
portance without compromising predictability. The simplistic
assumption can lead to system configurations that are deemed
to be unschedulable, and are usually rejected or punished by
the TAP optimisation algorithm (since in general only feasi-
ble configurations are of interest). To overcome these issues,
several messages must be packed in a single bus frame. In the
literature, this problem is known as the Frame Packing Problem
(FPP). In this paper we improve on state-of-the-art approaches.

This work is structured as follows: First we define the frame
packing problem and provide an overview of state-of-the-art ap-
proaches. Then we derive optimality criteria for frame packing
decision making. Based on these criteria we present an opti-
mised frame packing heuristic. Later, we present experimental
results that show the efficiency of our approach. Finally we
draw our conclusions and identify future research aspects.

Symbol Description Symbol Description
m message sm data size of message
f frame payf payload of frame
M set of messages pm max. payload of frame
F set of frames ohf overhead of frame
T period bw bandwidth demand
D deadline br baudrate of bus

Manuscript received November 04, 2011; revised March 09, 2012; accepted
May 23, 2012. Date of publication MMM DD, 2012. Date of current version
MMM DD, 2012. This manuscript was recommended for publication by NNN.

The authors are with Virtual Vehicle, University of York - Department of
Computer Science, Graz University of Technology - Institute for Technical
Informatics. (e-mail: florian.poelzlbauer@v2c2.at; iain.bate@cs.york.ac.uk;
brenner@tugraz.at).

Digital Object Identifier XXX

II. FRAME PACKING

The FPP is defined as follows: A set of messages M =
{m1,m2, . . . ,mn} must be packed into a set of bus frames
F = {f1, f2, . . . , fk}, subject to the constraint that the set
of messages in any frame fits that frame s max. payload.
Usually, the FPP is stated as an optimisation problem. The most
common optimisation objectives are: 1) minimise the number
of needed frames; or 2) maximise the schedulability of the
resulting frame-set. A message is defined by mi = [si, Ti, Di].
A frame is define by fj = [pmj ,Mj , Tj , Dj]. In general each
frame may have its individual max. payload (depending on the
bus protocol). However, usually all frames on the same bus have
the same max. payload.

The FPP can be seen as a special case of the Bin Packing
Problem (BPP), which is known to be a NP-hard optimisation
problem. In the literature there are several heuristics for the
BPP [1]. Well known on-line heuristics are: next fit, first fit,
best fit, etc. Off-line heuristics extend these approaches by
applying initial sorting, resulting in: next fit decreasing, best fit
decreasing, etc. Inspired by these main concepts, heuristics for
the FPP have been developed. Despite FPP having a significant
impact on system performance, there exist only a few works
addressing the FPP. Most FPP algorithms mimic some BPP
heuristic. [2] mimics next fit decreasing, where messages are
sorted by their deadline. [3] mimics best fit decreasing, where
messages are sorted by their periods, and the sorted message-
list is processed alternately from the beginning and the end.
In [4] messages are sorted by their offsets. [3], [4] combine
the FPP with the scheduling problem. [5], [6] include the FPP
into the TAP. Thereby FPP and TAP are formulated as a Mixed
Integer Linear Problem (MILP).

Besides these differences, all state-of-the-art FPP algorithms
share one common issue: The packing decision is made based
on one condition only:

message.size ≤ frame.payload.left (1)

Sophisticated frame packing should be bandwidth demand
efficient. This can be achieved by minimising the overhead data,
thus the number of frames must be reduced. Therefore, as much
data as possible should be packed into each frame. It seems the
ideal situation is to have all frames fully utilised (i.e. the max.
amount of payload data is used). The bandwidth consumption
of a frame is:

bwf =
payf + ohf

Tf
(2)

If several messages are packed into a frame, the frame must
be sent at a rate that satisfies the rate of all packed-in messages.
Thus, the message with the shortest period determines the
frame’s period.

Tf = min
i=m∈f

{Ti} (3)

2

Consequently, the ideal situation is to have fully utilised
frames and all messages inside a frame having the same (or
very similar) periods. Since both the data size as well as the
period of messages vary, the optimal situation represents a
trade-off: If messages with different periods are packed into a
frame, the frame must be sent at the shortest period, and thus
some of the messages are sent more frequently than needed.
This increases the bandwidth consumption. On the other hand,
the more messages are packed into a frame, the less frames
are needed. Thus less overhead data is sent. This reduces the
bandwidth consumption. FPP heuristics from the literature,
[2], [3], tackle this trade-off by trying to pack messages with
similar periods. This is done by sorting the messages due to
their period. However, packing decisions are not based on the
optimality criteria, but only on the necessary condition (see
equation 1). In order to improve frame packing, we derive
optimality criteria for the packing decision. These address the
trade-offs that have to be faced within the FPP. Based on
these criteria, near-optimal frame packing configurations can
be found.

