
Real-Time Communication Analysis with a Priority
Share Policy in On-Chip Networks

Zheng Shi and Alan Burns
Real-Time Systems Research Group, Department of Computer Science

University of York, UK, YO10 5DD
{zheng, burns}@cs.york.ac.uk

Abstract—Wormhole switching with fixed priority preemption
has been proposed as a possible solution for real-time on-chip
communication. However, the hardware implementation cost is
expensive and hence constrains its practical deployment. To
address this problem, we propose a new solution by utilizing a
priority share policy to reduce the resource overhead while still
achieving the hard real-time service guarantees. The composite
model-based schedulability analysis technique and relevant pri-
ority allocation scheme are represented in this paper. Experiment
results show that significant resource saving can be achieved with
no performance degradation in terms of missed deadlines. By
using this approach, a broad class of real-time communication
with different QoS requirements can be explored and developed
in a SoC/NoC communication platform.

I. INTRODUCTION

On-chip networks (NoCs) [8], [3], have emerged as a new
design paradigm to overcome the limitation of current bus-
based communication infrastructure [9], and are increasingly
important in today’s System-on-Chip (SoC) designs. The
typical architecture of on-chip networks consists of multiple
intellectual property (IP) modules connected through an in-
terconnection network. This architecture offers a general and
fixed communication platform which can be reused for a large
number of SoC designs.

As an emerging design paradigm, NoC has some new fea-
tures [6]: a better wire utilization reduces the traffic congestion
and power consumption, a segmented architecture enables
parallelism through pipelining and has high scalability, the
computation decoupled from communication leads to IP mod-
ule reusage and interconnections to be designed separately.

Multiple IP-core based designs using NoC allows multiple
applications to run at the same time. These applications
execute the data processing and exchange information through
the underlying communication infrastructure. Some of applica-
tions have very stringent communication service requirements,
the correctness relies on not only the communication result
but also the completion time bound. A data packet received
by a destination too late could be useless. These critical
communications are called real-time communications. For a
packet transmitted over the network, the communication dura-
tion is denoted by the packet network latency. The maximum
acceptable duration is defined to be the deadline of the packet.
A traffic-flow is a packet stream which traverses the same route
from the source to the destination and requires the same grade

of service along the path. For hard real-time traffic-flows, it
is necessary that all the packets generated by the traffic-flow
must be delivered before their deadlines even under worst case
scenarios. In another words, the maximum network latency
for each packet can not exceed its deadline. A set of real-time
traffic-flows over the network are termed schedulable if all the
packets belonging to these traffic-flows meet their deadlines
under any allowable arrival order of the packet set.

As a popular switching control technique, wormhole switch-
ing [16] has been widely applied for on-chip networks due to
its greater throughput and smaller buffering requirement [11].
However, routing packets in a wormhole network is partially
non-deterministic because of the contention in communication.
These contentions cause possible delay and jitter, leading
to the violation of the timing constraints of the packets. In
order to make it possible to predict the maximum network
latency for each packet, it is possible to schedule the real-time
communications using a priority-based approach [2], [10], [18]
that allows the serving of traffic-flows with higher priorities
before traffic-flows with lower priorities. The hard timing
bound is delivered by this approach with the support of a
priority arbitration infrastructure [18]. But the major problem
of this priority-based approach is precisely that it requires
distinct priorities and an exclusive virtual channel for each
traffic-flow in a router port. This restricted implementation
structure results in higher area and energy overhead and
heavily limits its employment and development in real-time
on-chip networks.

In this paper, we propose a solution that utilizes a pri-
ority share policy to reduce the resource overhead while
still achieving hard real-time communication guarantee in
wormhole switching on-chip networks. The priority share
policy permits multiple traffic-flows to contend for a single
virtual channel and share the same priority level. Considering
the extra blocking delay introduced by this priority share, a
novel schedulability analysis approach is presented which can
effectively evaluate the timing properties of each real-time
service. This approach models all the traffic-flows sharing the
same priority as a single scheduling entity. Hence, the packet
transmission is analyzed holistically and the computational
complexity is kept low. Building on this static analysis, we
furthermore propose a share priority allocation policy, in
such a way that the timing requirements of all the traffic-
flows are met with a reduced hardware overhead. By using

these approaches, we can flexibly explore, at design time, the
quality of service (QoS) and system performance of a real-time
SoC/NoC communication platform.

The rest of this paper is organized as follows: Section II
reviews the related works and their limitations. In section III,
the wormhole switching network with priority share policy
and corresponding real-time communication model are intro-
duced. A novel schedulability analysis technique and relevant
priority allocation scheme are proposed in sections IV and
V. By experiments based on enumeration, section VI presents
the evaluation results of our approach. Finally, section VII
concludes the paper.

II. RELATED WORKS AND THEIR LIMITATIONS

Real-time communication in wormhole switching networks
has been studied widely. The early work to explore the packet’s
timing property was presented by Li and Mutka [13] in 1996.
In that paper, the trade-off between the hardware costs and the
performance under several different priority assignment and
priority adjustment polices was addressed. However the upper
bound of network latency for each packet in the network is
not delivered by Li’s method. Balakrishnan et al [2] proposed
using distinct priority per traffic-flow to solve the real-
time communication problem. Static priority preemptive policy
assures at any time only the highest priority traffic-flow can
access the link resources. Based on this priority arbitration
model, a group of schedulability analysis approaches have
been explored. Balakrishnan et al [2] and Hary et al [10]
introduced the lumped link scheme which lumps all the links
that the traffic-flow travels as one shared resource to analyze
the schedulability problem. In [12], Kim et al used a blocking
dependency graph to express the contentions a flow may meet
and derived the packet delivery upper bound. The analysis by
Lu et al [15] utilized a contention tree to take account of
the parallel interference in disjoint traffic-flows and tried to
improve the accuracy of analysis. Recently, one novel real-
time schedulability analysis approach [18] has been proposed
which successfully emulates wormhole switching as a classic
single processor scheduling model [14].

