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Abstract

Many problems in high assurance systems design are
only tractable using computationally expensive search al-
gorithms. For these algorithms to be useful, designers must
be provided with guidance as to how to configure the algo-
rithms appropriately. This paper presents an experimental
methodology for deriving such guidance that remains ef-
ficient when the algorithm requires substantial computing
resources or takes a long time to find solutions. The method-
ology is shown to be effective on a highly-constrained task
allocation algorithm that provides design solutions for high
integrity systems. Using the methodology, an algorithm
configuration is derived in a matter of days that significantly
outperforms one resulting from months of ‘trial-and-error’
optimisation.

1 Introduction

Designers of high assurance systems are required to
solve problems known to be computationally hard. Search-
based software engineering (SBSE) is a set of novel so-
lution methods that apply search algorithms to solve such
problems [3, 8]. Some of the first research into SBSE
considered problems in high integrity systems engineer-
ing [20], and the search algorithms used by SBSE, such
as Genetic Algorithms [9], Genetic Programming [12] and
Simulated Annealing [11], have proven effective in solv-
ing the highly-constrained problems typical of this domain
[7, 16, 22, 23]. Today, SBSE is applied to a wide range of
problems throughout the development lifecycle, including
requirements prioritisation [1], architectural design [14] and
test data generation [13], and the field is growing rapidly.

As for any solution method, system designers—the end-
users of the search algorithms—must be given convincing,
problem-specific guidance that enables the effective use of
SBSE if these methods are to be widely adopted. This
is particularly important when solving complex problems,
which by their nature, require a great deal of computational

effort: the guidance must enable designers to configure al-
gorithms to solve problems within practical time and re-
source limits.

However, search algorithm configurations are often
tuned using a few ‘trial-and-error’ runs on an unrepresenta-
tive selection of test cases. The resulting choices can be far
from optimal, causing the algorithm to take an excessively
long time to locate solutions, or in the worst case, failing to
locate a solution at all. But when each run of the algorithm
requires large scale computational resources, or takes days
to complete, a more rigorous determination of the optimal
algorithm configuration can be challenging.

This paper presents an experimental methodology to be
used in these situations. It enables the most effective al-
gorithm configuration to be determined in a principled and
resource-efficient manner, even for algorithms that are com-
putationally expensive. When applied to a particular prob-
lem domain, the methodology provides the guidance that
the system designer requires.

The methodology is demonstrated using a problem from
high integrity systems engineering: that of solving task al-
location problems of the type that arise in Integrated Mod-
ular Avionics (IMA) [10]. IMA design choices that ensure
system integrity, such as hardware partitioning to separate
critical and non-critical subsystems, impose additional con-
straints on the task allocation problem that make such prob-
lems difficult to solve. The experimental methodology is
applied to a search algorithm that has proven effective in
solving this type of task allocation problem through the use
of a multi-component cost function.

The next two sections of the paper describe the task al-
location problem and provide an overview of the search al-
gorithm. Section 4 presents the experimental method. The
experimental results are discussed in section 5. The paper
concludes with an evaluation of the effectiveness of the ex-
perimental techniques, and proposes future work.
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Figure 1. Example hardware architecture.

2 Task Allocation Problem

The problem is to find an allocation of tasks to proces-
sors so that timing requirements and resource constraints
are met. As well as allocation, this can also involve assign-
ing suitable task attributes such as priorities. For systems
where tasks must communicate with messages, an alloca-
tion of messages to networks must also be found along with
suitable message attributes.

The model defined here is a set of processors connected
with bi-directional network links. Each link has a commu-
nication speed and latency which determines a message’s
communication time along with its size. All processing
nodes have a high-speed link to themselves which simulates
a communication mechanism for tasks on the same proces-
sor. Fig. 1 shows four processing nodes connected with
two network buses and an additional four links for intra-
processor communication.

Each schedulable object has a set of properties and tim-
ing requirements. For a task, these are worst case execution
time (WCET), period and deadline. A message has a worst
case size attribute, a source task from which it inherits its
period and a destination task from which its deadline is de-
rived. The dependencies introduced by messages form a
directed acyclic communication graph. All of the objects
in a single graph form a transaction. A system may have
multiple transactions.

