
Improvement of Schedulability Analysis with a Priority Share Policy in On-Chip
Networks

Zheng Shi and Alan Burns
Real-Time Systems Research Group, Department of Computer Science

University of York, UK, YO10 5DD
{zheng, burns}@cs.york.ac.uk

Abstract

Priority-based wormhole switching with a priority share
policy has been proposed as a possible solution for real-time
on-chip communication. However, the blocking introduced
by priority share complicates the analysis process. In this pa-
per, we propose a new “per-priority” basis analysis scheme
which computes the total time window at each priority level
instead of each traffic-flow. By checking the release instance
of each flow at the corresponding priority window, we can
determine schedulability efficiently.

1 Introduction

On-chip networks (NoCs) [8, 3], have emerged as a new
design paradigm to overcome the limitation of current bus-
based communication infrastructure [9], and are increasingly
importance in today’s System-on-Chip (SoC) designs. The
typical architecture of on-chip networks consists of multi-
ple intellectual property (IP) modules connected through an
interconnection network. This architecture offers a general
and fixed communication platform which can be reused for a
large number of SoC designs.

Multiple IP-cores based design using NoC allows multi-
ple applications to run at the same time. These applications
execute data processing and exchange information through
the underlying communication infrastructure. Some appli-
cations have very stringent communication service require-
ments, the correctness relies on not only the communication
result but also the completion time bound. A data packet re-
ceived by a destination too late could be useless. These crit-
ical communications are called real-time communications.
For a packet transmitted over the network, the communica-
tion duration is denoted by the packet network latency. The
maximum acceptable duration is defined to be the deadline of
the packet. A traffic-flow is a packet stream which traverses
the same route from the source to the destination and requires

the same grade of service along the path. For hard real-time
traffic-flows, it is necessary that all the packets generated by
the traffic-flow must be delivered before their deadlines even
under worst case scenarios.

The on-chip network is a significant solution for com-
plex communication of SoCs and outperforms the traditional
busses or a point-to-point approach in many ways [8]. But
it also introduces unpredictable network delay since the ex-
pensive hardware resources (e.g. link bandwidth and buffer
space) are usually shared by a number of applications. When
more than one packet tries to access the shared resource at
the same time, contention occurs. The contention problem,
which leads to packet delays and even missing deadlines, has
become the major influence factor of network predictability.
So how to solve contention problem is a key issue in imple-
menting guaranteed performance service in NoC design.

Contention avoidance and contention acceptance are two
basic approaches to address the contention problem. First
approach considers that contention is avoidable by trying
to pre-arrange and allocate resources before the start of
the communication, so that two packets never access the
same resource at the same time. Time division multiplex-
ing (TDM) and circuit switching are two common contention
avoidance schemes. In Ætheral [10] and Nostrum [15], the
whole link transmission capacity is partitioned into fixed
time-slots, each of which represents a unit of time when a
single application can occupy this physical link exclusively
for data transmission. But this scheme requires a global no-
tion of time in the network. Besides that, the latency is
coupled to bandwidth, preventing low latency from being
provided to low rate requirement without over-allocating.
A circuit-switching technique is used in [20, 19]. A ded-
icated connection is constructed between source and desti-
nation nodes by reserving a sequence of wiring resources.
The major problem of this scheme is that the resources that
have been reserved for a flow can not be used by any other
flow which results in the under-utilized links. The contention
avoidance policy requires the network resource to be config-
ured before the communication which lacks flexibility and

1

wastes the links transmission capacity.

