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ABSTRACT
The OSGi Framework is a run-time environment for deploying
service-containing Java components. Dynamically reconfigurable
Java applications can be developed through the Framework’s
powerful capabilities such as installing, uninstalling, updating
components at run-time, and allowing the substitution of service
implementations at run-time. Coupled with the capability to be
remotely managed, the OSGi Framework is proving a success in a
variety of application domains. One domain where it is yet to
make an impact is real-time systems. Despite the fact that OSGi
components and services can be developed using the Real-Time
Specification for Java (RTSJ), there are still a variety of problems
preventing the use of the Framework to develop real-time systems.
One such problem is a lack of temporal isolation. This paper
focuses on how temporal isolation can be provided in the OSGi
Framework as a first step towards using the Framework to
developing real-time systems with the RTSJ.

1. INTRODUCTION
Component-Based Software Engineering (CBSE) [1] and Service-
Oriented Architecture (SOA) [2] are becoming effective ways of
developing software. An example of the emergence of these
development paradigms is the OSGi Alliance’s OSGi Framework
[3]. The OSGi Alliance was founded in 1999. It is an open
standards organization, whose member companies include IBM,
Siemens, Intel Corporation, BEA Systems, Nokia, and Sun etc.
The Alliance created the OSGi Framework (now also known as
JSR-291 Dynamic Component Support for Java SE [4]). OSGi
was initially an acronym for “Open Service Gateway initiative”,
this was to reflect the intended use of the Framework in service
gateways (JSR-8: Open Services Gateway Specification [5]). In
service gateways [6], there is a gateway device (hosting the
Framework) which interfaces an internal network and the Internet.
The Framework operator can then download and run service-
containing components from the Internet to communicate with the
devices attached to the internal network. This means of service
provision is (for example) useful for providing services to the
home such as home-based healthcare. However, OSGi is no
longer considered an acronym since the Framework has found
many uses in addition to service gateways.
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The OSGi Framework is an intra-JVM service-oriented
component framework written in Java, which is used to develop
highly dynamic Java applications. The reason for the integration
of service oriented concepts and component-orientation is that the
service-oriented approach introduces dynamism and
substitutability [7] into an otherwise static component framework.

Service-orientation introduces dynamism by allowing components
to be installed, updated, and uninstalled from the OSGi
Framework at run-time. Substitutability is introduced by allowing
service implementations to be substituted (replaced) at run-time.
Such dynamism and substitutability is achievable because each
component uses a separate class loader [8, 9]. For a more detailed
discussion of class loaders, see [10].

Using the OSGi Framework to develop a Java application as a
number of service-providing and service-requesting components
is very advantageous, this can be seen through the wide ranging
application domains for the OSGi Framework such as [11]: in
Integrated Development Environments (IDEs) [12], in home
automation products [13], in enterprise systems [14], and in the
automotive industry [15]. However one domain where the power
of the OSGi Framework is yet to be exploited is in real-time
systems development.

Currently, OSGi applications are developed as a number of Java
components and services. Unfortunately, it is generally accepted
that standard Java is unsuitable for use in the development of real-
time systems. Reasons for this include issues with memory
management, clocks and time granularity, resource sharing, and
poor scheduling semantics. The Real-Time Specification for Java
(RTSJ) [16] solves these issues by providing extensions to
standard Java. As the RTSJ enables real-time systems to be
developed in the Java platform, and as the OSGi Framework is
Java based, this leads to the question of is it possible to use the
RTSJ and OSGi Framework together in order to develop
dynamically reconfigurable real-tine Java applications? And if so,
what is the motivation for integrating these technologies? Section
2 answers these questions giving both the motivation for and
problems of using the OSGi Framework to develop RTSJ
applications. Section 3 introduces temporal isolation both at the
thread and component levels. In Section 4 we present extensions
to the RTSJ to enable temporal isolation to be provided in the
OSGI Framework. Section 5 reiterates the need for using the
OSGi Framework in RTSJ application development through the
use of a nuclear power plant case study. The case study illustrates
the uses of dynamism and remote controllability of the OSGi
Framework in the real-time systems domain.
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Finally, Sections 6 and 7 conclude the paper and give some ideas
for future research respectively.

2. OSGi FRAMEWORK AND REAL-TIME
2.1 Review and Motivation
The OSGi Framework allows the development of dynamically
reconfigurable Java applications. It would be beneficial to use the
OSGi Framework to develop dynamically reconfigurable real-time
Java applications [17] using the OSGi Framework and Real-Time
Specification for Java (RTSJ) together.