However, all these works have the basis assumption of a
distinct priority and exclusive virtual channel per traffic-flow.
This should be reasonable for a general network in terms of
cheap storage and computation resources. But the realistic
concern in implementation cost and energy consumption of
on-chip networks always means that the number of virtual
channels supported by an interconnection infrastructure is kept
as small as possible. To address this problem, we propose a
priority share scheme by mapping multiple traffic-flows onto a
single virtual channel. This optimization is simple but effective
because the complexity of the crossbar and input buffers will
be significantly reduced.

III. REAL-TIME COMMUNICATION MODEL IN WORMHOLE
SWITCHING

A. Wormhole switching with priority share

Wormhole switching is a very popular cut-through switching
strategy for on-chip networks [11]. The packets arriving at
an intermediate node are immediately forwarded to the next
node without significant buffering. Each packet in a wormhole
network is divided into a number of fixed size flits [16]. The
header flit takes the routing information and governs the route.
As the header advances along the specified path, the remaining
flits follow in a pipeline way. If the header flit encounters a link
already in use, it is blocked until the link becomes available.
In this situation, all the flits of the packet will remain in the
routers along the path and only a small flits buffer is required
in each router.

Fig. 1. Output Arbitration with Priority Share

In order to ensure hard real-time service guarantees with
limited resource, we introduce a flit-level priority arbitration
scheme, Figure 1 shows such a structure. There are a number
of prioritized virtual channels [7] available at each router
output port. The virtual channels (VCs) is a resource allocation
technique which provides multiple independent buffers for
each physical link. Each of these buffers is considered as a
virtual channel and can hold one or more flits of a packet.
A priority based arbitrator controls the access to the shared
physical link for all the virtual channels. Since VCs are not
mutually dependent on each other, the transmitting packet can
bypass a blocked one through the different VCs. This strategy
efficiently utilizes the network resource (link bandwidth) and
improves the performance with a very small buffer overhead
[5].

Differing from previous works [10], [12], [18], the distinc-
tive characteristic of our scheme is that multiple traffic-flows
per virtual channel [7] are supported. Assume each output
port of a network router only supports limited distinct virtual
channels and priority levels in terms of the restrictions of back-
plane hardware. Multiple traffic-flows loaded in the wormhole
network are allocated with the same virtual channel and thus
are mapped to the same priority. Each packet generated by
the traffic-flow inherits this priority. A packet with priority Gi
can only request the virtual channel associated with priority
Gi. With priority arbitration, at any time the packet with
the highest priority always gets the privilege to access the

output link. In addition, a higher priority packet can also
preempt a lower priority packet during its transmission (flit
level preemption). If the highest priority packet can not send
data because it is blocked elsewhere in the network, the next
highest priority packet wins the output arbitration.

B. Blocking Problem

The priority share scheme can dramatically reduce the
hardware resource overhead compared with the original dis-
tinct priority per traffic-flow scheme [10], [12], [18], but
on the other side, it may lead to significantly blocking and
unpredictable network latency [19]. Consider the fact that
traffic-flows within the same virtual channel are served in
first-in-first-out (FIFO) order because priority preemption is
only available between the different virtual channels. When a
traffic-flow has to wait for the transmission of another traffic-
flow in the same buffer due to priority share, blocking occurs.
The blocking appears in real-time communication where the
physical resource is not enough to handle the practical service
requests. Therefore, a packet can be blocked by every packet
with the same priority which arrives before it. Once a packet is
blocked by another packet with the same priority which holds
a virtual channel for a prolonged duration, it can block other
packets, which can in turn block other packets, and so on.

Fig. 2. A Case of Traffic-flows with Priority Share

As a simple example to motivate the blocking problem,
consider Figure 2, which illustrates a number of traffic-flows
loaded on a NoC platform. Flows τ1, τ2 and τ3 share the same
priority G1, τ4 and τ5 share the same priority G2 and G1 is
higher priority than G2. We assume that a packet from τ5 is
released, because of priority share τ5 can be blocked by τ4
if it arrives just after τ4. During τ4’s transmission, it can be
preempted by the packet releases from higher priority flows τ2
and τ3. Note that when τ2 or τ3 is active, τ4’s packet service
will be suspended but still occupy the link resources. In this
situation, only after τ4’s completion, can the packet from τ5
resume its transmission service. So the interference suffered by
τ4 actually extends the possible completion time of τ5. Besides
that, flow τ1 in this case also can introduce some interference
(see section IV-B) which delays the network latency of τ5
further. Eventhough flows τ1, τ2 and τ3 never share any
physical link with τ5, they still can play the major role in
determining τ5’s transmission latency. This phenomenon does
not exist in the distinct priority per flow policy. The exact
analysis in this situation is very hard due to the complicated
blocking inter-relationship between the flows.

To address schedulability under priority share, in this paper,
we change the traditional analysis view point from per traffic-
flow to per priority. The composite scheme is successfully
proposed which collapses all the flows sharing the same
priority level as a single scheduling entity. So a complicated
blocking analysis is effectively avoided. The detailed issues
will be discussed in the next section. First we will introduce
the relevant model and assumptions.