A contention acceptance policy normally utilizes an ar-
biter at running time. QNoC [6] divides network services
into four levels and utilizes a priority arbiter to implement
the differentiated services. But this scheme only offers the
coarse-granularity service and does not seem to be suitable
for hard real time application. Kavaldjiev et al [12] pre-
sented a simple round-robin arbiter to cater for the real time
services. In Mango NoC project [5], a new arbiter is de-
signed which combine round-robin and priority to bound la-
tency and bandwidth. But both of them suffer the same prob-
lem as TDM that the latency is coupled with bandwidth. As
a new solution, a priority based wormhole switching tech-
nique [17] is introduced to provide communication service
guarantees. The hard timing bound is delivered by this ap-
proach with the support of a priority based router infrastruc-
ture which allocates each traffic-flow with a distinct priority
and virtual channel independently. This scheme successfully
overcomes the problem of latency coupled with bandwidth
and thus supports a wide range of traffic types. Latency anal-
ysis and validation have been discussed in a number of pa-
pers [2, 11, 13, 14, 17]. But the drawback of the priority-
based wormhole switching approach is precisely that the dis-
tinct priority per traffic-flow implementation policy results in
higher area and energy overhead and hence limits its employ-
ment and development in on-chip networks. To solve this
problem, Shi and Burns [18] proposed a priority share pol-
icy to reduce the resource overhead while still achieving hard
real-time communication guarantees. The priority share pol-
icy permits multiple traffic-flows to contend for a single vir-
tual channel and share the same priority level. In that paper
[18], the authors also presented a composite model analysis
scheme. But this approach requires that all the traffic-flows
must meet the constrain that network latency is no more than
period. This is a strong restriction. The more complex the
system, with long communication delays over several hops,
the greater the global delays will become.

In this paper, we propose a new analysis approach which
can efficiently handle wormhole switching with a priority
share policy. The new analysis is based on “per-priority ba-
sis”, that is, it computes the total time window at each prior-
ity level instead of each traffic-flow. By checking the packet
release instance of each traffic-flow at the corresponding pri-
ority window, we can verify the timing semantics of real time
traffic-flow with a simple yet efficient mechanism. The dead-
line no more than period constraint is successfully removed
by this approach with a low computational complexity. In
addition, we also find that the previous result proposed in
[18] is just a special case covered by this new analysis.

The rest of this paper is organized as follows: Section
2 introduces wormhole switching networks with a priority
share policy. Section 3 describes the real-time communica-
tion model and notations used in this paper. A novel schedu-

lability analysis technique and related example are presented
in sections 4 and 5. Finally, section 6 concludes the paper.

2 Wormhole switching with priority share

2.1 Wormhole switching structure

Wormhole switching [16] is an increasingly common in-
terconnect scheme for NoC as it minimizes communication
latencies, requires small buffer and is simple to implement.
Each packet in a wormhole network is divided into a number
of fixed size flits [16]. The header flit takes the routing infor-
mation and governs the route. As the header advances along
the specified path, the remaining flits follow in a pipeline
way. If the header flit encounters a link already in use, it is
blocked until the link becomes available. In this situation,
all the flits of the packet will remain in the routers along the
path and only a small flits buffer is required in each router.

Figure 1. Output Arbitration with Priority
Share

In order to ensure hard real-time service guarantees with
limited resources, a priority share based flit-level arbitration
structure is introduced [18], Figure 1 shows such a structure.
There are a number of prioritized virtual channels [7] avail-
able at each router output port. The virtual channels (VCs)
area resource allocation technique which provides multiple
independent buffers for each physical link. Each of these
buffers is considered as a virtual channel and can hold one
or more flits of a packet. The credit-based flow control pro-
vides each virtual channel of each router with some credit,
which is equal to the buffer size of that virtual channel of
the subsequent router. The credit is decremented upon trans-
mitting a flit and incremented upon receiving a buffer-free
notification from the next router. A priority based arbitra-
tor controls the access to the shared physical link for all the
virtual channels. Since VCs are not mutually dependent on
each other, the transmitting packet can bypass a blocked one
through the different VCs. This strategy efficiently utilizes
the network resource (link bandwidth) and improves the per-

2

formance with a very small buffer overhead [4].

Differing from previous works [11, 13, 17], the distinctive
characteristic of the priority share scheme is that multiple
traffic-flows per virtual channel are supported. These traffic-
flows sharing the same virtual channel will be mapped to the
same priority. Each packet generated by the traffic-flow in-
herits this priority. A packet with priorityGi can only request
the virtual channels associated with priority Gi. At any time,
a flit of a given packet will be sent out through its respective
output port if it has the highest priority and it has credit(s).
In addition, a higher priority packet can also preempt a lower
priority packet during its transmission. As a hybrid solution,
best-effort traffic-flows also can be multiplexed on the same
links with lowest priority (any real time flow has higher pri-
ority than best-effort flows). In the case where no real time
flow is available, best-effort flows make use of spare band-
width.