Using the OSGi Framework and RTSJ to develop dynamically
reconfigurable real-time systems is useful not only for generally
evolving a real-time system at run-time in order to undertake
maintenance of software components, but also useful for
managing resources during mode changes. For example when it is
necessary to change to another mode of operation, the required
components can be installed, and unnecessary existing
components can be removed. Such dynamic reconfiguration
ensures that only necessary components are installed at any one
time. Minimizing the number of components (known as Bundles
in the OSGi Framework) installed saves memory, which is useful
in embedded systems which typically have resource constraints
such as small amounts of memory.

Also the OSGi Framework can be controlled remotely i.e.
applications can be dynamically reconfigured by issuing remote
commands to install/uninstall/update components at run-time.
This is a necessary feature for evolving real-time software that is
deployed in harsh environments, where there are many dangers
involved in being physically present in the environment in which
the system is deployed. As an example, consider a nuclear power
plant monitoring system. Without remote control of the OSGi
Framework, it would be necessary to enter the plant, which would
involve being exposed to large amounts of harmful ionizing
radiation. Another use of remote controllability of the OSGi
Framework is in evolving mass produced embedded systems, such
as consumer electronics. For example, in consumer electronics,
where millions units are sold, it is not feasible to send a technician
to each customer to update the software, nor is it acceptable to
have customers send their units back to the supplier for update.
Instead the software on these units can be evolved remotely.

An additional benefit of using the OSGi Framework in real-time
systems development is that it enhances the modularity offered by
CBSE. Modularity is enhanced by creating separate class loaders
for each component, giving component developers the choice of
sharing or hiding their Java packages with other components in
the system.

Further motivations for using the OSGi Framework to develop
real-time systems are those stemming from the fields of
Component-Based Software Engineering (CBSE) and Service-
Oriented Architecture (SOA). As the Framework uses concepts
from both of these fields, the real-time Java applications
developed with the Framework will receive the benefits of those
development paradigms. The crux of CBSE and SOA is building
software as a composition of reusable building blocks
(components in the former and services in the latter). One such
advantage of using the OSGi Framework then is software
reusability. Using pre-built pre-tested Java components and
services leads to reduced time to market and reduced development

cost of real-time systems, the reason is that reusability means
there is less software to develop.

2.2 Related Work
JSR 121 [18] defines an “Isolate” API which allows for multiple
isolated computations (Isolates) to execute within a single JVM.
Each Isolate has its own logical heap space. Such isolation is
much more powerful than the isolation offered by the OSGi
Framework. The OSGi Framework creates a separate class loader
for each component, this provides separate namespaces. However,
the Bootstrap class loader loads the core Java classes (such as
java.lang, java.io etc), these classes are therefore shared
across components. This means that static members of core
classes are shared across components. One potential problem of
this is that synchronized static methods may cause blocking of
threads across components.

JSR 284 [19] defines a resource management API, the purpose of
this API is to allow the availability of resources to be queried, and
if available, reserved and consumed. There is work in progress
[20] concerning the integration of application isolation and
resource management within a JVM. Their work also looks at
running the OSGi Framework on such a partitioning JVM. For
example installing components in separate partitions, but only
when there are enough resources available, and allowing a
components resource usage to be monitored. In our paper, we are
providing temporal isolation at a high level since such partitioned
resource reserving JVMs are not mainstream. However such a
partitioned resource reserving JVM would be far more efficient
and would be the likely target of our real-time OSGi Framework.

In [21], Gui et al looked at using the OSGi Framework in the
development of real-time systems. The motivation for their work
is the same as ours, to develop dynamically reconfigurable real-
time systems. They propose a real-time component model over the
OSGi Framework. In their model, XML is used by component
developers to declaratively configure real-time tasks. The
functionality of real-time tasks is developed in native code, and
non-real-time tasks are developed using Java. This approach gives
a split architecture, real-time tasks are under the control of the
real-time operating system, and non-real-time tasks run in the
OSGi Framework. This is different from our work. Instead of
using native code and a real-time component model, we are using
the RTSJ to write real-time components.

In Section 5 of [22], Kung et al describe ideas for providing cost
enforcement in the OSGi Framework, but at the VM level. Like
our work, they wish to provide resource guarantees to each
component. However, unlike the work by Kung et al and Gui et
al, we chose to modify the OSGi Framework to provide a suitable
real-time environment.

Miettinen et al [23] modified the OSGi Framework so as to
enable the monitoring of a components resource consumption.
Essentially, they add all of the threads in a component to a thread
group, and provide a monitoring agent to collect resource usage
information. This work is similar to ours in that they are providing
cost monitoring at the component level, however the motivation
for our works differ. Miettinen et al are interested in improving
the performance of standard Java applications. Their monitoring
tools are intended to be used during testing so as to identify
inefficient components before the application is finally deployed.
Since they are not using the RTSJ, they do not attempt to provide
cost enforcement nor temporal isolation amongst components.