Using the task and message requirements given, a con-
figuration consisting of an allocation to a scheduler (a pro-
cessor or network) and a priority for each object must be
found.

Once a candidate configuration has been established,
the input requirements for tasks and messages can be used
along with its configuration to perform scheduling analy-
sis. A worst case communication time is calculated for each
message based on the speed and latency of its scheduler in
the configuration. The scheduling analysis needs to take
account of precedence constraints between schedulable ob-
jects across multiple processors. For fixed priority schedul-
ing, the analysis provided by [17] uses the concept of jitter
to handle the varying delay caused by preceding objects.
The response times provided by the analysis can be com-
pared to deadlines to give a basis on which to calculate a
quality metric for a configuration.

3 Search Method

The solution method uses the simulated annealing meta-
heuristic search technique [11] which has been used previ-
ously for solving task allocation problems [20]. The algo-
rithm makes small adjustments to a potential solution and
evaluates each solution for its quality. The quality mea-
surement is given in terms of a cost with the aim being to
find the solution which produces the minimal cost value.
A neighbourhood function generates a small change to the
current configuration to move to the next one. This function
randomly chooses a task or message and then performs a
change to either its allocation or priority.

The cost function f is written as

f = g · w (1)

where g = (g1, . . . , gn)T is a vector of cost component
functions and w = (w1, . . . , wn)T is a vector of real-valued
weightings. The range of all cost components, gi, is [0, 1].
The weightings are subject to the equality:

n∑
i=1

wi = 1 (2)

Problem constraints can be treated as hard or soft by
the search algorithm regardless of whether they are a hard
or soft requirement. That is, the search can be allowed to
evaluate a potential solution which breaks a hard constraint
but will receive negative feedback from a cost component
which indicates to what degree a constraint has been bro-
ken. Alternatively, the search can be prevented from con-
sidering these solutions altogether. There are advantages to
the former. There may be no solution which meets all hard
constraints in which case a best-effort solution can still be
produced. This gives insight to the engineer into how re-
quirements need to be adjusted or where more resources
need to be provided. It can be computationally expensive
to calculate a search move which does not break any con-
straints, but cheap to evaluate the component which indi-
cates whether a constraint has been broken for a particular
solution.

For the overall goal of achieving a schedulable solution,
there are sub-goals which a human would intuitively use if
they were to solve the problem by hand. An example of this
is that all timing constraints cannot be met if any proces-
sor is too highly utilised. Therefore, apart from exceptional
cases, a human would not consider a solution with all tasks
on the same processor. Similarly communication prece-
dence constraints cannot be met if communicating tasks are
assigned to processors with no network link between them.
An automated search can be given similar sub-goals. If
the landscape defined by the cost function contains large



plateaux, a search algorithm cannot distinguish between so-
lutions and will perform badly. The complex nature of task
allocation problems in general, and the constraints specific
to individual problem domains, will lead to a large number
of cost function components being put forward for top level
requirements, their sub-goals and for penalising constraint
violations. However, the process of establishing how com-
ponents affect search performance and solution quality, and
also the comparative importance of different components, is
often left to trial-and-error or ignored altogether.

The following sections describe an experimental
methodology that was used to systematically evaluate a set
of cost components for task allocation. The components are
described in detail in the appendix.

4 Experimental Method

4.1 Objectives

The primary objective of the experiments was to make a
principled determination of the optimal weightings for the
components that make up the cost function (1). Optimal-
ity is defined for this purpose as those weightings that give
the best performance, measured in terms of number of cost
function evaluations taken by the algorithm to discover a
schedulable task allocation, and considered over a defined
range of problems instances.

However, initial research suggested that a single run of
the algorithm could be computationally expensive: some
weighting vectors took more than two days to find a schedu-
lable allocation on a high-performance PC. The algorithm
therefore presented an opportunity to investigate experi-
mental techniques that made efficient use of computing re-
sources. Three such techniques were identified: a strategy
based on response surface methodology, the use of censor-
ing to avoid long-running experiments, and an efficient ex-
perimental design to explore the response surface.