2.2 The problem of blocking

By sharing priority, the hardware resource overhead can
be reduced dramatically compared with the traditional dis-
tinct priority per traffic-flow scheme [11, 13, 17]. But on the
other side, it may lead to significantly blocking and unpre-
dictable network latency. Consider the fact that traffic-flows
within the same virtual channel are served in first-in-first-out
(FIFO) order because the priority preemption is only avail-
able between the different virtual channels. When a packet
has to wait for the transmission of another packet (this packet
can be released from the same flow or other flow) in the same
buffer due to priority share, blocking occurs. Therefore, a
packet can be blocked by every packet with the same prior-
ity which arrives just before it. Once a packet is blocked by
another packet with the same priority which holds a virtual
channel for a prolonged duration, it can block other packets,
which can in turn block other packets, and so on.

Figure 2. A Case of Traffic-flows with Priority
Share

As a simple example to motivate the blocking problem,
consider Figure 2, which illustrates a number of traffic-flows
loaded on a NoC platform. Flows τ1, τ2 and τ3 share the

same priority G1, τ4 and τ5 share the same priority G2 and
G1 is higher a priority than G2. We assume that a packet
from τ5 is released, because of priority share, τ5 can be
blocked by τ4 if it arrives just after τ4. During τ4’s transmis-
sion, it can be preempted by the packet releases from higher
priority flows τ2 and τ3. Note that when τ2 or τ3 is active,
τ4’s packet service will be suspended but will still occupy
link resources. In this situation, only after τ4’s completion,
can the packet from τ5 resume its transmission service. So
the interference suffered by τ4 actually extends the possible
completion time of τ5. Besides that, flow τ1 in this case also
can introduce some interference (see [18]) which delays the
network latency of τ5 further. Eventhough flows τ1, τ2 and
τ3 never share any physical link with τ5, they still can play
a major role in determining τ5’s transmission latency. This
phenomenon only exists when the network supports priority
share. The latency analysis in this situation is very hard due
to the complicated blocking inter-relationship between the
flows.

To simplify the blocking problem, the analysis in [18] im-
poses a deadline no more than period restriction so that one
traffic-flow can not be blocked by another flow with the same
priority more than once; this is termed single blocking. With
this property, all the flows sharing the same priority are trans-
formed into a single scheduling unit and the maximum net-
work latency is addressed by this new model. However, with-
out this enforced constraint, we find two additional blocking
phenomena may appear which also need to be considered.

Multiple blocking : A set of traffic-flows sharing the same
priority; one could block another more than once. Figure
3(A) shows such a situation. The solid up arrow indicates
the packet release instance. The packet’s latency is depicted
as horizontal arrow line. τa shares the same priority as τi, if
the transmission latency of τi is bigger than the period of τa,
τi could be blocked by τa more than once.

Figure 3. The Blocking Problem

Self-blocking : In a situation while the end flits from a
previous packet are being delivered, the start flits of the next
packet from the same flow are already introduced. Therefore,
the possible blocking delay suffered by the new arrival packet

3

comes from not only the other flows with the same priority
but also the flow itself, we refer to this as self-blocking. Fig-
ure 3(B) shows such a situation. In this example, the second
packet released from τi is blocked by the first one until its
completion. Similarly, the third packet is also blocked by the
second one, etc.

3 System model and definition

3.1 Traffic-flow model

A wormhole switching real-time network Γ comprises
n real-time traffic-flows Γ ={τ1, τ2, . . . τn}. Each traffic-
flow τi has a set of properties and timing requirements
which are characterized by six-tuple attributes τi = (Gi, Ci,
Ti, Di, J