C. Traffic-flow model

A wormhole switching real-time network Γ comprises n
real-time traffic-flows Γ ={τ1, τ2, . . . τn}. Each traffic-flow τi
is characterized by seven-tuple attributes τi = (Pi, Gi, Ci,
Ti, Di, J

R
i , J

I
i). We assume that all the traffic-flows which

require timely delivery are periodic or sporadic. The lower
bound interval on the time between releases of successive
packets is called the period Ti for the traffic-flow τi. The
maximum basic network latency Ci is the maximum duration
of transmission latency when no traffic-flow contention exists.
Each real-time traffic-flow has relative deadline Di which
means all the packets belonging to this traffic-flow have the
restriction that they should be delivered from a source router
to a destination router within this bound even in the worst case
situation. Our model has the same restriction as [2], [12], [18]
that each traffic-flow’s deadline must be less than or equal to
its period, Di ≤ Ti for all τi ∈ Γ. JRi is the release jitter
[1] and denotes the maximum deviation of successive packet
releases from its period. If a packet from τi is generated at
time a, then it will be released for transmission by time a+JRi
and have an absolute deadline of a + Di. JIi is interference
jitter [18] which denotes the maximum deviation of successive
packets start service time (see section III-E).

In contrast to previous models [2], [10], [12], [18], here
we introduce two kinds of priority levels. Each traffic-flow
τi has a natural priority Pi. The natural priority is produced
relying on a distinct priority per traffic-flow policy. The value
1 denotes the highest priority and larger integers denote lower
priorities. When the network supports priority share, besides
natural priority, each traffic-flow is also assigned a system
priority Gi which is also ordered from 1. All the traffic-flows
competing for the same virtual channel will be mapped to the
same system priority. Therefore, each system priority level Gi
can be regarded as a flow set denoted by S(i). In order to
avoid run time complexity, here we require any flow if it is
assigned a system priority at a router’s port, it must have been
assigned the same system priority at each router’s port through
its path. The natural priority and system priority are assigned
off-line and remain constant at run-time. We also define two
functions P (τi) and G(τi) to obtain the corresponding natural
priority and system priority for a traffic-flow τi respectively.
It follows that τi ∈ S(G(τi)).

D. Inter-relationships between traffic-flows

To capture the relations between traffic-flows and the phys-
ical links of the network, we formalize the mesh network

topology defined as a directed graph G : V × E. V is a
set, whose elements are called nodes, each node vi denotes
one router in the mesh network. E is a set of ordered pairs
of vertices, called edges. An edge ex,y = {vx → vy} is
considered to be a real physical link from router vx to router
vy; vx is called the source and vy is called the destination.
We define a mapping space from the traffic-flow set to the
physical links Γ → E. Given a set of n traffic-flows Γ,
we can map them to the target network. The routing <i of
each traffic-flows τi is denoted by the ordered pairs of edges,
<i = {e1,2, e2,3, . . . , en−1,n}. If a traffic-flow τi shares at least
one link with τj , the intersection set between them is <i∩<j .
If <i ∩ <j = ∅, τi and τj are disjoint.

Based on whether they share the same physical links,
we introduce two different relationships between the traffic-
flows: direct competing relationship, and indirect competing
relationship. The direct competing relationship means a traffic-
flow has at least one physical link in common with the
observed traffic-flow. For any two traffic-flows τi and τj ,
if direct competing relationship exists between them, then
<i ∩ <j 6= ∅. With the indirect competing relationship, by
comparison, the two traffic-flows do not share any physical
link but there is (are) intervening traffic-flow(s) between the
given two traffic-flows. In another words, if there is an indirect
competing relationship between τi and τk, then <k ∩ <i = ∅
but <k ∩ <j 6= ∅ and <i ∩ <j 6= ∅; τj is the intervening flow
in this case.

Assuming that natural and system priorities have been as-
signed to each traffic-flow, if a packet is released, the possible
delays it suffered before completion consist of all the inter-
ferences from higher priority traffic-flows and the blocking
from the traffic-flows with the same system priority. Based on
different priority levels and the competing relationships, we
categorize the delays into four different types:

• Direct interference from traffic-flow with higher sys-
tem priority
When two traffic-flows τi and τj have a direct competing
relationship and meet the condition G(τj) > G(τi), τj
will force a direct contention with the observed traffic-
flow τi. For flow τi, we define a set SDi which includes
all the traffic-flows meeting the above conditions, SDi =
{τj |<j ∩ <i 6= ∅ and G(τj) > G(τi) for all τj ∈ Γ}.

• Indirect interference from traffic-flow with higher
system priority
When two traffic-flows τi and τk have a indirect compet-
ing relationship and meet the condition G(τk) ≥ G(τj) >
G(τi), τj is the intervening traffic-flow, τi may suffer
an indirect interference from τk even when they do not
share any physical link, see [18] for detailed description.
For flow τi, we define a set SIi which includes all
the traffic-flows meeting the above conditions, SIi =
{τk|<k ∩ <i = ∅, <k ∩ <j 6= ∅,<i ∩ <j 6= ∅ and
G(τk) ≥ G(τj) > G(τi) for all τk ∈ Γ}.

• Direct blocking from traffic-flow with same system
priority
When two traffic-flows τi and τj have the direct compet-

ing relationship and meet the condition G(τj) = G(τi), if
the packet from τj is release just before τi, τj will force
a blocking with τi. For flow τi, we define a set SSDi
which includes all the traffic-flows meeting the above
conditions, SSDi = {τj |<j ∩ <i 6= ∅ and G(τj) = G(τi)
for all τj ∈ Γ}.

• Indirect blocking from traffic-flow with same system
priority
When two traffic-flows τi and τk have an indirect com-
peting relationship and meet the conditions G(τk) =
G(τj) = G(τi), where τj is a intervening flow, τi may
suffer an indirect blocking from τk even they do not share
any physical link. An indirect blocking example has been
shown in Figure 2 where τ1 blocks τ3 and further blocks
τ2. For flow τi, we define a set SSIi which includes
all the traffic-flows meeting the above conditions, SSIi
= {τk|<k ∩ <i = ∅, <k ∩ <j 6= ∅,<i ∩ <j 6= ∅ and
G(τk) = G(τj) = G(τi) for all τk ∈ Γ}.