4.2 Strategy

The experimental strategy is a form of response surface
methodology [15], where the response is the number of cost
function evaluations. The algorithm has an expected re-
sponse for each weighting vector, and the responses consid-
ered across all possible weighting vectors form a response
surface. The location of the lowest point on this surface
defines the optimal weightings.

By measuring the performance of the algorithm at well-
chosen sample points, an equation is derived that models the
response surface. The optimal weightings are then found
by optimising the model in place of the algorithm. Compu-
tationally, algorithm runs are very expensive compared to

the optimisation of the model equation, and so this strategy
makes efficient use of available computing resources.

4.3 Censored Observations

It was observed that some algorithm runs took two days
or more to complete, while others were significantly shorter,
sometimes taking only a few minutes. The long-running ex-
periments require a relatively large proportion of the avail-
able computing resources, but contribute little information
about the response surface in the region of the optimal
weightings. If, instead, long-running experiments were ter-
minated when they reached a pre-determined number of
evaluations, then many more experiments could be run with
the same resources and more information gained about the
response surface.

The technique of measuring responses only as far as a
chosen threshold is termed censoring. The censored ex-
periments are not ‘wasted’: they continue to provide some
information—that the observed response would have been
larger than the censoring threshold—but not as much as if
they were allowed to continue until completion. However,
the savings in terms of computing resources enables signif-
icantly more experiments to be run in total.

Censoring is widely used in the analysis of industrial en-
gineering data [2] and medical trials [4] where the expected
event (e.g. component failure) may not occur during the
course of a time-limited experiment. Two models for cen-
sored observations that are often used in these fields, the
Tobit model and Cox’s Proportional Hazards model, were
applied to the algorithm so that fit of the models to the ac-
tual response surface could be compared. Both of these cen-
soring models incorporate a linear model. The linear model
and the two censoring models are described below.

4.4 Mixture Model Canonical Forms

Standard linear models overparameterise the model since
the weightings must sum to one (2).

One solution to this overparameterisation is to use the
mixture canonical forms pioneered by Scheffé [19]. These
forms are suitable as mixture models where the factors are
constrained by an equality of the form of the weighting con-
straint. Since the second-order form is able to model curva-
ture in the response surface [15], this was the form chosen
for these experiments:

M(w) =
9∑

i=1

βiwi +
9∑

i=1

9∑
j=i+1

βijwiwj (3)

where w = (w1, . . . , w9) is the weighting vector, β the
model parameters to be determined by the experiments, and
M(w) the output of the linear model used to predict the
response.



Table 1. Mean and variance of the algorithm
response at three sample weighting vectors.

Weightings Y /105 var (Y )/1010 var (log Y )
wa 0.1366 0.0032 0.1697

wb 0.1679 0.0068 0.2407

wc 1.6930 1.4415 0.6856

4.5 Tobit Model

The Tobit model [21] incorporates a linear model in con-
junction with an error term, U :

Y (w) = M(w) + U (4)

where Y (w) is the response and M(w) the mixture canon-
ical form (3).

The Tobit model assumes that U is a random variable
that has a normal distribution with zero mean and constant
variance σ2, and that the value of U for each observation
is independent of the others. The error term is used to ac-
count for the deviance of an individual observed response
from the ‘average’ expressed by M(w). In the context of
the task allocation algorithm, this deviation is due to the
stochastic nature of the simulated annealing method: if the
algorithm were run multiple times using the same weight-
ing vector, the observed responses would differ owing to
random initialisation, the random selection of neighbouring
solutions at each iteration of the algorithm, and the proba-
bilistic acceptance of moves to solutions with a worse cost
value.

There is no reason why the stochastic nature of the task
allocation algorithm should exhibit the probability distribu-
tion assumed by the Tobit model. To assess the applicabil-
ity of the Tobit model, some initial experiments were per-
formed: for each of three weighting vectors, the algorithm
was run 40 times on the same problem instance. The mean,
Y and variance, var (Y ), of the responses are shown in Ta-
ble 1. The third column shows clearly that the variance
of the response is not constant. However, if the response
is modified to be the logarithm of the number of evalua-
tions, the final column shows that this transformation gives
a more reasonable approximation to a constant variance.
Fig. 2 illustrates the same modified response (for wc) plot-
ted against a theoretical normal distribution. The relation-
ship is close to linear, especially in the centre of the range,
indicating that the normal distribution is approximately sat-
isfied by the logarithm of the number of evaluations.