R
i , J

I
i). We assume that all the traffic-flows which

require timely delivery are periodic or sporadic. The lower
bound interval on the time between releases of successive
packets is called the period Ti for the traffic-flow τi. The
maximum basic network latency Ci is the maximum dura-
tion of transmission latency when no traffic-flow contention
exists [17]. Each real-time traffic-flow has relative deadline
Di which is the upper bound restriction of network latency.
There is no restriction on the relationship between deadline
Di and period Ti. Any flow’s deadline can be less than, equal
to or greater than its period. JRi is the release jitter [1] and
denotes the maximum deviation of successive packet releases
from its period. If a packet from τi is generated at time a,
then it will be released for transmission by time a+ JRi and
have an absolute deadline of a + Di. JIi is interference jit-
ter [17] which denotes the maximum deviation of successive
packets start transmission time. Besides these, each traffic-
flow has a priority Gi. The value 1 denotes the highest pri-
ority and larger integers denote lower priorities. We assume
the traffic-flow is prioritized by any possible priority assign-
ment policy, e.g. a greedy priority allocation algorithm has
been proposed in [18]. All the traffic-flows competing for the
same virtual channel will be allocated to the same priority.
Therefore, each priority level Gi can be regarded as a flow
set denoted by S(i). The priority should be assigned off-line
and remain constant at run-time. We also define a functions
G(τi) to obtain the corresponding priority for a traffic-flow
τi. It follows that τi ∈ S(G(τi)).

3.2 Inter-relationships between traffic-flows

To capture the relations between traffic-flows and the phys-
ical links of the network, we formalize the mesh network
topology defined as a directed graph G : V × E. V is a
set, whose elements are called nodes, each node vi denotes
one router in the mesh network. E is a set of ordered pairs
of vertices, called edges. An edge ex,y = {vx → vy} is
considered to be a real physical link from router vx to router
vy; vx is called the source and vy is called the destination.

We define a mapping space from the traffic-flow set to the
physical links Γ → E. Given a set of n traffic-flows Γ,
we can map them to the target network. The routing <i of
each traffic-flows τi is denoted by the ordered pairs of edges,
<i = {e1,2, e2,3, . . . , en−1,n}. If a traffic-flow τi shares at
least one link with τj , the intersection set between them is
<i ∩ <j . If <i ∩ <j = ∅, τi and τj are disjoint.

Based on whether they share the same physical links,
we introduce two different relationships between the traffic-
flows: direct competing relationship, and indirect compet-
ing relationship. The direct competing relationship means
a traffic-flow has at least one physical link in common with
the observed traffic-flow. For any two traffic-flows τi and τj ,
if direct competing relationship exists between them, then
<i ∩ <j 6= ∅. In the indirect competing relationship, on
the contrary, the two traffic-flows do not share any physi-
cal link but there is (are) intervening traffic-flow(s) between
the given two traffic-flows. For example, if there are three
flows τi, τj , τk meeting the following situation, <k∩<i = ∅,
<k ∩ <j 6= ∅ and <i ∩ <j 6= ∅; τj is the intervening flow
in this case, then there is an indirect competing relationship
between τi and τk. Notice that indirect competing has transi-
tivity. If more than one intermediate flow exists, the indirect
competing relationship still holds. Following the above case,
if there is a new flow τa which has an indirect competing re-
lationship with τj (τk is intermediate flow between τa and
τj), and τa does not share any physical link with τi, then
there is an indirect competing relationship between τa and τi
(both τk and τj are intermediate flows). Figure 4 shows the
situation.

Figure 4. Transitivity in indirect competing re-
lationship

Assuming that the priorities have been assigned to each
traffic-flow, if a packet is released, the possible delays it suf-
fered before completion consist of all the interferences from
higher priority traffic-flows and the blocking from the traffic-
flows with the same priority. Based on different priority lev-
els and the competing relationships, we categorize the delays
into four different types:

• Direct interference from traffic-flow with higher pri-
ority
When two traffic-flows τi and τj have a direct compet-

4

ing relationship and meet the condition G(τj) > G(τi),
τj will force a direct interference with the observed
traffic-flow τi. For flow τi, we define a direct interfer-
ence set SDi which includes all the traffic-flows meet-
ing the above conditions, SDi = {τj |<j ∩ <i 6= ∅ and
G(τj) > G(τi) for all τj ∈ Γ}.