Other, less related works, include dynamically reconfigurable
real-time systems both within the context of Java [17] ,and outside
of the context of Java [24]. There is a also a European project
based on the dynamic reconfiguration of networked embedded
systems [25]. There have also been a number of works relating to
the use of component-based software engineering in real-time
systems development. Whilst the majority of this research has
been on providing a component model and a mapping from the
model to an underlying OS, in recent years, there has been some
research on using component models with the RTSJ [26-28]. For
example, in [26], Etienne et al propose a component model which
abstracts RTSJ memory management issues, simplifying the
development process.

2.3 Challenges
This section discusses a number of reasons why it is not possible
to develop dynamically reconfigurable real-time systems by
simply writing OSGi services and components using the RTSJ.
Instead, the OSGi Framework must be modified and extended to
provide a suitable real-time environment for deploying real-time
components and services.

2.3.1 Global and Local View- Priority Assignment
Since the OSGi Framework is designed for developing
component-based Java applications, and is itself written in Java,
one might think that using the OSGi Framework in the real-time
domain is simply a case of running the OSGi Framework on a
real-time JVM, and writing components using the RTSJ.
Unfortunately, such an approach is flawed.

The reason why dynamically reconfigurable real-time systems
cannot be built by simply using the OSGi Framework and the
RTSJ together is because the OSGi Framework takes the
component-based software engineering (CBSE) approach to
software development. The central theme of CBSE is independent
component development, that is, developers state their component
requirements from the system, and that is all. No developer has a
global knowledge of the system. In such a situation, it is difficult
for a component developer to guarantee timeliness requirements
of their component, without knowing the internals of every other
component in the system.

To illustrate the above point, consider the problem of priority
assignment. If component developers were to use the RTSJ and
OSGi, each would (say) assign priorities to the threads within
their component using Rate Monotonic Analysis or Deadline
Monotonic Analysis [29]. However because a component
developer has no knowledge of the threads in other components,
the priorities they assign will give a correct ordering within their
component but not across components. Table 1 shows how the
priory ordering within C1 is correct and the ordering in C2 is
correct. However the overall ordering is incorrect, the required
ordering would be performed by the OSGi Framework once both
components are admitted and a global view is available.

Table 1 Priorities assigned by component developers and by
the system

Component Thread Period Developer

Assignment

Required

Assignment

C1 T1 10 3 4

C1 T2 15 2 2

C2 T1 13 4 3

C2 T2 19 1 1

2.3.2 Worst Case Execution Time (WCET) Analysis-
Unknown WCET
Service requesting components compile to a service interface, the
implementation of the service is unknown until the service is
acquired at run-time. This is a major problem for building
predictable systems. If the implementation is unknown then the
WCET of that implementation is also unknown. The service
requester requires the WCET of all services it uses for
schedulability analysis.

2.3.3 Scheduling- Dynamic Availability
The OSGi Framework has unbounded dynamism, where
components can be installed, uninstalled, and updated at anytime.
In a component-based real-time system, it is necessary to reserve
resources for each component in the system. Such a dynamic
environment poses problems for resource reservation, there must
be bounds placed on the number of components in the system to
ensure that new components can be installed only if their timing
requirements can be met, whilst ensuring that the timing
requirements of existing components are still met by the system.
Without such a mechanism, overload situations would likely
cause components’ threads in the system to miss their deadlines.
Dynamic availability also impact on WCET analysis since service
implementations can be updated (substituted) at run-time, this
means a changing WCET for any threads using the service.

2.3.4 No Temporal Isolation - DoS Attacks
As mentioned, threads can miss their deadlines through incorrect
priority assignment, inaccurate WCET, and through system
overload due to installing more components than is possible to
guarantee resources for. Another way in which threads may miss
deadlines is through the lack of temporal isolation [30] in the
OSGi Framework. Temporal isolation is discussed further in
Sections 3 and 4. Without temporal isolation, it is entirely
possible for an OSGi component to carry out a denial-of-service
(DoS) attack on the OSGi Framework. The DoS attack could
exhaust the systems resources such as CPU or memory and thus
prevent other components from obtaining their resource
guarantees, which are necessary to meet their deadlines.