Based on these results, the Tobit model of (4) is modified
to become:

Y (w) = exp {M(w) + U} (5)
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Figure 2. Normal probability plot of the loga-
rithm of the number of cost function evalua-
tions.

4.6 Cox’s Proportional Hazards Model

The second censoring model is Cox’s Proportional Haz-
ards model [5]. This differs from the Tobit model in that it
considers not the response, but instead the hazard function.
If the point at which the algorithm solves a task allocation
problem is considered as the ‘event’ of interest, then the
hazard function, h(e), at the number of evaluations, e, is a
measure of the probability of this event occuring at e given
that it has not occurred already. (The hazard function is of-
ten used for responses measured in continuous time, but is
applied here with the discrete number of evaluations being
the equivalent of the time variable.)

Cox’s model assumes that the factors affect the hazard
function multiplicatively so that:

h(e; w) = ψ(w)h0(e) (6)

where ψ(w) is a chosen function of the factors, h(e; w) the
hazard function for the weighting vector w, and h0(e) the
baseline hazard function. The functionψ(·) is often taken to
be a log-linear model [6], resulting in the following model
of the hazard function:

h(e; w) = exp {M(w)} h0(e) (7)

No error term is necessary here to account for the
stochastic nature of the algorithm. Cox’s model is already
probabilistic since h(e) gives the probability of reaching
a schedulable allocation at e number of evaluations (given
that one has not yet been found).

An advantage of Cox’s model compared to the Tobit
model is that no significant assumptions are made as to the
form of the hazard function and, correspondingly, as to the
probability distribution of the response.



Table 2. Problem instance characteristics.

Characteristic Valid Values

Number of tasks 10 – 75

Tasks per processor 5 – 15

Deadline Period

Average processor utilisation 20% – 70%

Comm. graph longest path 50% – 100% no. tasks

Number of messages 100% – 250% no. tasks

Proportion of indep. tasks 0% – 40%

4.7 Problem Instances

A test case generator was used to create random prob-
lem instances. The parameters of the generator were set to
produce problems whose characteristics covered the ranges
listed in Table 2. The ranges were chosen to be represen-
tative of a medium-sized system, and to be wide enough
to avoid overfitting the optimal weightings to a small set
of similar problem instances. Instances were generated by
randomly selecting problem characteristics from a uniform
distribution over each range.

Some problem instances will be ‘harder’ than others to
schedule, requiring the algorithm to make more cost func-
tion evaluations before a schedulable allocation is found.
Although it would be possible to fit the above models to the
‘average’ response across a test set of random problem in-
stances, the model would be less accurate when considered
for a single problem instance, and the calculation of the ‘av-
erage’ response would need to accommodate censored ob-
servations. Instead, problem difficulty is incorporated by
extending the linear model to include:

L(p) =
∑
k≥2

αkpk (8)

where pk are problem indicator variables (set to 1 for prob-
lem k, otherwise 0), and αk are additional model param-
eters to be estimated. L(p) is added to M(w) in the To-
bit (5) and Cox’s (7) models, so that M(w) estimates the
response for problem 1, and L(p) adjusts the response to
match the difficulty of problems 2 and above. By avoiding
linear terms that combine wi and pk, the model can still be
used to derive optimal weightings that are independent of
the particular problem instance.

4.8 Experimental Design

A simplex-lattice design [19] for mixtures is used for the
experimental design, the set of sample weighting vectors at
which the response is measured. This design accommodates
the weighting constraint (2) and is effective for fitting of the

Table 3. Experimental configuration.

Setting A B C

Censoring Threshold 105 105 106

Simplex-Lattice Design m 3 3 3

Problem Instances 20 20 20

Weighting Lower Bound 0 0.05 0.01

mixture canonical form model [19]. At sample points in this
design, each weighting,wi, is a multiple of 1

m where m is a
chosen integer.

The design creates many sample points where some of
the weightings are zero. Geometrically, these points are on
the ‘edge’ of the response surface. It is still possible to find
optimal weightings in the interior of the response surface
using a design with many edge points, but it is necessary to
assume that the model is a good fit for the response surface
over the entire space: both at the edges and in the interior.

