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Abstract—Many state-of-the-art approaches to power minimi-
sation in Networks-on-Chip (NoC) are based on the reduction of
the communication paths taken by packets over the interconnect.
This is often done by optimising the packet routing, the allocation
of tasks that produce and consume those packets, or both. In
all cases, the optimisation affects the timeliness of the packets,
because changes will occur in the way resources are shared
at the platform cores (as tasks are reallocated) and NoC links
(as packet routes are changed). In this paper, we propose an
optimisation technique that is able to minimise power dissipation
without sacrificing timing constraints, thus suitable to systems
with hard real-time requirements. It is based on a Genetic
Algorithm (GA) that evolves chromosomes representing the
mapping of tasks to cores, guided by a multi-objective fitness
function that combines power estimation macromodels and real-
time schedulability analysis.

I. INTRODUCTION

This paper addresses the design of embedded multicore
systems based on Networks-on-Chip (NoC), aiming to find
system configurations that minimise power dissipation but still
meet real-time performance requirements at all times. While
generally scalable and flexible, NoCs are complex to analyse
when it comes to evaluate performance guarantees and power
dissipation. This becomes critical when addressing embedded
systems with hard real-time constraints, which is our focus
in this paper. In such systems, data packets sent over the
NoC have strict deadlines, i.e. the latest point in time when
they can be delivered at their respective destination cores. A
deadline miss is considered a failure, just as bad as a packet
being dropped or corrupted. The strictness of the performance
constraints limits significantly the application of conventional
low power techniques in NoCs. State-of-the-art approaches in
energy-aware task mapping affect the timing behaviour of the
system for the sake of minimising energy dissipation [1] [2].
For example, a common technique is to map communicating
tasks to neighbouring cores, thus reducing the number of
network hops a packet must go through. While minimising
energy dissipation, such optimisation also changes the way
resources are shared in the system, which consequently affects
the response time of the tasks running on cores and packets
over the NoC.

In the following sections, we present an optimisation ap-
proach based on a genetic algorithm (GA) which was specif-
ically customised to statically map tasks onto NoC-based
multicore systems. It uses real-time schedulability analysis

to constrain the way tasks are mapped, so that the timing
requirements of the system (i.e. deadlines of tasks and packet
flows) can be met at all times. We also integrate a power
estimation macromodel into the GA’s fitness function, so that
it can be guided towards more energy-efficient solutions as it
explores alternative task mappings.

II. BACKGROUND

A. Application Model

This paper aims to optimise the mapping of application tasks
onto cores of a NoC-based platform. Following a common
practice in real-time systems design, we use an application
model to obtain a design-time characterisation of the compu-
tation and communication load imposed by each application.
An application model consists of a set of tasks, each of them
is characterised as a tuple Task = {C, T, V }, where C is its
maximum execution time, T is its period (i.e. the minimum
amount of time between successive invocations of that task),
and V is its priority. Tasks communicate with each other
by sending messages, each of them is described as a tuple
Msg = {Src,Dst, V, F}, where Src is the task that sends it,
Dst is its destination task, V is its priority, and F its length.

We assume that a message is sent at the end of execution
of its source task, so the period of a message is equal to
the period of its source. We also assume that the deadline
D of a task or a message is equal to its period. A system is
then deemed schedulable if all its tasks and messages have
a worst case response time that is less or equal to their
respective periods. That way, developers can define periods
to accommodate application-specific timing constraints, and
by ensuring schedulability they can guarantee that all tasks
and messages will always successfully complete before their
succeeding release.

B. Network-on-Chip Platform

This paper considers homogeneous platforms consisting of
a number of processing cores interconnected with a wormhole-
switching NoC. Each core can execute multiple tasks, which
are scheduled using priority preemptive arbitration. Tasks com-
municate with each other by sending and receiving messages,
and such messages are packetised and sent over the NoC if the
source and destination tasks are not mapped to the same core.
Every periodic transfer of a packet over the NoC is referred



in this paper as a packet flow. A flow will have application-
specific characteristics (e.g. period of its source task, length of
message) as well as platform-specific ones (e.g. route over the
NoC, number of flits needed to carry the respective message
plus control information).