• Indirect interference from traffic-flow with higher
priority
When two traffic-flows τi and τk have an indirect com-
peting relationship and meet the condition G(τk) ≥
G(τj) > G(τi), τj is the intervening flow, τi may suffer
an indirect interference from τk even when they do not
share any physical link, see [17] for detailed descrip-
tion. For flow τi, we define an indirect interference
set SIi which includes all the traffic-flows meeting the
above conditions, SIi = {τk|τk has indirect competing
relationship with τi and G(τk) ≥ G(τj) > G(τi) for
all τk ∈ Γ, where τj is any intermediate flow}.

• Direct blocking from traffic-flow with same priority
When two traffic-flows τi and τj have the direct compet-
ing relationship and meet the condition G(τj) = G(τi),
if the packet from τj is release just before τi, τj will
force a blocking with τi. For flow τi, we define a direct
blocking set SSDi which includes all the traffic-flows
meeting the above conditions, SSDi = {τj |<j ∩ <i 6= ∅
and G(τj) = G(τi) for all τj ∈ Γ}.

• Indirect blocking from traffic-flow with same prior-
ity
When two traffic-flows τi and τk have an indirect com-
peting relationship and meet the conditions G(τk) =
G(τj) = G(τi), τj is the intervening flow, τi may suf-
fer an indirect blocking from τk even they do not share
any physical link. An indirect blocking example has
been shown in Figure 2 where τ1 blocks τ3 and further
blocks τ2. For flow τi, we define an indirect blocking
set SSIi which includes all the traffic-flows meeting the
above conditions, SSIi = {τk|τk has indirect competing
relationship with τi and G(τk) = G(τj) = G(τi) for
all τk ∈ Γ, where τj is any intermediate flow}.

Note that the affect of the direct and indirect interferences
has been presented in [17]. The priority share policy intro-
duces the new direct and indirect blockings. Especially with-
out constraint of D ≤ T, there are three different blocking re-
lationships which severely complicate the analysis progress.
So in this paper, we propose a new scheme which changes
the analysis view from per flow to per priority. The detailed
issues will be discussed in the next section.

Return to the example in Figure 2. Five traffic-flows
τ1, τ2, τ3, τ4 and τ5 are mapped into two sets, the set with
priority G1 includes τ1, τ2 and τ3, S(1) = {τ1, τ2, τ3}, the
set with priority G2 includes τ4 and τ5, S(2) = {τ4, τ5};

G1 > G2 in this case. Traffic-flows τ1, τ2 and τ3 have no
shared links with any higher priority flow so no direct or di-
rect interference. Due to sharing the same priority, the direct
and indirect blocking set for τ1, τ2 and τ3 are SSD1 = {τ3},
SSI1 = {τ2}, SSD2 = {τ3}, SSI2 = {τ1}, SSD3 = {τ1, τ2}
and SSI3 = ∅. Flow τ4 directly competes with higher pri-
ority flows τ2 and τ3 and indirect suffers interference from
τ1, SD4 = {τ2, τ3}, SI4 = {τ1}. Flow τ5 does not have any
higher priority flow, so SD5 =, SI5 = ∅. Besides that, τ4 and
τ5 share the same priority level, thus SSD4 = {τ5}, SSI4 = ∅,
SSD5 = {τ4} and SSI5 = ∅.

4 Network latency upper bound analysis

4.1 Priority window model

The correctness of the design and development of practical
real-time applications in priority-based wormhole switching
relies on efficient schedulability analysis. The schedulability
test in this paper is based on the computation of the worst
case network latency for each traffic-flow. If the worst case
network latency, R, of a flow is no more than its deadline,
R ≤ D, then the traffic-flow is schedulable. If all the traffic-
flows loaded on a network are schedulable, then the traffic-
flow set is called schedulable.