To test this assumption, a constrained mixture design is
also used. This design imposes a lower bound, BL, on the
weightings to force sample points into the interior. To de-
rive this design, a simplex-lattice design is first constructed
on variables ηi, from which wi derived using the formula:

wi = BL + (1 − 9BL)ηi (9)

4.9 Experimental Configuration

Three experiments were configured as shown in Table 3.
Each experiment ran the algorithm against each of 20 ran-
domly generated problem instances, at each of the chosen
sample weighting vectors. A simplex-lattice design with
m = 3 creates 165 sample weighting vectors, so a total of
3300 algorithm runs were required per experiment. Exper-
iment A used an unconstrained design, while B represents
a constrained design with a lower bound. The censoring
threshold for A and B was chosen so that around half of the
responses were censored. A higher threshold was set for ex-
periment C to assess the accuracy of the censoring models.
This experiment also used a constrained design with a lower
bound closer to the response surface edge.

4.10 Analysis Method

The traditional method for estimating the parameters of
both the Tobit and Cox’s models is maximum likelihood
estimation since censored observations can be incorporated
easily into the likelihood function. This technique calcu-
lates the model parameters that would be most likely to
have given the observed responses. For the Tobit model,
the analysis also derives the variance of the error term, and
for Cox’s model, estimates the baseline hazard function.



Once a model has been fitted to the observed responses,
the model is optimised to locate the weighting vector that
gives the best algorithm performance. For the Tobit model
(5), the optimal weightings are those that minimise the ex-
pected number of evaluations, Y . Since exp(·) is a mono-
tonically increasing function, it is sufficient to find the
weightings that minimise the linear model M(w). How-
ever, for Cox’s model (7), the optimal weightings are those
that have the highest hazard function, i.e., the highest prob-
ability of locating a schedulable solution at a given iteration
of the algorithm. In this case, it is necessary to maximise
M(w).

In both cases, the linear model was optimised using an
implementation of Sequential Quadratic Programming [18].
This an efficient optimisation method that can accommo-
date the weighting constraint (2). For experiments with a
constrained design, the weighting lower bound,BL, was ap-
plied as an additional constraint so that optima were found
only within the region covered by the design. Since this op-
timisation method requires a seed solution, it was run 1,000
times with differently randomly generated seeds, and the
best solution over the runs was taken as the estimate of the
optimal weightings.

5 Results and Discussion

5.1 Optimisation Results

The optimal weightings estimated for the three experi-
ments are shown in Table 4. The additional results labelled
C′ are discussed in section 5.2 below.

The results demonstrate consistency across experiments
and between the two different censoring models. In general,
optimal weighting vectors are those that distribute the ma-
jority of the weight between w1 and w7 in a ratio near 3 : 2,
with the remaining weightings at or near the lower bound.

The exception from this general pattern is Cox’s model
estimate for experiment A. However, further investigation
showed a local optimum at (0.619, 0, 0, 0, 0, 0, 0.381, 0, 0)
which corresponds to a hazard function approximately 83%
as large as that at the global optimum. The modelled re-
sponse surfaces were often found to have more than one
optimum such as those found in this case.

For the Tobit model, maximum likelihood estimation
also returns the variance, σ2, of the normal distribution of
the error term, U . For experiments A and C the variance is
2.192 and 2.608 respectively. However, the variance esti-
mated for experiment B is significantly lower at 0.751, and
very similar to the values found during the initial research
on the algorithm (last column of Table 1). The design for
experiment B used sample points that were further away
from the edge than the other two experiments, and the lower

variance may indicate that the second-order mixture canon-
ical form (3) is able to closely model the response surface
over the interior of the surface. Conversely, the model is
unable to accommodate a different behaviour sampled by
weighting vectors close to or at the edge of the surface in
experiments A and C. The lack of fit in these two experi-
ments requires a higher variance in the error term in order
to explain the observed responses.

Fig. 3 provides a visual respresentation of the fit of the
model to the observed responses. Since the response surface
is over a high-dimensional space of valid weighting vec-
tors, it cannot be visualised directly as a surface. Instead,
sample points are chosen on the model surface and the pre-
dicted response calculated at each point. The predicted and
observed responses are plotted at the sample points, with
points sorted in order of the predicted response. The sam-
ple points chosen were the same as for the corresponding
experimental design as this is convenient for plotting the
observed responses.