A. Optimality criteria
Assume the following minimal example: There exists a frame

that already has some messages packed-in. Another message
needs to be packed-in and it can fit the existing frame. The
question is: Should the message be packed into the existing
frame (thus extending it), or should the message be packed into
a new frame? The optimal decision can be taken by analysing
the bandwidth demand of the two alternatives (left and right
side of equation):

payf + sm + ohf

T
′
f︸ ︷︷ ︸

extended frame

=
payf + ohf

Tf︸ ︷︷ ︸
existing frame

+
sm + ohf

Tm︸ ︷︷ ︸
new frame

(4)

The fact the shortest message period determines the frame’s
period means adding a message may change the period of the
extended frame T

′

f . Originally it is Tf .

T
′

f = min {Tf ∪ Tm} (5)

Depending on the relation between Tm and Tf , there are 3
cases for this packing situation. For each of them, an optimal
decision can be made.

Case I: Tm = Tf : If the periods of the frame and the
message are equal, it is always beneficial to extend an existing
frame as no additional overhead data is created.

payf + sm + ohf

T
=

payf + ohf

T
+

sm + ohf

T
(6)

ohf < 2.ohf (7)

Case II: Tm > Tf ⇒ T
′

f = Tf : The trade-off is: By
extending the frame, the message will be sent more frequently
than needed, but no additional overhead is created. By creating
a new frame, additional overhead is created, but the message
will not be sent too frequently.

payf + sm + ohf

Tf
=

payf + ohf

Tf
+

sm + ohf

Tm
(8)

sm
Tf

=
sm + ohf

Tm
(9)

At the threshold period of the message, the two alternatives
perform equally.

T ∗m = Tf
sm + ohf

sm
(10)

Thus, the optimal decision is:
• Tm < T ∗m ⇒ extending the frame is beneficial
• Tm > T ∗m ⇒ creating a new frame is beneficial
Case III: Tm < Tf ⇒ T

′

f = Tm: The trade-off is:
By extending the frame, the frame will need to be sent more
frequently, but no additional overhead is created. By creating a
new frame, the original frame will not be sent more frequently,
but additional overhead is created.

payf + sm + ohf

Tm
=

payf + ohf

Tf
+

sm + ohf

Tm
(11)

payf
Tm

=
payf + ohf

Tf
(12)

The threshold period is:

T ∗m = Tf
payf

payf + ohf
(13)

Thus, the optimal decision is:
• Tm < T ∗m ⇒ creating a new frame is beneficial
• Tm > T ∗m ⇒ extending the frame is beneficial

B. Improved frame packing heuristic

The main issue of state-of-the-art frame packing heuristics
is: During packing only the necessary packing condition (see
equation 1) is checked. In case the periods of messages vary sig-
nificantly, the approaches perform poorly, even if messages are
sorted by their periods. To overcome this issue, two concepts
have to be combined: First, the variation of message periods has
to be minimised. This can be achieved by sorting the messages
by their periods. Second, the packing decision must be taken by
also incorporating the trade-off optimality criteria. This way,
bandwidth demand can be reduced/minimised.

The proposed frame packing heuristic (see algorithm 1)
addresses both aspects. Its structure is inspired by the Fixed
Frame Size approach of [2] which mimics next fit decreasing.
However, messages are not sorted by their deadline. Instead
messages are sorted by their period, inspired by [3].

Within the ExtendOrNew method, the most beneficial de-
cision is determined using the optimality criteria presented
earlier. This way each packing step has minimal increase of
bandwidth demand. Due to the NP-hard nature of the FPP,
this approach cannot guarantee an optimal packing, however it
finds packing configurations which outperform state-of-the-art
approaches (as shown in section III).

III. EXPERIMENTAL RESULTS

The approach in section II makes no assumption about the
type of bus, other than it is serial, including how it is scheduled
and as such it should be generally applicable. However the
Controller Area Network (CAN) protocol [7] is used here as
it is widely used in embedded systems [2], [3], [7] and it was
the protocol used in the existing FPP approaches [2], [3], [4].