Note that the first two in the category correspond to the direct
and indirect interferences in the original distinct priority per
traffic-flow policy which have been presented in [18]. The
last two are the new blockings introduced by the priority
share policy, the related analysis will be addressed in the next
section.

Returning to the example in Figure 2, five traffic-flows
τ1, τ2, τ3, τ4 and τ5 are mapped into two sets, the set with
priority G1 includes τ1, τ2 and τ3, S(1) = {τ1, τ2, τ3},
the set with priority G2 includes τ4 and τ5, S(2) = {τ4,
τ5}; G1 > G2. Traffic-flows τ1, τ2 and τ3 have no shared
links with any higher system priority flow so no direct or
direct interference, Due to sharing the same system priority,
the direct and indirect blocking set for τ1, τ2 and τ3 are
SSD1 = {τ3}, SSI1 = {τ2}, SSD2 = {τ3}, SSI2 = {τ1},
SSD3 = {τ1, τ2} and SSI3 = ∅. Flow τ5 does not have any
higher priority flow, so SD5 = SI5 = ∅. Flow τ4 directly
competes with τ3 and τ2 and indirect competes with τ1 and
hence SD4 = {τ2, τ3}, SI4 = {τ1}. Besides that, τ4 and τ5 share
the same system priority level, thus SSD4 = {τ5}, SSI4 = ∅,
SSD5 = {τ4} and SSI5 = ∅.

E. Schedulability analysis with distinct priority per flow

In real-time wormhole switching networks, the schedulabil-
ity analysis for the distinct priority per flow policy has been
discussed by Shi and Burns [18]. The related idea and analysis
strategy will be reused and extended in this paper. So, we
utilize some space to review several important conclusions.
The schedulability test is based on the computation of the
worst case network latency for each traffic-flow. If the worst
case network latency R of a flow is no more than its deadline,
R ≤ D, then the traffic-flow is schedulable. If all the traffic-
flows loaded on a network are schedulable, then the traffic-flow
set is called schedulable.

The worst case network latency occurs when the following
two conditions are met:

• All the traffic-flows release packets at their maximum

rate and all the packets experience their maximum basic
network latency.

• When the packet from the observed traffic-flow is re-
leased, at the same time, all the higher priority packets
finish waiting and start to receive service.

Generally, the second condition is called the critical instant.
To determine the upper bound of network latency for a real-
time traffic-flow, the maximum basic network latency and con-
tention interference need to be calculated. The maximum basic
network latency can be calculated by static analysis of the
traffic-flow pattern and the network features. The interference,
under the fixed priority preemption policy, is determined by
the resources used by the higher priority traffic-flows. Shi and
Burns [18] gave an approach to quantify the analysis based
on two distinguishing interferences, direct interference and
indirect interference.

1) Direct higher priority interference: When only direct
higher priority traffic-flows exist, the worst case network
latency can be iteratively computed by using the following
equation [18]:

Ri =
∑
∀τj∈SD

i

d
Ri + JRj

Tj
eCj + Ci (1)

We assume the packet from the observed traffic-flow is re-
leased simultaneously with all the packets from higher priority
traffic-flows, this triggers the conditions of worst case network
latency. The packet from τi may be preempted by more than
one packet from each τj , τj ∈ SDi , since the packet releases

are repeated. The term dRi+J
R
j

Tj
e is the maximum number of

packets of a higher priority traffic-flow that can release before
τi completes.

2) Indirect higher priority interference: The observed
traffic-flow may suffer interference when indirect higher prior-
ity traffic-flows exist. The reason is that when the competition
occurs between indirect and direct higher priority packets, the
latter will experience an unexpected deferral. This deferral be-
tween a packet being generated and being served is modelled
as interference jitter. The interference jitter implies that the
practical minimum arrival interval between successive packet
arrivals of a higher priority traffic-flow is shorter than the
original assumption T . This phenomenon will introduce an
extra delay upon the observed traffic-flow. Thus, the worst
case network latency for τi needs to take this extra delay into
account when indirect interference exists. Eq.(2) denotes this
relation (see [18] for this derivation):

Ri =
∑
∀τj∈SD

i

d
Ri + JRj + JIj

Tj
eCj + Ci (2)

Note that not all the traffic-flows suffer interference jitter, this
only happens when the observed traffic-flow τi has indirect
interference , namely, JIj exists if and only if SDj ∩ SIi 6= ∅.
This possible extra delay occurs if Ri + JRj + JIj > Tj and
the amount is no more than Cj . The interference jitter of a
traffic-flow can be obtained by finding the maximum deviation
between two successive packets’ start service time. Consider

the minimum and maximum of packet start service time are
0 and Rj −Cj , the upper bound of interference jitter is given
by:

JIj ≤ Rj − Cj (3)

IV. NETWORK LATENCY UPPER BOUND ANALYSIS

One of the main challenging issues of NoC is how to
use the minimum available on-chip resource while achieving
considerable transmission quality of service. The on-chip
resource overhead can be effectively reduced with a priority
share policy. But this scheme inevitably introduces blocking
which heavily complicates the analysis process. None of
current schedulability analysis techniques [10], [12], [18] can
handle this case because all these approaches assume there are
sufficient priority levels so that blocking due to sharing virtual
channels does not occur.

A. Properties of priority share

When multiple traffic-flows share the same priority with the
D ≤ T constraint, we notice some special properties. These
properties can help us reason about the effect of blocking and
interference.

Theorem 1. When a set of traffic-flows with D ≤ T and the
same system priority are all schedulable, one flow can not
block any other flow more than once.