Fig. 3a demonstrates the Tobit model from experiment
A using a problem instance whose ‘difficulty’ was in the
middle of the range. Fig. 3b shows the fit for the same
problem instance using the Tobit model from experiment B.
For clarity over the large range of values, the logarithm of
the response is plotted on the y-axis. The 95% confidence
limits indicated by dotted lines are constructed by taking an
interval ±2σ around the predicted response, where σ2 is the
error term variance estimated by the analysis. The majority
of the observed values fall within the 95% confidence inter-
val for both experiments but the need for a larger confidence
interval in experiment A can be seen by the greater spread
of observed responses, especially for design points close to
the optimum at the left of the figure.

It is also noticeable that many of the observed responses
in experiment A are larger than those of experiment B, so
much so that the responses reach the censoring threshold
at the right of Fig. 3a. Since the sample points for ex-
periment A are at the edge of the surface, and for B are
slightly away from the edge, this difference suggests that
the response of the algorithm is poorer at the surface edge
compared to nearby points that are not at the edge.

5.2 Effect of Censoring Threshold

To evaluate the effect of the censoring threshold, the
analysis of experiment C was repeated with the observed
responses truncated at a threshold of 105. This simulated
the same experiment with a lower censoring threshold in
order to compare results.

The results for the lower threshold are labelled C′ in
Table 4. The estimated optimal weightings are very close
to those obtained from experiment C using a threshold 10
times as high.



Table 4. Optimal weightings estimated using (a) the Tobit model and (b) Cox’s model. An asterisk
indicates that the optimal weighting was the value of the lower bound BL.

Expt BL w1 w2 w3 w4 w5 w6 w7 w8 w9

A 0 0.586 * * * * * 0.414 * *

B 0.05 0.373 * * 0.064 0.071 * 0.242 * *

C 0.01 0.578 * * * * * 0.352 * *

C′ 0.01 0.571 * * * * * 0.359 * *

(a)

Expt BL w1 w2 w3 w4 w5 w6 w7 w8 w9

A 0 0.303 * 0.185 0.302 0.201 * * * *

B 0.05 0.389 * 0.061 * 0.100 * 0.200 * *

C 0.01 0.602 * * * * * 0.328 * *

C′ 0.01 0.598 * * * * * 0.332 * *

(b)

The effect on the model response surface is shown in
Fig. 4. The dashed line shows the response predicted us-
ing the original threshold (C), and the full line, using the
lower threshold (C′). (The jaggedness of the C′ line arises
from the arbitrary choice of the experiment C responses for
the ordering of the sample points. It is not indicative of a
more uneven response surface.) The figure suggests good
correspondence between the two fitted response surfaces,
especially for small responses close to the optimum at the
left of the graph. The lower threshold model appears to un-
derestimate the response at higher values in comparison to
the original threshold.

With the original threshold, approximately 33% of the
observations were censored; with the lower threshold, this
rises to 55%. Using the original threshold, a total of ap-
proximately 1.44×109 evaluations were made across all ex-
periments. If the simulated lower threshold had been used,
only 2.00 × 108, or 13.9% of these evaluations would have
been made. Of course, the number of evaluations that would
have been made if no censoring had occurred would be even
higher, and the savings made by using the low threshold of
experiment C′ would have been even greater.

These results demonstrate that a low censoring threshold
can greatly reduce the computational expense of the exper-
iment, while retaining accurate results for both the optimal
weightings and the model of the response surface.

5.3 Verification Experiment

To verify the optimal weightings estimated by the mod-
els, the four weighting vectors shown in Table 5 were
applied to 100 randomly generated problem instances (of

which 20 were the instances used in experiments A to C).
D1 and D3 are representatives of the optimal weightings
found using unconstrained (experiment A) and constrained
(experiment B) designs, respectively. D2 is a point lying
between D1 and D3 close to, but not at the edge of the re-
sponse surface. Points D2 and D3 are motivated by the re-
sults above indicating that design points slightly away from
the edge appear to show better performance than equivalent
points on the edge. D4 is an optimal weighting vector found
by trial-and-error over many months prior to the principled
experimentation described in this paper, and acts as a com-
parison point.