The term priority level-Gi shared resource is introduced
which denotes all the link resources required by the flows
with the same priority Gi. This shared resource is modeled
as a single competing unit. A priority window W (i) is used
to define a contiguous time interval during which this pri-
ority level-Gi shared resource keeps the network busy and
serves all the traffic-flows of priority higher than or equal
to the priority Gi. The priority window will continue until
the time when the shared resource becomes idle, ready for
the next transmission and yet there is no service requirement
from priority levelGi or higher waiting to be transmitted. As
shown in Figure 2, for the priority level G2 shared resource,
the links between router 3 and 6, the corresponding priority
window is the contiguous time duration where the shared re-
source keeps serving all the queueing packets with priority
G2 or higher (G1 in this case). Figure 5 illustrates a prior-
ity level-G2 window. The bold circle denotes the time the
packet is received completely at the destination node. In this
example, the total window W (2) at priority level-G2 shared
resource is the time span from the first release of τ2 to the
completion time of the second instance of τ5.

For a set of traffic-flow S(i) with the same system priority
level Gi, next, we show how to compute the corresponding
priority window W (i).

Lemma 1. The priority level-Gi window W (i) upper bound
can be calculated by the following relation:

W (i) = E(i) + I(i) (1)

5

Figure 5. Priority Level-G2 Window

where E(i) denotes the summation of service requirements
generated by all the traffic-flows with the priority Gi and
I(i) accounts all the interferences from the higher priority
traffic-flows which contend the level-Gi share link resource
during this window.

Proof. According to the definition of priority window, all
the arrival packets of priority Gi or higher before the end
of the priority window must be transmitted during the win-
dow. Besides that, any packet with priority lower than Gi is
unable to delay current window. Therefore, the width of the
priority window is equal to the time interval taken to serve
the transmission requirements, E(i), made by all the traffic-
flows with the priorityGi and all the interferences, I(i), from
the higher priority traffic-flows which contend the level-Gi
share link resource during this window.

The value E(i) and I(i) determine the priority window
for the level-Gi shared resource. So if we can find an up-
per bound of E(i) and I(i), the maximum priority win-
dow W (i) is then trivially computed. Note that, when we
explain how to calculate the priority window for Gi prior-
ity level, we assume that analysis for all the higher priority
G1, G2, . . . , Gi−1 has been completed.

Theorem 1. The maximum priority window W (i) for prior-
ity level Gi share resource can be found by:

W (i) =
∑

∀τn∈S(i)

dW (i) + JRn
Tn

eCn+

∑
∀τj∈hp(i)

d
W (i) + JRj +Rj − Cj

Tj
eCj

(2)

where hp(i) is the higher priority set, all the flows in SDi ,
τi ∈ S(i), are the members of the set hp(i),

hp(i) =
⋃

∀τi∈S(i)

SDi (3)

where
⋃

is the union operation of the flow sets.

Proof. Supposing that we can find an upper bound of the to-
tal priority windowW (i), the maximum number of instances
of a flow τn with priority Gi that can delay this window is
computed as follows:

dW (i) + JRn
Tn

e (4)

assuming the worst case release scenario of τn: the first
packet release starts JRn later than the first arrival, and the
subsequent releases are maximum packet size with the maxi-
mum release rate of 1/Tn. Consequently, the service require-
ment summation from all the flows in S(i) is thus:

E(i) =
∑

∀τn∈S(i)

dW (i) + JRn
Tn

eCn (5)

On the other hand, the interferences produced by all the
higher priority flows which compete the level-Gi shared re-
source also delay the corresponding priority window. The
maximum interference analysis has been discussed in [18].
During any time interval, an upper bound of interference pro-
duced by any higher priority traffic-flow τj when interference
jitter exists is:

d
W (i) + JRj +Rj − Cj

Tj
eCj (6)

where Rj − Cj is the maximal possible jitter upper bound
and Rj is the worst case latency of τj . Theorems 2 and 3 be-
low will show that the network latency of τj can be found by
calculating the corresponding priority window. The interfer-
ence jitter phenomenon only happens when indirect higher
priority flow exists. The paper [18] has discussed two pos-
sible conditions, SDj ∩ SIi 6= ∅ or SSDj ∩ SIi 6= ∅, where
τi ∈ S(i) and τj ∈ SDi , either of which can result in the
interference jitter.