2.3.5 OSGi Framework Non-Real-Time
As the OSGi Framework is written in standard Java and not the
RTSJ, various issues need to be resolved. These issues stem from
the fact that components will be written in the RTSJ and will need
to interact with OSGi Framework classes which are developed in
standard Java. Although many issues will come to light after a
thorough study of an OSGi Framework implementation, we have
already identified some potential issues:

Memory Assignment Errors – If a real-time thread in a component
instantiates an OSGi Framework class whilst in heap memory and



then enters scoped memory to execute methods of that object,
there may be problems. An IllegalAssignmentError will be thrown
if the method creates objects in scoped memory and then attempts
to store references to these objects in an instance field. An
IllegalAssignmentError prevents dangling references i.e. heap
memory referencing objects in a scope which has been released.
Also an IllegalAssignmentError will be thrown if a method
executing in scoped memory creates objects and attempts to store
them in static fields of a class. This is because static fields are
stored in immortal memory, and like heap memory, immortal
memory cannot reference scoped memory.

Memory Leak – In the OSGi Framework, every component has its
own class loader. Since the set of components installed in the
OSGI Framework will change over time, it is important that the
memory used by class objects and class loaders can be reclaimed
when they are no longer referenced. Generally, a class can be
unloaded when its class loader is unreachable. A class loader
becomes unreachable when the class loader object itself, the class
object and instances of the class object are all unreachable. The
reason why class instances must be unreachable is because they
hold a reference to their class object which holds a reference to its
class loader object. Unfortunately, in the RTSJ, class objects are
stored in immortal memory, and developers may store objects in
immortal memory. This complicates class unloading. Even if a
real-time JVM implementation can detect and reclaim unused
class objects in immortal memory, it will be impossible to unload
classes and class loaders when an application developer stores an
instance of a class in immortal memory. This leads to memory
leaks in the OSGi Framework.

Poor OSGi Framework Performance -- The OSGi Framework is
written in standard Java using ordinary threads. Components
written in the RTSJ will be using real-time threads. These threads
may lockout the Framework because the component’s threads will
have priorities higher than the system threads. For example,
implementations of the OSGi Framework often provide a user
interface for administering the Framework. Depending on the
behaviour of real-time threads in components, the administrator
may find it virtually impossible to issue commands to the
Framework, this is particularly problematic when the
administrator is trying to add/remove, or update components in
the Framework.

Runaway Threads – Currently in the OSGi Framework,
developers must program their threads to cooperate with the life
cycle of their component. This means that should a component
developer not follow this approach threads may continue to exist
long after their component has been uninstalled from the OSGi
Framework. This approach however is not adequate for
developing real-time systems. On uninstalling a component, the
OSGi Framework needs to safely terminate all of the threads
associated with a component, should the component developer
forget to.

3. TEMPORAL ISOLATION
3.1 Thread Level Temporal Isolation
Section 2 explained why developing real-time applications with
the OSGi Framework and RTSJ is not simply a case of using these
two technologies together i.e. it is not possible to develop
predictable applications by simply using the RTSJ to develop the
individual components. In order to solve those problems,

modifications to the OSGi Framework and extensions to the RTSJ
are required. In this paper, we focus on the extensions to the
RTSJ.

Temporal isolation prevents the timing misbehaviour in one
thread from affecting the timing constraints of other independent
threads. In a component-based system it is imperative that threads
overrunning their CPU budget in one component do not cause the
threads in another component to miss their deadlines.

One means of providing temporal isolation is through the RTSJ’s
cost enforcement [31]. Cost enforcement monitors a thread’s CPU
usage and deschedules the thread if it overruns its CPU budget.
Unfortunately, cost enforcement is an optional feature of the
RTSJ, and we know of no implementation of the specification that
provides it. The reason for this is most likely because not all
hardware architectures/operating systems support it. Another
feature of the RTSJ which is also optional but which is
implemented by at least one VM is cost monitoring [32]. Cost
monitoring is similar to cost enforcement. The only difference is
that upon detecting a cost overrun it doesn’t deschedule the
thread. Instead, it fires an event to notify the application and
allows the application to recover from the overrun.

Cost enforcement-like functionality and thus temporal isolation
can be provided at a higher level than the VM/OS level by using
cost monitoring and a cost overrun handler (the code to be
executed upon a cost overrun) for each thread in the system.
Within the cost overrun handler, cost enforcement-like
functionality can be provided by using one of the following
approaches[33]:

1. The cost overrun handler can fire an
AsynchronouslyInterruptedException into the method
which is causing the thread to overrun. The method will
then asynchronously transfer control to a recovery
block. This requires the offending method to be
asynchronously interruptible.

2. The cost overrun handler can set a flag to indicate that
the thread has overrun, the thread can then poll the flag
for notification of an overrun and try and recover.

3. The cost overrun handler can simply reduce the priority
of the overrunning threads to a value low enough to
enable other threads to make progress.

Any of the aforementioned approaches could support temporal
isolation, but there are two major problems:

1. Temporal isolation is provided at the thread level.
However, since we are concerned with component-
based systems, we would like to work at the component
level i.e. we would like to take action on all of the
threads in the overrunning component, not just the
thread that caused the overrun.