Proof: Let us assume a set of traffic-flow Γ =
{τ1, . . . , τn} with same priority level Gi. Suppose τa and τb
are any two flows in set S(i), Ta ≥ Tb, and both meet the
timing bound, the theorem is proved by the following two
separated statements,

1) τb can not be blocked by τa more than once while still
meeting its deadline.

2) τa can not be blocked by τb more than once while still
meeting its deadline.

With the priority share policy, any flow can be blocked by
other flows with the same priority just because of early arrival.
Thus, the interference from higher priority and blocking from
other same priority flows jointly determine the maximum
latency of the current one. Suppose during any interval [t1, t2],
t1 ≤ t2, the maximum interference suffered by a traffic-flow
τi is Ii(t1, t2). According to the property of priority share, if
τb is released ahead of τa, the interference suffered by τb will
be treated as blocking for τa, and vice versa.

With the condition Tb ≤ Ta, statement (1) can be proved by
contradiction. Let ri denote the network latency of any flow
τi. If τb is blocked by τa more than once, rb must be greater
than Ta, rb ≥ Ta. However, in order to meet the deadline, the
relation rb ≤ Db ≤ Tb ≤ Ta must be hold, which contradicts
with the above.

Statement (2) is proved by a similar contradiction. For τb,
during the time interval [0, rb], the total service requirement
from τb, τa and all the other flows sharing the same system

priority is no more than Ca+Cb+
∑

τi∈{S(i)−τa−τb}

d rb
Ti
eCi. The

total service requirement from all the higher priority flows is
no more than

∑
τi∈S(i) Ii(0, rb). The network latency is hence

derived by:

rb = Ca+Cb+
∑

τi∈{S(i)−τa−τb}

d rb
Ti
eCi+

∑
τi∈S(i)

Ii(0, rb) (4)

Since τb is schedulable with rb ≤ Db ≤ Tb ≤ Ta, and thus a
value rb where rb ≤ Tb must exist to fit Eq.(4).

On the other side, if τa is blocked by τb more than once,
ra > Tb must be true. The time interval [0, ra] can be
subdivided into [0, Tb], and [Tb, ra]. During [0, Tb], the service
requirement must be greater than the network transmission
capacity because until ra, τa just completes its packet service.
Thus, the following relation must be hold

Ca+Cb+
∑

τi∈(S(i)−τa−τb)

d t
′

Ti
eCi+

∑
τi∈S(Gi)

Ii(0, t′) > t′ (5)

where t′ is any time instant during the time period [0, Tb]. But
this contradicts Eq.(4) where a value no more than Tb can be
found to fit this equation. Hence it is impossible that τb may
block τa more than once while still meeting its deadline.

Theorem 2. A necessary condition of schedulability for a set
of traffic-flows with same priority is: max(R1, R2, . . . , Rn) ≤
min(T1, T2, . . . , Tn), where Ri is the maximum network la-
tency of τi.

Proof: Suppose τi is a flow which has the maximum
network latency in a set of traffic-flows sharing the same
priority level, Theorem 1 proves that no traffic-flow can
block another flow more than once while still meeting the
deadline, hence, Ri must be no greater than any traffic-
flow’ period in that set to assure the schedulability, namely
max(R1, R2, . . . , Rn) ≤ min(T1, T2, . . . , Tn)

B. Analysis with the composite model

The key issue of the schedulability analysis is how to
efficiently calculate worst case network latency. The analysis
technique [18] is based on per traffic-flow evaluation and tries
to find the maximum delay for each observed flow. However,
the analysis process becomes complicated when the priority
share policy is supported. Both blocking and interference need
to be taken into account. To solve this problem, here we
propose a novel scheme - composite traffic-flow model. The
composite model scheme tries to collapse all the flows sharing
the same system priority as a single scheduling entity and
hence, all the link resources required by the flows with the
same priority level are treated as a single resource competing
model. This new technique completely changes the analysis
view point from “per-flow basis” to “per-priority basis”. The
motivation behind this approach is that by composite analysis,
all the flows sharing the same priority will be scheduled as a

holistic unit, so the complicated blocking analysis is effectively
avoided and the computational complexity is kept sufficiently
low.

Consider a set of traffic-flow S(i) with the same system
priority level Gi, the following steps are used to derive a
composite task τ̂i:

1) For the composite task τ̂i, the maximum basic network
latency is assigned equal to the summation of the all the
flows in S(i).

Ĉi =
∑

∀τj∈S(i)

Cj (6)

2) Define the higher priority set hp(i); all the flows in SDj
are the members of set hp(i),

hp(i) =
⋃

∀τj∈S(i)

SDj (7)

where
⋃

is the union operation of the flow sets.

In this composite model, all the original flows in S(i) are
integrated into a single transmission unit Ĉi. Theorem 1 shows
that no traffic-flow can be blocked more than once by the other
flow with the same priority level. This actually implies the fact
that the total service requirement from priority level Gi during
[0, max(R1, R2, . . . , Rn)] is no more than

∑
τj∈S(i) Cj . We

have showed in section III-B, due to blocking, any packet
release from higher priority flow may extend lower priority
flow completion time even they never share any link resource.
Therefore all the original higher priority flows of each τj ,
τj ∈ S(i) are treated as the interference for this new composite
flow. We assume the start service time for composite traffic-
flow is released simultaneously with all the higher priority
traffic-flows, this triggers the worst case network latency based
on the condition of critical instant. Without loss of generality,
we assume this time instant is at time 0. Until the time instant
R̂i when all the transmission service from priority level Gi
complete, during the time interval [0, R̂i], the upper bound
of interference produced by any direct higher system priority
traffic-flow τj during this time interval is:

d
R̂i + JRj

Tj
eCj (8)

Note that, here we do not consider the interference jitter
problem, but it does occur when indirect higher priority flows
exist. This implies that the interference evaluated from Eq.(8)
may be less than the real worst case scenario. The relative
analysis and proof have been discussed in [18]. But the
analysis in that paper only considers distinct priorities per
traffic-flow. When the network supports priority share, the
possible interference jitter comes from two potential situations.