The NoC architecture considered here has routers that use
deterministic routing and priority preemptive virtual channels
[3]. This means that packets of a given flow will always follow
the same route (which is known at design time), and that
packets with lower priority are preempted when they compete
against higher priority packets for the same NoC link.

C. Power Estimation Macromodel

The macromodel proposed by [4] can be used to estimate the
total power dissipated by a NoC for transferring a given packet.
According to that macromodel, each network component (i.e.
network interface - NI, router and link) dissipates power
to transmit a packet along the specified route. Equation (1)
calculates the dissipation by each component, and differs from
the one appearing in [4] only because we assume that the
power dissipated by a router to transmit a header flit or a
payload flit is the same:

Pm = 2(f + 1)Pni + (h+ 1)(f + 1)Pr + h(f + 1)Pl (1)

where Pni is the power dissipated by a NI to transmit a flit,
Pr is the power dissipated by the router to transmit a flit, Pl

is the power dissipated by the link to transmit a flit, f is the
number of flits in the packet, and h is the number of hops of
its route.

D. Real-Time Schedulability Analysis

We assume that each core has its own priority-ordered
queue to schedule tasks, so classical schedulability analysis
for single processor [5] can be applied to determine the worst-
case response time ri of each task i, as shown in equation (2).
The function hp denotes the set of all higher priority tasks
running on the same core as task i.

rn+1
i = Ci +
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∀Taskj
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In [3], Shi et al propose a schedulability analysis that
enables the calculation of the worst-case latency of each packet
flow in a wormhole NoC. That analysis finds the upper bound
of the interference suffered by a given flow, caused by a set of
flows SD

i that compete for the same NoC links and that can
preempt it. As shown in equation (3), the worst-case latency
R of a flow is the sum of its basic latency Li (which is the
latency of the flow when there is no contention) plus all the
interference caused by each of the preempting flows (which is
proportional to their basic latency Lj).
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j

Tj

⌉
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Equation (3) also takes into account that the release jitter
JR
j and the interference jitter JI

j will affect the worst-case
latency of a flow. Since we assume that a flow is released
immediately after the execution of its source task, JR

j is equal
to the response time of its source task rj . Finally, from [3] we
have that JI

j = Rj −Lj . Based on the D ≤ T assumption, an
application is deemed schedulable if for each task i, ri ≤ Di

and for each flow i, ri +Ri ≤ Di.

E. Mapping Optimisation with Genetic Algorithms

Genetic algorithms have been used to optimise the mapping
of application tasks to multicore platforms. Such algorithms
use one or more fitness functions to guide a random search
towards solutions of increasing fitness. All approaches in
the literature use fitness functions based on simulation or
analytical methods.

Different mappings produce different performance and en-
ergy dissipation metrics. By mapping communicating tasks
closer to each other, it is possible to decrease the power
dissipated by the NoC but the response time of the tasks and
messages can be affected because of the increased contention
over the shared links. Hence, considering multiple fitness
functions is important so such trade-offs can be addressed.

In [1], a GA was used to solve the mapping problem,
aiming to minimise the amount of communication delay and
the average power consumption. It used the SPEA2 GA [6]
to explore the mapping space, and used a NoC simulator to
determine the fitness of every solution. A severe limitation
of that approach was the time required to evaluate each
solution with the simulator, specially because one needs a long
simulation time to have good confidence on the figures of
average delay and power consumption (i.e. long runs using
a high-accuracy simulator). Moreover, worst-case scenarios
can easily be missed using this technique, as it is not trivial
to find the right stimulus for such scenarios to arise. Such
limitations prevent the use of the technique for early design
space exploration (as it requires fast evaluation), and makes
it unsuitable for applications with real-time constraints (as
there is no guarantee that worst-case scenarios will ever be
simulated).