2. The cost enforcement-like functionality must be
provided by the component developer. Cost monitoring
simply informs the thread that it has overrun, the
component develop may chose to ignore this. This may
happen for two reasons: firstly, because providing cost
enforcement-like functionality requires an extra coding
effort. The developer must develop a cost overrun
handler, and also design threads to be cost-enforcement
cooperative, for example when polling for overrun



notification or using asynchronous transfer of control.
Secondly, the component developer may have no
incentive to make the extra effort because they will not
directly benefit from the extra coding effort. Even if
component developers are fully cooperative, there is
still a reliance on them. It is preferable that the OSGi
Framework take the responsibility of providing
temporal isolation.

The solutions to the above problems are discussed in Sections 3.2
and 4.

3.2 Component Level Temporal Isolation
To efficiently support component-based real-time systems, the
RTSJ requires some semantic changes to for example provide
hierarchical schedulers and resource contracts. This would allow
components to have priorities and negotiate the resources required
to schedule its threads. Such an approach is discussed in [34].
Alternatively, component-based real-time systems can be
developed using the current semantics of the RTSJ by providing a
mapping between the logical priorities of components and the
actual priorities of a component’s threads that are used by the
default fixed priority preemptive scheduler. Although this
approach is inefficient since a complete priority reassignment
must take place every time a new component is installed in the
OSGi Framework, we have chosen this approach in this paper as it
is implementable with the current RTSJ.

The RTSJ has the ProcessingGroupParameters (PGP) [35] class.
This class allows multiple threads (Schedulables) to be grouped
together, and assigned a group budget per period. With cost
monitoring, the PGP acts as an accounting mechanism for the
threads in the group, should the threads use more CPU time than
the PGP’s budget per period, the associated cost overrun handler
of the PGP will be executed. It is important to note however that
this too is an optional feature of the RTSJ.

The general idea of our approach is to create a PGP object for
every component in the system. Each (subclassed) PGP is
assigned a logical priority, and a computation time per period in
which to execute the threads within the component. When the
budget is consumed, the cost overrun handler is released which
lowers the priority of the entire component’s threads to some
background priority. At the beginning of the PGP period, the
budget is restored and the component’s threads have their
priorities raised again to their original values. This provides
temporal isolation in that the highest priority component’s threads
execute first, when the component’s PGP’s budget is exhausted,
the component’s thread’s priorities are lowered to some
background level, and the next highest priority component’s
threads can execute.

The above approach is essentially the same as using execution
time servers (such as Deferrable [36], Sporadic [37] or Periodic
[38] Servers ). Subject to passing a schedulability test, the system
guarantees that a component’s threads will meet their deadlines
under a given server budget per period, and that any overruns will
not cause interference with the timing requirements of threads in
other components. See [39] for execution-time server extensions
to the RTSJ.

A different approach to resource partitioning is time slicing [40].
We chose to provide temporal isolation via execution- time
servers because they are bandwidth preserving and are easily

implemented at a high level, although they are arguably less
deterministic than using time slicing and scheduling windows.

4. PROVIDING TEMPORAL ISOLATION
WITH THE RTSJ
To recap, we are providing temporal isolation in the OSGi
Framework as a first step to enabling this Framework to be used
in the development of component-based RTSJ applications. As
this goal is of a very practical nature, we need the designs to be
implementable. For this reason, we have chosen to avoid semantic
changes to the RTSJ, and used the default fixed priority pre-
emptive scheduler as opposed to a hierarchical scheduling [41]
scheme. To provide temporal isolation through the use of
execution time servers, and if the system is to provide temporal
isolation without burdening component developers, some of the
RTSJ classes must be extended. These extensions are discussed in
the following section. Naturally the OSGi Framework will require
extensions/modification too, but this is out of the scope of this
paper.

Subclassing classes implementing Schedulable

It is undesirable to rely on the cooperation of component
developers to provide temporal isolation. A more suitable
approach is to have threads provide temporal isolation on their
construction. Wherever possible, we would like to avoid changes
to the RTSJ API, therefore we propose subclasses to the classes
implementing Schedulable. The RTSJ has the notion of
schedulable objects instead of simply threads. This is a useful
abstraction when programming since it makes it clear that for
example AsyncEventHandlers are also under the control of the
scheduler, although they are implemented at a lower level as
threads in any case.

We need to subclass RealtimeThread, NoHeapRealtimeThread,
and AsyncEventHandler. The subclasses need to:

 Set the schedulable object’s PGP to the one belonging
to their component so that all of a component’s
Schedulables belong to the same PGP.