Figure 3 illustrates these two situations which induce inter-
ference jitter. Flow τa shares the same system priority with τj
in case 1 and higher system priority than τj in case 2. The
transmission service from τa will force in τj an un-expected
deferral. From the view of priority level-Gi flows, no matter
what scenario occurs, the final result is similar: the indirect

Fig. 3. Two possible situations for indirect interference

interference or blocking results in the real packet minimum
arrival interval from direct higher priority traffic-flow τj is less
than the original assumption Tj , this is modeled as interference
jitter. So the upper bound of interference produced by τj when
interference jitter 1 exists is:

d
R̂i +Rj − Cj + JRj

Tj
eCj (9)

where Rj − Cj is the maximal possible jitter upper bound
and Rj is the worst case latency of τj . Theorem 3 below will
prove that the network latency of τj can be found by R̂G(τj).
The interference jitter phenomenon only happens when a flow
in S(i) has indirect higher priority flow. Consider the fact that
there are two possible indirect interferences scenarios when
the network permits priority shares, either of which can result
in the interference jitter, the corresponding conditions are SDj ∩
SIi 6= ∅ or SSDj ∩ SIi 6= ∅, where τi ∈ S(i) and τj ∈ SDi .

As a result, an upper bound of network latency for the
composite flow τ̂i in the case of interference jitter and release
jitter is calculated as follows:

R̂i =
∑

∀τj∈hp(i)

d
R̂i +Rj − Cj + JRj

Tj
eCj + Ĉi (10)

The value of R̂i can be found using the usual iterative
technique [1]. The iteration starts with R̂i = Ĉi and terminates
when R̂i

n+1
= R̂i

n
. By this iterative technique, the maximum

latency can be calculated (R̂i=R̂i
n+1

=R̂i
n

).

Theorem 3. The network latency upper bound Ri for τi in
S(i) is given by:

Ri = R̂i + JRi (11)

Proof: For any flow τi, τi ∈ S(i), the maximum delay
occurs when it is released with all the higher priority flows
simultaneously and all the other flows sharing the same

1The detailed analysis and calculation about interference jitter please
reference to paper [18].

priority as τi start their services just before τi, this will produce
the maximum service requirements on the share resource. So
the earliest starting time of τi is the same as τ̂i. In the worst
case, τi will be the last flow getting transmission opportunity
in set S(i). So the end of τ̂i is looked as the completion time
of τi’s packet instance. The network latency upper bound Ri
for τi is hence given by Eq.(11).

Flow τi is schedulable, if and only if Ri ≤ Di. Notice that
if each system priority Gi only contains one traffic-flow τi,
Ĉi = Ci and hp(i) = SDi in this case, Eq.(10) is degraded
to Eq.(2). Actually, the distinct priority analysis approach [18]
is only a specific case in our composite based analysis when
each system priority is allocated to one traffic-flow only.

V. SYSTEM PRIORITY ASSIGNMENT POLICY

Wormhole switching with fixed priority arbitration has been
proposed as a possible solution for real-time on-chip com-
munication. However, the current approach emphasizing the
independency between the traffic-flows introduces excessive
virtual channel overheads, in such a way that area cost and
energy consumption become unaffordable. Mapping more than
one flow to a single virtual channel is a possible solution. The
relevant blocking analysis and schedulability test have been
represented in the previous section. However, this approach
assumes that the system priorities have already been allocated
to each traffic-flow. Consider that n traffic-flows are loaded on
the network and there are only N system priorities available,
where N ≤ n, the total number of ways that n flows can
be mapped into N priorities is ((n)!)/((N)!(n − N)!). This
implies that it is impractical to determine the optimal solution
by brute-force techniques, except for a very small size of
traffic-flow set. Hence in this section, we design a greedy
priority allocation policy which ensures schedulability with
reduced time complexity.

Two important properties for priority based wormhole
switching need to be clear before discussion of priority al-
location:

Theorem 4. [17] The network latency of a traffic-flow is not
dependent on the lower priority traffic-flows.

Theorem 5. [17] The network latency of a traffic-flow is
dependent on the higher priority traffic-flows and their relative
priority ordering.

It is obvious that the above two theorems still hold when a
priority share policy is considered. Assuming that a schedula-
ble priority ordering exists for a traffic-flow set under distinct
priority per flow policy (how to find this priority ordering
please reference [17]), now we give an assignment policy to
find a corresponding flow ordering when the network supports
priority share.

The intuition for the algorithm is as follow: at each system
priority Gk, if any traffic-flow τi exists that when τi is mapped
to priority Gk, all the flows which have been assigned system
priority Gk or less are still schedulable, τi will be assigned

priority Gk. If no additional flow mapped to Gk can lead to
a schedulable system, the system priority is increased.