Any packet release from the higher priority flows which
compete the priority level-Gi shared resource will finally ex-
tend the corresponding priority window W (i). For conve-
nience, we define a higher priority set hp(i), all the flows in
SDi , τi ∈ S(i) are inserted into set hp(i). The maximum
interferences produced by these higher priority flows can be
computed as follows:

I(i) =
∑

τj∈hp(i)

d
W (i) + JRj +Rj − Cj

Tj
eCj (7)

Combining Eq.(1), Eq.(5) and Eq.(7) , an upper bound of
priority level-Gi window in case of interference jitter and

6

release jitter is given by:

W (i) =
∑

∀τn∈S(i)

dW (i) + JRn
Tn

eCn+

∑
∀τj∈hp(i)

d
W (i) + JRj +Rj − Cj

Tj
eCj

(8)

The result of W (i) can be solved using the iterative tech-
nique [1]. The iteration starts with W (i)0 =

∑
∀τn∈S(i) Cn

and terminates when W (i)n no longer increases, it has con-
verged. By this iterative technique, the maximum priority
window can be calculated (W (i) = W (i)n+1 = W (i)n).

4.2 Maximum network latency

Based on the maximum priority window of Gi, the next
step is how to find the maximum network latency for each
flow in S(i). For any observed flow τi, τi ∈ S(i), the max-
imum delay occurs when it is released with all the higher
priority flows simultaneously and all the other flows sharing
the same priority as τi start their services just before τi, this
will produce the maximum service requirements on the share
resource. So the earliest starting time of τi is the same as the
priority level Gi window beginning. To calculate the worst
case network latency, we need to find the latest completion
time. Due to the multiple blocking and self-blocking prob-
lems, if more than one packet instance is released from the
same flow during a priority level Gi window, then it is nec-
essary to check these instances in order to find the overall
worst case network latency of traffic-flow.

Motivated by the observation of the relation between pri-
ority window and period, we check the priority window at
three different situations: W (i) ≤ min(Tn−JRn),min(Tn−
JRn) < W (i) ≤ Ti − JRi and W (i) > Ti − JRi , (τn is any
flow in S(i)) as showed in Figure 6.

Figure 6. Three possible relations between pri-
ority window and period

Theorem 2. The maximum network latencyRi for τi is given
by:

Ri = W (i) + JRi (9)

when W (i) ≤ Ti − JRi

Proof. The interval [0, Ti − JRi] is divided into two subin-
tervals [0, min(Tn − JRn)] and (min(Tn − JRn), Ti − JRi].

If condition W (i) ≤ min(Tn − JRn) for ∀τn ∈ S(i) is
true, then the priority window ends at or before any repeated
release from flow with priorityGi. This means that no traffic-
flow can be blocked by any other flow sharing the same prior-
ity more than once. The multiple blocking and self blocking
discussed in section 2.2 do not occur. In the worst case, τi
will be the last flow getting transmission opportunity in this
priority window. So the ending of the priority window is the
completion time of τi’s packet instance. The maximum net-
work latency Ri for τi is hence given by:

Ri = W (i) + JRi (10)

We also find that for ∀τn ∈ S(i), the relation
dW (i)+JR

n

Tn
e = 1 is always true. Eq.(5) in this situation is

simplified as
∑
∀τn∈S(i) Cn and the priority window analy-

sis scheme is degraded to the composite analysis presented
in [18]. Actually, the composite model analysis is only a
specific case in the priority window analysis when W (i) ≤
min(Tn − JRn).

If min(Tn − JRn) < W (i) ≤ Ti − JRi is true, this implies
that only the first packet instance of τi is served during this
window and no self-blocking occurs. But multiple packet in-
stances from any other flow in S(i) may fall into the current
window because of ∃τn ∈ S(i), dW (i)+JR

n

Tn
e > 1. These

multiple blockings will delay the completion time of the cur-
rent packet, but the worst case latency still can be found by
checking the priority window. In this case, only one packet
instance is released by τi, hence the existing relation showed
by Eq.(10) is still valid and hence provides the maximum
network latency.

From the above discussion, the maximum network latency
is calculated by Eq.(10) when W (i) ≤ Ti − JRi .

If W (i) > Ti − JRi , then more than one packet instance
of τi is generated during a priority level-Gi window. Some
successive generated packets from τi might be blocked by
previous ones. In this situation, the delay from self-blocking
also needs to be taken into account.