 Pass a self reference to the component so that upon cost
overrun or cost replenishment the PGP can manipulate
the priorities of all of the threads associated with a
component.

It is worth noting that providing temporal isolation should be as
invisible to the programmer as possible hence simply extending
the Schedulable interface is not adequate. Therefore in this paper
we do not extend the Schedulable interface although it is possible
that other features required to use the RTSJ and OSGi Framework
together will require extensions to the Schedulable interface.

Figure 1 gives the skeleton class definition of an extension to
RealtimeThread. The class will require further extensions to
include WCET calculation and priority assignment etc in the
OSGi Framework; however they are outside the scope of this
paper and have therefore not been included in the code.



Figure 1 OSGiRealtimeThread class, adds a reference of itself
to a list maintained by the thread’s component, and also sets

its PGP to that of its component

The class OSGiRealTimeThread is simple to explain. When a
component is installed and started in the OSGi Framework it is
passed a BundleContext object. The BundleContext object allows
the component to interact with the Framework such as to register
services, install new components, and to subscribe to events. We
use the BundleContext object to retrieve the object representing
this component. The component (or Bundle) object maintains a
list of its Schedulables, and the constructor adds a self reference
to this list. This allows the cost overrun handler to iterate through
the list lowering the priorities of all of its Schedulables. Finally,
the constructor sets this Schedulable's PGP to be the one
belonging to its component. This is so that its resource usage is
charged to its component.

The AsyncEventHandler, and NoHeapRealtimeThread classes can
be extended in the same way in order to provide temporal
isolation on object creation.

Subclassing ProcessingGroupParameters

The ProcessingGroupParameters class also requires extensions.
Notably, we want to enforce the temporal isolation by:

 Providing a cost overrun handler to lower the priorities
of all of the threads of the component associated with
this PGP.

 Creating and starting a timed event to correspond to
replenishment time, and providing an AEH to actually
raise the associated component’s threads priorities back
to their original values

Figure 2 shows the RTSJ class definition. Again, the class
definition is incomplete and will almost certainly be expanded as
we work towards developing a Real-Time OSGi Framework.

The OSGiPGP class requires some explanation. It defines two
AEHs, costOverrun and replen. The constructor of this class sets
the cost overrun handler and other parameters of the superclass.
Once the group budget has been exceeded, the costOverrun
handler executes and lowers the priorities of all of the schedulable
objects in the component associated with the PGP. The
constructor also sets a timer to fire an event when the associated
components threads priorities are to be raised to their original
values as a result of group budget replenishment. Finally, the get
and set methods provide the link between a PGP and a
component. The OSGi framework will create a PGP for a
component, and set the link between a component and its PGP by
calling setBundle. The replen and costOverrun AEHs then use
getBundle to manipulate the associated components threads.

Figure 2 OSGIPGP class, provides and sets AEH to
manage its associated threads’ priorities.

To summarise this section, temporal isolation is provided at the
component level by having the OSGi Framework create a PGP
object for each component in the system. Any threads created
within a component have their cost overrun handler set to the one
associated with their defining component. The cost overrun
handler for the PGP lowers threads’ priorities on overruns.

Our approach assumes that it is always safe to take immediate
action on overrunning threads. However, in some applications, the
highest priority thread must continue to execute at the highest
priority even after it has overrun. This may be necessary to keep
the system stable or to bring the system into a safe state. Although
our current approach does not allow for this, it is relatively simple
to add such a facility. For example, a delay is added after cost
overrun to allow for threads to put the system into a safe state
before the cost enforcement functionality is executed.

5. CASE STUDY- NUCLEAR POWER
PLANT MONITORING
The purpose of this section is to reiterate the motivation for using
the OSGi Framework to develop dynamically reconfigurable real-
time systems. Essentially, the case study shows the benefits of
dynamism (through sensor reconfiguration and component
installation on alarm conditions) and remote controllability
(allowing an external supervisor to slow down the reactivity rate
and even shutdown the nuclear reactor completely). In addition,
this section also shows how temporal isolation is provided
amongst components. However, it is important to note that since
nuclear power plants are safety critical systems and their
monitoring and control systems have hard real-time requirements,
we do not see this domain as a realistic target of the OSGi
Framework. Two reasons for this are: firstly, service-oriented



platforms such as the OSGi Framework are highly dynamic, it
would be difficult to verify safety critical systems developed on
such a platform. Secondly, the RTSJ is currently not suitable for
use in safety critical systems, although for these types of systems
we envisage using the Level 2 subset of the RTSJ Safety Critical
Java proposal JSR302 [42]. Despite nuclear power plant
monitoring being an unrealistic target for OSGi, we chose this
case study because such a system requires powerful features of
both the RTSJ and OSGi, and therefore makes for an interesting
example of using these technologies together.