3

Algorithm 1: Frame packing (based on optimal decisions)
Input: messages

1 sort(messages, T, increasing) /* sort by T [0..n] */;
2 frame = new frame;
3 foreach message do
4 if frame.payload.left ≥ message.size then
5 /* take most beneficial decision */;
6 benefit = extendOrNew(message, frame);
7 if benefit = extend then
8 pack(message, frame);
9 else if benefit = new then

10 pack(message, new frame);
11 end
12 else
13 pack(message, new frame);
14 end
15 end

Output: frames

In order to gain statistically significant evaluation-results,
100 problem instances are evaluated for each point in the used
specification-space. In total 20x 100 examples. The examples
are synthesised in accordance to [2], [3], [4], [8] and in align-
ment with 2 real automotive examples (which unfortunately
could not be made openly available).
• message size = 1 .. 16 bits (uniform)
• message period = 5 .. 1000 ms (uniform)
• bus baudrate = 125, 256, 500 kbaud/s
• nominal bus utilisation = 10 .. 20 %
• number of sending processing nodes = 1 .. 20
These synthetic problem instances are solved with the fol-

lowing approaches:
• simple (1 message = 1 frame)
• Sandstroem et al. [2]
• Poelzlbauer et al. (our approach)

These approaches treat the FPP as a separated problem and
are targeted at minimising bandwidth demand, thus they are
comparable. We are not comparing against [3], [4], [5], [6],
since these approaches are combining the frame packing with
the scheduling / task allocation problem and are targeted at
maximising schedulability. Thus a comparison would result in
misleading outputs. However, experiments will show that our
approach increases schedulability, while minimising bandwidth
demand. As the evaluation metrics we are using:
• bandwidth demand: Frame packing should minimise the

bandwidth demand of the frame-set.
• frame payload: Frames should be highly utilised, in order

to have a good data-to-overhead ratio. Thus the used frame
payload should be close to maximum.

• message period variation: Messages should not be sent
too frequently. Thus messages that are packed in the
same frame should have similar periods. Message period
variation inside a frame should be low.

• schedulability of frame-set: Frame packing should have a
positive impact on schedulabilty. Fewer frames, preferably
none, should miss their deadline.

The main reason for performing frame packing is to effi-
ciently use the available bus bandwidth. Thus, the efficiency
of frame packing algorithms can be measured by the resulting
bandwidth demand of the frame-set.

bw =
∑
f∈F

payf + ohf

Tf
(14)

Figure 1 shows the resulting bandwidth demand for the 3
packing approaches. Each point represents the average over 100
problem instances. Statistical analysis using notched boxplots
confirms that the differences are statistically significant due to
a 95% confidence interval. Note:

• application data represents the load, due to messages only.
This can be seen as a lower bound for the frame packing
that can never be reached.

• bus baudrate marks the available bandwidth. This can be
seen as an threshold for feasibility.

Fig. 1. Packing efficiency, due to resulting bandwidth demand. / sm=1..16 bit;
Tm=5..1000 ms; br=256 kbaud/s

The simple frame packing approach results in overloading
the bus. Both, Sandstroem et al. and our approach, result in
a significant lower bandwidth demand. However our approach
outperforms Sandstroem et al’s approach. General observations
made include:

• For a low number of sending processing nodes, both ap-
proaches perform similar. For increasing number of send-
ing processing nodes, our approach performs noticeably
better.

• For lower bus baudrates, our approach performs signifi-
cantly better. For higher bus baudrates, our approach still
performs better, but the improvement becomes lower.

Table I shows the improvement of our approach over Sand-
stroem et al. in detail with respect to the number of nodes and
bus bandwidth (on the left hand side of the table) and message
sizes (on the right hand side of the table).

TABLE I
IMPROVEMENT OF POELZLBAUER ET AL. OVER SANDSTROEM ET AL.

improvement [%] message size improvement
nodes 125 k 256 k 500 k [bit] [%]

1..3 0.0 0.0 0.0 1 .. 8 0 .. 18
5 5.9 2.3 0.0 1 .. 16 0 .. 18

10 14.4 6.2 3.3 1 .. 24 0 .. 19
15 13.8 15.0 2.4 1 .. 32 0 .. 16
20 17.6 16.2 6.2 1 .. 64 0 .. 6

4

Our approach performs well for a wide range of relevant
message size (up to 32 bits). These ranges are the most rele-
vant for the automotive domain, since most processed data is
encoded within this range. For larger message sizes (32 to 64
bits) the improvement of our approach degrades. However, it
can be noticed that for large message sizes (up to 64 bits) all
packing approaches perform very similar, since almost only 1
message fits into 1 frame. It is important to note our approach is
never worse than the existing FPP approaches, including simple
packing.

The other important aspect of frame packing is the impact on
the schedulability of the resulting frame-set. Since a frame con-
sists of several messages, the frame must satisfy the deadlines
of all packed-in messages. Thus the deadline of a frame must
be set as:

Df = min
i=m∈f

{Di} (15)

For priority assignment we use the deadline monotonic pri-
ority assignment policy and for calculating the WCRT of each
frame we apply [7].