In these experiments there was no need to censor re-
sults. This permitted the performance to be compared us-
ing the median response of each experiment, supplemented
by a nonparameteric paired-sample Wilcoxon signed rank
test [24] to test that differences in the medians were signifi-
cant at the 5% level.

All tests gave the same ordering: the algorithm performs
best at the D2 weighting vector, followed by D3, D4 and
D1 in order. A comparison of the medians showed that D2
would, on average, require 33% less evaluations than the
trial-and-error derived weightings of experiment D4.

Against expectation, the unconstrained optimal weight-
ings (D1) were significantly worse than the manually de-
rived weightings, while weightings very close to these val-
ues, but away from the edge (D2) are significantly better.
This provides further evidence that the behaviour of the re-
sponse surface close to the edge changes rapidly and differs
from that in the interior of the surface: the response appears
to improve closer to the edge (D2 is better than D3), then
quickly gets worse right at the edge itself (D1 is very much



Table 5. Weighting vectors compared by the verification experiment.

Expt w1 w2 w3 w4 w5 w6 w7 w8 w9

D1 0.6 0 0 0 0 0 0.4 0 0

D2 0.596 0.001 0.001 0.001 0.001 0.001 0.397 0.001 0.001

D3 0.405 0.05 0.05 0.05 0.05 0.05 0.245 0.05 0.05

D4 0.159 0.159 0.318 0.042 0.027 0.042 0.053 0.042 0.159
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Figure 3. Observed responses (logarithm of
the number of evaluations) at design points
for (a) experiment A, (b) experiment B. The
solid line is the mean response predicted by
the Tobit model, and the dashed lines mark
the 95% confidence interval.

worse than D2). The second-order mixture canonical form
(3) would be unable to accurately model such ‘edge effects’.

A possible explanation for the change of behaviour close
to the response surface edge is provided by consideration of
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Figure 4. Predicted response of models de-
rived from experiments C (dashed line) and
C′ (full line).

the cost function formed using these weightings. The com-
ponents corresponding to weightings w1 and w7 appear to
provide the most advantage to the cost function in guiding
the algorithm to a schedulable allocation. However, all the
components provide some guidance. So when components
g1 and g7 give the same cost function value for a number of
possible moves by the algorithm, the small contribution of
the remaining components enables the algorithm to break
such ties in a helpful manner. In terms of the cost func-
tion landscape, the small values contributed by the other
components avoid plateaux and ensure a guiding gradient
(however small) throughout the landscape.

6 Conclusion

The experiments have met their primary objective of
finding an optimal cost function for the task allocation al-
gorithm. The verification experiment demonstrated that
the optimal weightings resulted in an algorithm that sig-
nificantly outperformed the weightings that had previously
been identified by ‘trial-and-error’. Since the solution of the
complex task allocation problem described here can require
a great deal of computation, this improvement represents
significant cost and time savings for system designers.



The efficiency of the experimental methodology has
been demonstrated. The ‘trial-and-error’ best weightings
had been located over a number of months of investiga-
tion, while the optimal weightings were found in only a few
days using the experimental methodology. The use of a rel-
atively low censoring threshold, in particular, has reduced
the number of cost function evaluations required to model
the response to under a seventh of that required with a high
threshold, without a significant loss of accuracy.

The optimal configuration of the algorithm will be used
as a baseline for further investigation of the robustness of
task allocation solutions and the scalability of the solution
method. Both these properties will increase the complex-
ity of the problems; scale through the number of tasks and
messages, and robustness by placing additional constraints
on the solutions. It is likely that finding a schedulable solu-
tion to these problems will require even more computational
effort, and the experimental methodology described in this
paper will be vital in configuring efficient algorithms for
this search.

Another objective of future research is to use models
that, firstly, describe the behaviour of the algorithm close
to the edge of the response surface, and secondly, enable
problem-specific optimal weightings to be derived from
problem characteristics.

This work has demonstrated that principled guidance on
algorithm configuration can be derived for system designers
in a computationally-efficient manner. The future research
on robustness, scalability and improved response surface
models promises to refine this guidance and expand the
problem domains to which the methodology can be applied.