Regarding the development status of the case study, it is currently
only designed at a high level, and little time has been spent on its
design as an OSGi application. The reason for this is because we
have yet to complete the design and implementation of a real-time
OSGi Framework, i.e. a suitable platform to execute such an
application.

5.1 Monitoring System Requirements
The monitoring system has the following application
requirements: firstly, the monitoring system must measure the
core temperature, pressure, flow rate, and nuclear reactivity rate.
These values must then be output to a local operator and an
external supervisor. The sensors are periodic threads that access
the sensor hardware through the RTSJ’s RawMemoryAccess.
Given the nature of the system, we will want to avoid the latencies
of garbage collection by avoiding the heap with
NoHeapRealtimeThread, ImmortalMemory and ScopedMemory.

Secondly, in alarm situations i.e. when the sensors read values
outside of a safe range, the operator firstly needs to take some
corrective action to make the system safe again, such as by
activating the Emergency Core Cooling System (ECCS). The
system then needs to provide software for the operator to interact
with a decision support system (DSS) and the external supervisor.
Once these components have been loaded, the DSS, operator, and
external supervisor can work collectively to diagnose the problem
and bring it under control. As an example, a sensor detects that
the nuclear reactor is operating at a dangerously high temperature.
An AsynchronousEvent is fired to signal an alarm condition, an
AsyncEventHandler then installs the alarm diagnosing
components using the OSGi Framework’s life cycle operations.
After installing the DSS and external supervisor communications
components, the operator can try and find out, for example,
whether the temperature increase was due to a loss of external
power supply, partial loss of reactor coolant flow, or an accidental
start-up of reactor coolant shutdown system. This approach
drastically reduces the number of variables that need to be
monitored as we only try to find out the exact alarm condition
when necessary, as opposed to constantly monitoring for every
possible alarm condition directly.

Also as alarm diagnoses components are only installed when
necessary, this reduces memory usage which is vital in embedded
systems with resource constraints. Figure 3 shows the steps
involved in an alarm diagnosis.

Figure 3 Activity Diagram of the dynamic installation of
components under alarm conditions

Thirdly, change sensor configurations. There are three main
scenarios for dynamicity regarding sensors. Firstly, it is possible
that the RTSJ component interfacing with the sensor hardware
contains bugs. The software can be updated at run-time using the
OSGi Framework’s life cycle operations. Another scenario is to
replace faulty sensor hardware. Hardware fails from time to time,
we would like to be able to replace the hardware and then be able
to replace the software component interfacing with the hardware
at run-time. A final scenario is to add new types of sensors as the
set of variables to monitor may change. Figure 4 shows the
different scenarios for changing sensor configurations.

Figure 4 Activity diagram illustrates sensors being
dynamically reconfigured for various reasons



The final requirement is to allow the external supervisor to
remotely control the nuclear reactivity rate and also to allow the
reactor to be shutdown remotely by the external supervisor. There
may be emergency situations where the nuclear power plant’s
operations room is inaccessible e.g. due to fires of terrorist
attacks. In such situations, the external supervisor can lower the
control rods into the reactor to slow the nuclear reaction down. If
absolutely necessary, the external supervisor can also shut the
nuclear reactor down completely. Remote control of the OSGi
Framework is seen as essential in a real-time version of the
Framework. However it will require the use of real-time
middleware such as RMI-HRT [43] .

5.2 Monitoring System Architecture and
Temporal Isolation

The sensors obtain the values from the actual sensor hardware
monitoring the nuclear power plant (NPP). The sensors pass these
values to the user interface component for viewing by the operator
(OPP). The sensor also passes the values to the Data Vault which
acts as a buffer to pass the values onto the gateway which will
then communicate the values across a real-time communication
line to the external user interface for use by the external
supervisor (ES). The monitoring manager is responsible for
managing the changing sensor configurations. Finally, in alarm
situations, the support comms and DSS comms components are
loaded. The support comms component provides some line of
communication between the operator and external supervisor so
that they can collaborate in controlling the potentially dangerous
situation. The DSS comms also helps diagnose the alarm situation
by having the decision support system (DSS) contribute in the
diagnosis process Figure 5 shows the system architecture.

Figure 5 Architec
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and to reflect the priority of their component in the system. T1
and T2 are assigned priorities higher than T3 and T4 (because the
DSS comms component has a higher priority). As T1 and T2 are
the highest priority threads in the system, they execute first.
Should they use their component’s entire budget, T1 and T2 have
their priorities lowered to a background priority, T3 and T4 now
have the highest priorities and therefore they will execute. Upon
the DSS comms’ budget replenishment, T1 and T2 will have their
priorities raised to their original values and thus they will become
the highest priority threads in the system again. Note that this is
bandwidth preserving, should T1vand T2 complete without using
their component’s entire budget, they will suspend waiting for
their next period, and T3 and T4 will execute.