TABLE II
IMPACT OF FRAME PACKING ON SCHEDULABILITY / sm=1..16 BITS;

Tm=5..1000 MS; br=256 KBAUD/S; u=10 %; # SENDING PROCESSORS=10

deadline missed
ratio

simple 230 of 651 0.409
Poelzlbauer et al. 0 of 93 0.0
Sandstroem et al. 0 of 91 0.0

Using the simple packing approach (1 message = 1 frame)
results in a high number of frames. This means a high number
of frames (especially low priority frames) miss their deadline
(see table II). By using real packing approaches, the number
of frames is significantly reduced, which again reduces the
interference between frames. This results in a significant lower
number of frames that miss their deadline.

Since both packing algorithms seem to perform equally in
terms of schedulability, it is interesting to analyse the robust-
ness of the frame-set. We define robustness as the ability to
maintain schedulability, despite uncertainties in transmission
time. Therefore we perform sensitivity analysis of the frame-
set: We up-scale the transmission time (C) of frames, until the
frame-set becomes unschedulable. The more we can up-scale
C, the more robust is the frame-set.

Fig. 2. Sensitivity analysis of frame-set with respect to frame transmission
time

Figure 2 shows the ratio of missed deadlines with respect
to the scaling of C. It demonstrates that our approach is much

more robust (less sensitive). While the frame-set created by
Sandstroem et al. can only be up-scaled by 1.49, the frame-
set created by our approach can be up-scaled by 1.70. This
represents an improved robustness of 14%. In addition, the
unschedulability ratio of our approach increases less steep,
which also indicates the higher robustness. At the top of the
plot (ratio = 0.4) the utilisation of the frame-set exceeds 100%,
thus the WCRT cannot be calculated any more. This happens
at an up-scale factor of 1.57 and 1.81 accordingly. We can also
down-scale C, in order to make the frame-set, which has been
created by the simple packing approach, schedulable. We find
that we need to down-scale C by 0.78.

IV. CONCLUSION

We have shown that using “real” frame packing algorithms
significantly improves bandwidth demand and schedulability.
Our improved approach outperforms the existing approaches
with respect to all metrics. The approach works well for short
message sizes between 1 and 16 bits (typically used today) as
well as well longer ones (1 to 32 bits). It is also less sensitive
to timing-variations. Future research may focus on additional
optimisation objectives (e.g. min. end-to-end delay, min. jitter),
emerging protocols (e.g. automotive Ethernet) and including
the FPP into the TAP.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial sup-
port of the “COMET K2 - Competence Centres for Excellent
Technologies Programme” of the Austrian Federal Ministry for
Transport, Innovation and Technology (BMVIT), the Austrian
Federal Ministry of Economy, Family and Youth (BMWFJ), the
Austrian Research Promotion Agency (FFG), the Province of
Styria and the Styrian Business Promotion Agency (SFG). We
also thank our supporting industrial (AVL List) and scientific
(Graz University of Technology) project partners.

REFERENCES

[1] E. G. Coffman, M. R. Garey, and D. S. Johnson, “Approximation algo-
rithms for bin packing: a survey,” in Approximation algorithms for NP-hard
problems. Boston, MA, USA: PWS Publishing Co., 1996, pp. 46–93.

[2] K. Sandström, C. Norström, and M. Ahlmark, “Frame packing in real-time
communication,” in International Conference on Real-Time Computing
Systems and Applications (RTCSA), 2000, pp. 399–403.

[3] R. Saket and N. Navet, “Frame packing algorithms for automotive,”
Embedded Computing, pp. 93–102, 2006.

[4] P. Pop, P. Eles, and Z. Peng, “Schedulability-driven frame packing for mul-
ticluster distributed embedded systems,” ACM Transactions on Embedded
Computing Systems, vol. 4, pp. 112–140, 2005.

[5] W. Zheng, Q. Zhu, M. Di Natale, and A. Sangiovanni-Vincentelli, “Defini-
tion of task allocation and priority assignment in hard real-time distributed
systems,” in IEEE International Real-Time Systems Symposium (RTSS),
2007, pp. 161–170.

[6] Q. Zhu, Y. Yang, E. Scholte, M. Di Natale, and A. Sangiovanni-
Vincentelli, “Optimizing extensibility in hard real-time distributed sys-
tems,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2008, pp. 275–284.

[7] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-Time
Systems, vol. 35, pp. 239–272, 2007.

[8] K. Tindell and A. Burns, “Guaranteed message latencies for distributed
safety-critical hard real-time control networks,” Department of Computer
Science, University of York, Tech. Rep., 1994, report no. YCS229.

	Introduction
	Frame packing
	Optimality criteria
	Improved frame packing heuristic

	Experimental results
	Conclusion
	References