Other works [7] [8] [9] applied analytical methods as
fitness functions, which enable much faster exploration of the
mapping space, but none of them addressed the problem of
mapping tasks and messages with hard real-time constraints.

The only approaches that are able to find mappings for
priority-based hard real-time systems are based on single-
objective genetic algorithms [10] [11]. While they are able
to find fully schedulable mappings, they are oblivious to the
changes in power dissipation by different mapping alternatives.

III. PROPOSED MAPPING OPTIMISATION

In the subsections below, we propose an optimisation
pipeline based on a multi-objective genetic algorithm (MOGA)
that integrates two fitness functions, aiming to find task map-
pings that meet hard real-time application constraints while
minimising power dissipation over the NoC.



A. Genetic Algorithm

We chose NSGA-II [12] as the underlying GA that will be
the basis of our optimisation pipeline. This is mainly due to its
non-dominated sorting mechanism, which makes it amenable
to problems with multiple objectives such as ours; besides
of its configurability and efficient implementation. This key
point will become clearer once we describe the complete
optimisation pipeline proposed here.

In general, a GA works by manipulating chromosomes
which represent an individual solution to the problem we are
trying to optimise. In our case, a chromosome must represent
a specific task mapping, and Fig. 1 shows one possible way
to encode that information: the indexes represent n tasks, and
under each index the chromosome stores the number of the
processing core onto which the task is mapped (e.g T1 is
mapped to core 1, T3 to core 9). Each part of the chromosome
is called a gene, e.g. a task index and its respective core
number in Fig. 1.

Our GA optimisation pipeline (Fig. 2) starts with an initial
parent population, represented by their chromosomes, which
can be randomly created (i.e. randomly select the value of
each gene of each chromosome). It then creates an offspring
population by operating over the parent population. Finally,
it applies one or more fitness functions which will rank
all chromosomes of the combined population and guide the
selection of the chromosomes which will be allowed into the
next generation.

It is at the final stage of the pipeline that NSGA-II’s non-
dominated sorting plays an important role. When sorting over
multiple criteria, as in our case the real-time schedulability and
total energy dissipation of a particular mapping, it is common
to find solutions that cannot be easily compared. For instance,
a mapping that is fully schedulable, but dissipate more energy
than another mapping that is only partially schedulable.

The proposed optimisation relies on the notion of Pareto-
dominance [13] supported by NSGA-II, which states that a
multi-criteria solution dominates another if it is better in at
least one criterion and no worse in all the others. This allows
us to partition the combined population in non-dominated
sets. The chromosomes in the first non-dominated set are not
dominated by any chromosome within the parent or offspring
generations. Once the set is found, it is labelled with a non-
domination level 1 and all the chromosomes in this set inherit
this level as their fitness value. Then, this non-dominated set
is excluded from the process of determining the next non-
dominated set. This process is repeated for the rest of the
individuals in the combined population until all of them are
ranked with their respective non-domination levels as shown in
Fig. 3. After this process, a technique called elitism is applied
to transfer only the best chromosomes of a given generation
to the subsequent generation.

As mentioned above, GAs create an offspring population
by applying specific operations over the parent population.
Our optimisation pipeline considers the three main types of
operators found in GAs: selection, crossover and mutation.

Fig. 1. Chromosome structure

Fig. 2. Optimisation pipeline

The selection operator is responsible for selecting which
parent chromosomes are used to produce the offspring gener-
ation. Since genes of offspring are inherited from their parents,
the selection operator must favour the best individuals in the
population. We use binary tournament selection (k = 2), as
shown in Fig. 4 two possible parents are randomly chosen and
then compared in terms of fitness, i.e their non-domination
level [12]. Only winner of the tournament (i.e. the one with
the lowest non-domination level) is selected for the mating
process. The procedure has to be repeated to select the other
mating parent.

The mating process is a single-point crossover performed
on the parents by exchanging a part of their chromosome to
produce two new offspring. The amount of genes that each
parent contributes is determined by a crossover point which is
selected randomly (Fig. 5).