Appendix - Cost Function Components

The sets of tasks, messages, processors and network
links are written as T , M, P , and N . The set of objects
contained in transaction r is TRANSr. The set of all trans-
actions is TRANS. S = T ∪M. The number of elements
in a set X is denoted as |X |. Directly dependent (DD) tasks
are a pair of tasks which have a message sent between them.
Indirectly dependent tasks (ID) appear in the same transac-
tion but are not necessarily adjacent.

The first component assesses the number of unschedula-
ble tasks and messages.

h1(τ) = 1 if Rτ > Dτ else 0 (10)

g1 =
1

2|T |
∑
τ∈T

h1(τ) +
1

2|M|
∑
ρ∈M

h1(ρ) (11)

The following component counts how many DD tasks
are allocated to unconnected schedulers. Let al map an ob-
ject to its allocated scheduler and V map a scheduler to the

set of schedulers to which it is connected.

c(τ, υ) = 1 if V (al(τ)) ∩ V (al(υ)) = ∅ else 0 (12)

g2 =
1

|M|
∑
ρ∈M

c(src(ρ), dest(ρ)) (13)

The following component penalises objects which can-
not receive their input or send their output due to an invalid
allocation.

in(τ) =

{
{ρ ∈ M : dest(ρ) = τ} if τ ∈ T
{src(τ)} if τ ∈ M

(14)

out(τ) =

{
{ρ ∈ M : src(ρ) = τ} if τ ∈ T
{dest(τ)} if τ ∈ M

(15)

g3 =
1

2|S|
∑
τ∈S

[
|{υ∈in(τ):al(υ)/∈V (al(τ))}|

|in(τ)| +

|{υ∈out(τ):al(υ)/∈V (al(τ))}|
|out(τ)|

] (16)

The following component measures priority assignment
which are incompatible with precedence constraints. pre(τ)
is the set of all objects preceding τ and post(τ) is the set of
all objects that follow τ .

g4 =
1
|S|

∑
τ∈S

[
|{υ∈pre(τ) and Pυ>Pτ}|

|pre|(τ) +

|{υ∈post(τ) and Pυ<Pτ}|
|post(τ)|

] (17)

A sensitivity component calculates the largest factor by
which execution/communication times can be scaled and
for the system to be schedulable. This value can be found
using a binary search and will be less than 1 while the sys-
tem is unschedulable.

g5 = e−λSCALS (18)

where SCALS is the largest value of a scaling factor s such
that the system is schedulable when the WCETs, Ci of ob-
jects in the set S are set to �sCi�.

The load balancing component is based upon the vari-
ance of the utilisations of processors:

g6 =

√ ∑
X

(UX−µ2)

(|P|−1)µ2+(U−µ)2 (19)

where Ui is the utilisation of processor i, and µ is the mean
utilisation.

Grouping objects reduces overheads. Vr is the set of
tasks in TRANSr. For each τi ∈ Vr, the number of tasks
allocated to the same scheduler as τi and also in Vr is ari.
A grouping value and its maximum for each transaction is:

γ = |Vr| −
∑

i

ari

|Vr|
γMAX = |Vr|(|P|−1)

|P|



Similar formulae can be defined for messages with Wr be-
ing all messages in TRANSr. Using γMAX to normalise γ
and then summing over all transactions, the component for-
mula is

g7 = (|P|−1)
2|TRANS||P|

∑
r

(
|Vr |2 −

∑
i
ari

)
+ (|N |−1)

2|TRANS||N |

∑
r

(
|Wr |2 −

∑
i
ari

) (20)

Component g7 groups ID tasks but messages between
DD tasks may still go back and forth between processors.
The following penalises messages sent between DD tasks
on different schedulers.

g8 =
1
|T |

∑
τ∈T

[
|{ρ∈in(τ):al(src(ρ)) �=al(τ)}|

|in(τ)| +

|{ρ∈out(τ):al(dest(ρ)) �=al(τ)}|
|out(τ)|

] (21)

An additional penalty is given to solutions containing
schedulers with over 100% utilisation.

g9 = |{l∈P∪N :Ul>100}|
|P∪N| (22)
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