Algorithm V.1: PRIORITY ASSIGNMENT ALGORITHM ()

procedure SCHEDULABILITYTEST(G)
for Gi ← G to Gn

do


R̂i ← CompositeNetworkLatency(τ̂i)
for each τi ∈ S(Gi)

do

Ri ← R̂i + JR
i

if Ri ≥ Di

then return (false)
return (true)

procedure GETFLOWWITHOUTCHECKED(G,Γ′)
if (Policy 1)

then return (LowestPriorityF low(Γ′))
if (Policy 2)

then



if (S(G) is EMPTY)
then return (LowestPriorityF low(Γ′))

else



MaxReF low ← NULL
MaxRe← 0
for each unchecked τj ∈ Γ′

do
{

if (MaxRe < ShareRe(τj , S(G))
then MaxReF low ← τj

return (MaxReF low)

main
G← Gn

while Γ′is not EMPTY

do



SetAllUnChecked(Γ′)
repeat

τi ← GetF lowWithoutChecked(G,Γ′)
TryPriorityAssignment(τi, G)
if SCHEDULABILITYTEST(G)

then
{
Assigned(τi, G)
Move(τi,Γ

′′)
else FreePriorityAssignment(τi)

SetChecked(τi)
until AllChecked(Γ′)
G← G− 1

Algorithm V.1 shows the process of system priority allo-
cation. The algorithm maintains two flow sets: Γ′ contains
flows which are not yet assigned their system priority and
Γ′′ contains flows with priority assigned. Initially, all the
flows are inserted in set Γ′, and Γ′′ is empty. The priority
assignment algorithm starts from the lowest system priority.
At each priority level, the algorithm firstly needs to find a
‘promising’ flow τi in Γ′. There we introduce two different
selection policies to find the right flow in set Γ′, the details of
which are described below. Then τi is assigned with the current
system priority G, G = Gn at the beginning, and is checked
with the schedulability test. Theorem 5 implies that all the
flows with current priority G or lower need to be checked since
the network latency may change due to the possible blocking
and interference jitter. If τi and all the flows in Γ′′ are all
schedulable, we can assign the G to τi and move it to Γ′′. If
τi can not be assigned to G, we do the same check for the
next candidate flow in Γ′. During the process of schedulability
check, we use a check status to mark each traffic-flow, namely,
checked or unchecked. This ensures that each flow only can be
checked once during a specific priority allocation. We repeat
the procedure for all the flows in Γ′ to find that any flows can

be mapped to G. If none of the flows in Γ′ can be assigned
to the current system priority G, then G is increased and the
algorithm repeats the above processing.

When considering the next candidate flow to allocate system
priority, all the flows in Γ′ should be checked in turn. To
make the priority assignment more efficient, here two greedy
selection policies help find the most likely candidate when
more than one flow is available in set Γ′.

• The first policy always returns the lowest natural priority
flow in Γ′ at each selection process.

• The second policy selects the flow which shares the
maximum network resource with all the flows at current
priority level in Γ′′. If there is no flow at current prior-
ity level, the algorithm automatically returns the lowest
natural priority one.

Theorem 6. If a schedulable priority ordering exists under
distinct priority per flow policy, there must exist a schedulable
priority ordering under priority share.

Proof: At each system priority assignment process, the
algorithm V.1 ensures that all the flows moved in set Γ′′ are
schedulable. In addition, we find that all the flows in set Γ′

still remain schedulable, because the interference on them has
decreased or at least unchanged since some higher priority
flows have been moved to set Γ′′. So after each step of system
priority assignment, the whole flow set remains schedulable.
The priority assignment algorithm will stop when all the flows
are allocated system priority. Thus, the algorithm guarantees
that if a schedulable priority ordering exists under distinct
priority per flow policy, a corresponding schedulable priority
ordering under priority share can be found.

In the worst case, the number of system priority levels
required is equal to the natural priority level which means
that no traffic-flows can share the same priority. The greedy
algorithm includes inner and outer loops and thus its time
complexity is O(N2).

VI. EXPERIMENT EVALUATION

This section presents our experimental evaluation results
concerning the resource saving improvement of the priority
share approach. The traditional distinct priority per traffic-flow
approach [18] is selected as the benchmark. We are concerned
with evaluating the reduction in the number of priorities
required and the subsequence reduction in the number of
virtual channels. Considering the fact that a low dimensional
mesh is quite common in current on-chip networks [8], [3],
we conduct our evaluation based on a 4 × 4 2D mesh. The
dimension-order X-Y routing is used because it is simple and
can be applied to any on-chip network without extra cost.
Although we focus on architectures inter-connected by 2D
mesh networks with X-Y routing schemes, our algorithm can
be adapted to other regular architectures with different network
topologies or different deterministic routing schemes.

Each traffic-flow is characterized by its period T , deadline
D, basic communication latency C and transmitting path.

A random source/destination node pair is chosen for each
traffic-flow. The basic network latency C is chosen from
the range [16, 1024] time units with a uniform probability
distribution function. Another important metric period T is
calculated by a random utilization variable ui. We employ
the uniform distribution algorithm [4] to generate a set of
uniform distributed random utilization variables. Employing
this utilization variable, each flow’s period is calculated as Ti
= Ci/ui. The traffic-flow deadline D is set to be T for all the
traffic-flows. For a set of generated traffic-flows, we ensure
the flow set does not violate predefined constraints: maximum
link utilization Umax or average link utilization Uavg . The link
utilization Ulinkj

for a single link j can be found by summing
the usages of all the m traffic-flows on this link.

Ulinkj =
m∑
i=1

Ci/Ti (12)

The maximum link utilization is the maximum number of
all the links in this network, Umax = max(Ulinkj

) where
∀linkj ∈ mesh. The average link utilization is given by:

Uavg = (
M∑
j=1

Ulinkj)/M (13)

where M is the total number of links in the network.

The major implementation overhead in supporting priority
based wormhole switching includes the total priority levels and
the amount of virtual channels. So we use the ratio of required
resource cost between priority share policy and the distinct
priority per traffic-flow policy as a performance metric. Two
groups of experiments are designed to compare the different
approaches: first we make the evaluation while varying the
overall link utilization. And then, we vary the number of
traffic-flow sets from 40 to 100 with a fixed link load. All
the experiment measures are taken under the maximum and
average link load schemes separately. Except for the evaluation
with the varied size of flow set, each generated test set contains
30 flows and each investigation level on the resulting diagrams
is the average of 1000 randomly generated flow sets. In
general, the less resources are used, the more effective for
the implementation approach.