We also use a mutation operator to introduce additional
variations to the chromosomes of the offspring population.
The mutation operator works by randomly changing individual
genes of the offspring according to a given probability.

B. Objective Functions

The focus of our optimisation pipeline is to find task
mappings that present a good trade-off between two objectives:
meeting timing constraints and minimising power dissipation.
The first objective (Obj1) is to minimise the total number of
unschedulable tasks (Ut) and flows (Uf ) as shown in Eq.
(4). The worst-case response time ri of each task is calculated
based on equation (2), while the worst-case latency Ri of each
flow is calculated using equation (3). Tasks are unschedulable
if their worst-case execution time exceed their deadline, and
flows are unschedulable if their worst-case latency exceeds the
deadline of their source task (which is the end-to-end deadline
all tasks and flows must meet). Therefore, it is possible to have



Fig. 3. Non-domination levels

Fig. 4. Binary tournament selection

Fig. 5. Single-point crossover

mappings where a task meets its deadline but its respective
flows do not.

The second objective (Obj2) considered here is the min-
imisation of the total power dissipated when transmitting
packets over the NoC, as shown in equation (5). This metric is
calculated using equation (1). Our optimisation pipeline does
not take into account the energy dissipated by the execution
of tasks by each individual cores, as that metric does not
contribute to the ranking of alternative mappings in terms of
the overall energy dissipation of the system (i.e. communi-
cation, all cores will dissipate roughly the same amount of
energy to execute a particular task). This situation would be of
course different if our optimisation would also include thermal
balance as one of its objectives, but this is left as future work.

Obj1 = min(

k∑
i=1

Uti +

l∑
i=1

Ufi) (4)

s.t.

∀Taski, ri > Di ⇒ Uti = 1

∀Flowi, ri +Ri > Di ⇒ Ufi = 1

Obj2 = min(

l∑
m=1

Pm) (5)

IV. EXPERIMENTAL WORK

A. Case Studies

Two benchmarks were used as case studies in this paper.
The first benchmark is based on a realistic autonomous vehicle
application (AV) which consists of 33 tasks and 38 messages,
while the second benchmark is a synthetic application (SA)
consisting of 50 real-time tasks and 50 real-time messages.
The synthetic application was created to have shorter inter-
arrival intervals (periods) of tasks and messages and shorter
slacks, so finding schedulable mappings is harder. Optimisa-
tion was performed to find feasible mapping solutions in 4x4
and 5x5 2D-mesh topology NoC platforms with 16-bit links,
XY routing policy and 2-position buffers per virtual channel.
Each packet flow has the same priority value as the task which
releases it.

B. Evaluation Results

We use the benchmarks above to compare the proposed
multi-objective GA (MOGA) with a number of baselines: a
naive random mapper, a nearest neighbour (NN) mapper and
the single-objective GA (SOGA) proposed in [11].

Our experimental hypothesis is that the mapping solutions
found by our MOGA will be as good as the solutions pro-
duced by the SOGA (or better) in terms of meeting timing
constraints, and always better in terms of power dissipation.
We expected that the second part of the hypothesis would
be easy to show, because the single-objective GA does not
optimise power dissipation. The challenging part is to show
that the MOGA is able to quickly converge towards fully
schedulable solutions, which is not straightforward as it also
has to keep many low power mappings within the population at
every generation. This has been achieved by careful parametric
analysis, which included the ranges shown in Table I.

By providing evidence that the above experimental hypoth-
esis is valid, we also aim to show that both GA-based mapping
optimisation can produce mappings that are far superior than
the naive and NN mappers.

Fig. 7 plots the improvement of the fitness of the mappings
found by each of the GA-based optimisation pipelines (MOGA
and SOGA). The horizontal axis represents the evolution
across generations, while two vertical axes allow us to plot the
number of unschedulable tasks and flows (left axis, labelled as
UTF ) and the total energy dissipation across the NoC (right
axis, labelled as POW , normalised by the power dissipated
by a single flit over a single hop) for the best mapping of
each generation. In single-objective optimisation, solutions can
be totally ordered, so the best solution is evident. However,
in multi-objective optimisation there may be no single best
solution, as the set of non-dominated solutions may have a
cardinality larger than one, and all members of that set can be
considered as the best solution. Therefore we plotted Fig. 7
with the solution having the lowest number of unschedulable
tasks and flows. If more than one solution has the same value,
the secondary metric is then used and the solution with the
lowest power dissipation is selected.