6. CONCLUSION
Through its use of components and services, the OSGi Framework
enables dynamically reconfigurable Java applications to be
developed. In addition, the OSGi Framework can be remotely
controlled allowing dynamic reconfiguration of software to be
controlled from a remote location. Such dynamism and remote
controllability, coupled with the fact that the OSGi alliance is
comprised of many organizations such as IBM, Sun, Nokia, and
Mitsubishi, has lead the OSGi Framework to be used in many
application domains. The nuclear power plant monitoring system
case study showed there is a great motivation for using the OSGi
Framework and RTSJ together to develop dynamically
reconfigurable real-time systems, for example for remotely
controlling the configuration of real-time system such as during
mode changes.

Unfortunately, there are number of problems preventing the OSGi
Framework and RTSJ from being used together. Some of these
problems include: global priority assignment, schedulability
analysis, WCET analysis, and lack of temporal isolation etc. In
this paper, we discussed two levels of temporal isolation, thread-
level, and component-level temporal isolation. Given that the
OSGi Framework is used in the development of component-based
systems, we are interested at providing temporal isolation at the
component-level of abstraction. We have outlined some RTSJ
extensions which enable us to provide temporal isolation within
the OSGi Framework. Guaranteeing the property of temporal
isolation is the first step towards using the OSGi Framework in
the development of dynamically reconfigurable real-time systems

7. FUTURE WORK
In this paper we have presented a case for using the OSGi
Framework with the RTSJ for the purposes of developing
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throughout this paper has been on providing temporal isolation to
OSGi applications, however as mentioned in Section 2, temporal
isolation is only one of many issues which must be solved before
the OSGi Framework and RTSJ can be successfully used together.
We intend to work towards a real-time OSGi Framework by
carrying out research in the following areas:

7.1 WCET Calculation
Initially, it was thought that the concept of a real-time service
would be required. That is a service providing thread would
inherit the service requesting threads priority, negotiate real-time
constraints, perform its computation subject to those timing
constraints, and then return a result to the service requester.
However, as the OSGi Framework is an intra JVM service model



and not an inter JVM service model, as with distributed object
models such as Java RMI, the service provider does not have an
active thread servicing requests, instead, the service requester
thread executes the computation for themselves.

Whilst a real-time OSGi does not therefore require the design of
real-time services, it does have to closely consider the WCET
calculation for threads. A thread’s WCET will not only be the
time it spends executing its own code, but also the time it executes
the code of any services it requires. Essentially, WCET
calculation must take service usage into account.

7.2 Server Parameter Selection
In this paper we assumed that the replenishment period and
budget of a component’s PGP made the component’s threads
schedulable and at the same time minimised CPU usage so that
other components could be accepted into the system and have
resources reserved. In reality, generating such parameters is very
challenging. There is an optimisation problem in terms of finding
values that will make a component’s threads schedulable whilst
minimising resource usage.

7.3 Local Schedulability Analysis
Given a replenishment period and budget, the analysis checks that
those values are sufficient to schedule the threads within a
component. In addition to having to do this analysis when a
component is installed, it is also necessary when a component is
updated. An updated component may have a different thread set,
and use services differently (hence threads have different WCET).

7.4 Global Schedulability Analysis
Given some budget and replacement period of a component’s
PGP which make a component’s threads schedulable, can the
system actually provide enough resources i.e. is the system able to
offer the necessary replenishment period and budget? This
analysis needs to take place on a component install. Only if the
system can offer the necessary resources does the component get
admitted to the system.

7.5 Global Priority Assignment
Threads within each component will have a correct priority
ordering. However as components are independently developed,
the global ordering will be incorrect. The OSGi Framework
(unlike developers) will have a global view and can therefore
reassign thread priorities so that the ordering across components
is correct.

7.6 Dynamic Reclamation
Once a component is uninstalled from the system, there are
resources available which could be distributed among the existing
components in the system. This is only worthwhile however for
components using “anytime” algorithms and also when the
environment is not highly dynamic. If components and installed
and uninstalled at a fast rate, the overhead involved in distributing
spare capacity may be too large.

7.7 Memory DoS Attacks
Cost enforcement and temporal isolation prevent CPU DoS
attacks from occurring, however it is still possible for a
component to use excessive amounts of memory, possibly causing
OutOfMemoryErrors for threads in other components. In order to
prevent this, we need to modify the OSGi Framework for example

to allow components to negotiate their memory constraints, and
have the OSGi Framework/RTSJ ensure that components do not
use more than their memory budget.
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