Figure 4 and Figure 5 show the ratio of resource cost (both
priority levels and virtual channels) under each utilization
level. As expected, the priority share policy significantly
outperforms the traditional approach under all the link load
situations. Especially at lower link utilization, the priority
share scheme (policy 2) exhibits a remarkable hardware cost
saving; consuming only 20.3% of priority levels and 38.4%
of virtual channels compared with the original approach when
the network maximum link load reaches 0.4 in Figure 4.

Figure 6 and Figure 7 show the variation of the rate of
resource cost as a function of the size of the traffic-flow set for
a fixed link utilization. With the increase of the flow set size,
the difference between the priority share policy and the distinct
priority per traffic-flow policy becomes progressively larger.
Our approach shows its power and achieves better resource
saving as the flow set size increases. This is because when

Fig. 4. The ratio of resource cost under varied maximum link utilization

Fig. 5. The ratio of resource cost under varied average link utilization

more and more traffic-flows compete for the same physical
link, there is more opportunity for multiple flows to share
the virtual channel and priority level and hence decrease
the hardware overhead. In all cases, the experiment shows
the second selection policy which returns the flow with the
maximum share resource performs better than the first policy.

VII. CONCLUSION

The new on-chip communication architectures need to pro-
vide different levels of service for various components on the
same network. Wormhole switching with fixed priority pre-
emption has been proposed as a possible solution for real-time
on-chip communication. However, the hardware implemen-
tation costs always becomes the burden to restrain practical
deployment. In this paper we explore real-time communication
services with a priority share policy. A novel schedulability ap-
proach and relevant priority allocation policy are represented,
in such a way that the deadlines of all the traffic-flows are
still met with reduced resource overhead. The experimental
results show that, on average, the number of virtual channels
and priorities can be reduced by 50% and 70% respectively.
Reducing the number of virtual channels also decreases the
complexity of the switch because there needs to be fewer

Fig. 6. The ratio of resource cost with varied number of traffic-flow sets
under 0.55 maximum link utilization

Fig. 7. The ratio of resource cost with varied number of traffic-flow sets
under 0.32 average link utilization

crossbars between input and output buffers. By using these
approaches, a broad class of real-time communication with
different QoS requirements can be explored and developed in
a SoC/NoC communication platform.

REFERENCES

[1] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell, and A. J.
Wellings. Applying new scheduling theory to static priority pre-emptive
scheduling. Software Engineering Journal, 8:284–292, 1993.

[2] S. Balakrishnan and F. Ozguner. A priority-driven flow control mech-
anism for real-time traffic in multiprocessor networks. IEEE Trans.
Parallel Distrib. Syst., 9(7):664–678, 1998.

[3] L. Benini and G. D. Micheli. Networks on Chips: A New SoC Paradigm.
Computer, 35(1):70–78, 2002.

[4] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time System Journal, 30(1-2):129–154, 2005.

[5] T. Bjerregaard and S. Mahadevan. A survey of research and practices
of network-on-chip. ACM Computer Survey, 38(1):1, 2006.

[6] T. Bjerregaard and J. Spars. Implementation of guaranteed services in
the mango clockless network-on-chip. IEE Proceedings: Computing and
Digital Techniques, Vol. 153, (4)(217-229), 2006.

[7] W. J. Dally. Virtual-channel flow control. IEEE Trans. Parallel Distrib.
Syst., 3(2):194–205, 1992.

[8] W. J. Dally. Route packets, not wires: On-chip interconnection networks.
Proceedings of the 38th Design Automation Conference (DAC), pages
684–689, 2001.

[9] S. Furber and J. Bainbridge. Future trends in SoC interconnect. In IEEE
International Symposium on VLSI Design, Automation and Test, pages
183–186, 2005.

[10] S. L. Hary and F. Ozguner. Feasibility test for real-time communication
using wormhole routing. IEE Proceedings - Computers and Digital
Techniques, 144(5):273–278, 1997.

[11] N. Kavaldjiev and G.J.M. Smit. A survey of efficient on-chip communi-
cations for SoC. In 4th PROGRESS Symp. on Embedded Systems, pages
129–140, 2003.

[12] B. Kim, J. Kim, S. J. Hong, and S. Lee. A real-time communication
method for wormhole switching networks. In ICPP ’98: Proceedings
of the International Conference on Parallel Processing, pages 527–534,
1998.

[13] J.P. Li and M.W. Mutka. Real-time virtual channel flow control. J.
Parallel and Distributed Computing, 32(1):49–65, 1996.

[14] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[15] Z. Lu, A. Jantsch, and I. Sander. Feasibility analysis of messages for on-
chip networks using wormhole routing. In ASP-DAC ’05: Proceedings
of the 2005 conference on Asia South Pacific design automation, pages
960–964, 2005.

[16] L. M. Ni and P. K. McKinley. A survey of wormhole routing techniques
in direct networks. Computer, 26(2):62–76, 1993.

[17] Z. Shi and A. Burns. Priority assignment for real-time wormhole
communication in on-chip networks. In Proceeding of the 29th IEEE
Real Time System Symposium (RTSS), pages 421–430, 2008.

[18] Z. Shi and A. Burns. Real-time communication analysis for on-chip
networks with wormhole switching. In Proceeding of the 2nd ACM/IEEE
International Symposium on Networks-on-Chip(NoCS), pages 161–170,
2008.

[19] H. Song, B. Kwon, and H. Yoon. Throttle and preempt: A new flow
control for real-time communications in wormhole networks. In ICPP
’97: Proceedings of the international Conference on Parallel Processing,
pages 198–202, 1997.