TABLE I
SELECTED GA PARAMETER VALUES

GA Parameters Values
Population Size 100, 1000
Crossover Rate 0.5, 0.8
Mutation Rate 0.01, 0.001
Max Generations 50, 500

Fig. 7 shows that the best overall solution found by the
SOGA is able to meet the real-time constraints of the AV
benchmark on both 4x4 and 5x5 NoCs and the SA on the
5x5 NoC only. The same result is also achieved by the
MOGA. Except for the AV benchmark over the 5x5 platform,
SOGA converges faster than MOGA. However, the SOGA’s
total power dissipation did not decrease consistently across
generations (red and the blue lines). Although there are several
times when some reduction occurs, the trend is not consistent
in the long run. On the other hand, the proposed MOGA is
able to obtain mappings that meet all real-time constraints and
improves consistently the total power dissipation (green and
purple lines). This validates our experimental hypothesis for
the chosen benchmarks, as the MOGA was able to produces
solutions that are able to meet the real-time constraints for all
the scenarios that the SOGA has succeeded, but always with
lower power dissipation.

The plot in Fig. 8 shows how the level 1 non-dominated
set converges across generations for each algorithm, using a
population of 100 chromosomes. Each line represents the non-
dominated set of the population at different generations (1st,
100th and 500th generations). The green lines represent the
non-dominated sets optimised with MOGA, showing better
convergence towards the optimal region of the solution space
(lower-left corner, where fully schedulable low power solu-
tions are found). Both GAs are able to find a schedulable
mapping (i.e. touching the vertical axis) at 100 and 500
generations, but again the mappings found by the MOGA
have much lower power dissipation. As shown in the plot,
there is a significant difference in power dissipation, which
highlights how much quality improvement can be made when
both objectives are taken into account. To show the influ-
ence of the parameters described in Table I, we compared
different configurations of the proposed MOGA and plotted
the results in Fig. 9. Each line represents the non-dominated
set produced by each MOGA configuration at the first and
last generations. For both benchmarks, the performance of the
MOGAs configured with the parameter set represented by the
green and purple lines is superior than the other options we
considered (brown and cyan lines). Interestingly, the two best
configurations have the same mutation rate but only differ in
their crossover rate. We then compare the overall percentage of
schedulable tasks and flows and the overall power dissipation
by the best mapping found with that MOGA configuration with
the best mappings found by each of the baselines, once more
validating our experimental hypothesis for both benchmarks
(Fig. 6).

Fig. 6. Overall comparison against baseline

V. CONCLUSION

This work has proposed a novel optimisation approach for
Networks-on-Chip which is able to explore a wide space of
task allocation alternatives and can converge towards task
mappings that meet hard real-time constraints and have min-
imal power dissipation. The main contributions of the paper
include: (i) the integration of analytical methods for real-time
analysis and power estimation as fitness functions of a MOGA;
and (ii) extensive experimental work to support the parametric
analysis of the proposed MOGA-based optimisation pipeline,
and to show that it fully dominates the best known single-
objective genetic mapping algorithm for hard real-time NoC
systems.
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(a) Autonomous vehicle application (b) Synthetic application

Fig. 7. The best solution convergence over generations with crossover rate 0.5 and mutation rate 0.01

(a) Autonomous vehicle application, 4x4 platform (b) Synthetic application, 5x5 platform

Fig. 8. The non-dominated set convergence at selected generations (1st, 100th and 500th) with crossover rate 0.5 and mutation rate 0.01

(a) Autonomous vehicle application, 4x4 platform (b) Synthetic application, 5x5 platform

Fig. 9. The non-dominated set produced with different GA configurations