Theorem 3. The maximum network latencyRi for τi is given
by:

Ri = max
q=1,...,d

W (i)+JR
i

Ti
e
(wq(i)− (q − 1)Ti + JRi) (11)

where q is the index of packet instance, and wi(q) is given

7

by:

wq(i) = qCi +
∑

∀τn∈S(i),τn 6=τi

dwq(i) + JRn
Tn

eCn+

∑
∀τj∈hp(i)

d
wq(i) +Rj − Cj + JRj

Tj
eCj

(12)

when W (i) > Ti − JRi .

Proof. The number of packets that could be released from τi
before the end of the priority window is given by:

dW (i) + JRi
Ti

e (13)

To determine the worst case network latency, we must check
all the packet instances during the priority window. The max-
imum of these values gives the worst case network latency.

Figure 7. Priority Level-Gi window with Self-
blocking

Figure 7 shows self-blocking during a priority level-Gi
window. We use the index variable q to denote a packet in-
stance of τi. The first packet in the window corresponds to
q = 1 and the final one is q = dW (i)+JR

i

Ti
e. Therefore, the

time from the first release of τi until achieving the qth trans-
mission is given as a collection of service requirements from
all the flows which compete the priority-Gi shared resource.
We assume a new time phase wq(i) which denotes the time
interval from the beginning of the priority window until the
completion of the qth packet transmission. The time phase
for the 1st, the 2nd and the 3rd packet in the window are
shown in Figure 7 as w1(i), w2(i) and w3(i) respectively.
The time phase wq(i) is given by:

wq(i) = qCi +
∑

∀τn∈S(i),τn 6=τi

dwq(i) + JRn
Tn

eCn+

∑
∀τj∈hp(i)

d
wq(i) +Rj − Cj + JRj

Tj
eCj

(14)

The variable qCi accounts for the transmission service
time of the first q packet instances of τi during the priority
window. The final part of the right hand side of this equa-
tion includes all the service requirements from priority level
Gi or higher flows which fall in this time windows wq(i).
The value of wq(i) can be found by the similar iteration pol-
icy while starting with wq(i)0 = Ci + qTi and ending when
wq(i)n+1 = wq(i)n. The generation time of the qth packet
happens at instant (q − 1)Ti relative to the start of priority
window so the network latency of the qth instance is given
by:

Ri(q) = wq(i)− (q − 1)Ti + JRi (15)

The maximum network latency can occur at any one of
these packet releases during the priority window. We will
consecutively analyze each release until τi stops blocking it-
self; which means the packet transmission service finishes
within the same period as it is released, W (i) ≤ qTi − JRi .
Thus maximum network latency is given by:

Ri = max
q=1,...,d

W (i)+JR
i

Ti
e
(wq(i)− (q − 1)Ti + JRi) (16)

Finally, flow τi is schedulable, if and only if Ri ≤ Di.

5 A case example

Revisiting the example given in Figure 2. The inter-
relations between these traffic-flows have been examined in
section 3.2. The attributes of the traffic-flows are showed in
Table 1. The time units are not necessary in this analysis as
long as all the traffic-flows use the same base.

Real-Time Traffic-flow C G T D JR

τ1 2 1 8 8 0
τ2 2 1 11 11 0
τ3 4 1 13 13 0
τ4 3 2 8 12 0
τ5 1 2 30 30 0

Table 1. Traffic-flows Description

Flows τ1, τ2 and τ3 share the same priority G1. Utilizing
priority window analysis, first we calculate theW (1) accord-
ing to Eq.(2):

W (1) = dW (1)
T1
eC1 + dW (1)

T2
eC2 + dW (1)

T3
eC3

Utilizing the iterative technique,

W (1)0 = 2 + 2 + 4 = 8
W (1)1 = d 88e2 + d 8

11e2 + d 8
13e4 = 2 + 2 + 4 = 8

8

The recurrence stops at W (1) = 8 which is less than
min(Tn − JRn) for ∀τn ∈ S(1). So R1=R2=R3 = W (1)
=8 less than D.

Flows τ4 and τ5 share the priority level G2. The maximum
window for G2 not only considers the blocking but also the
interference from higher priority flow. In this case, τ2 and τ3
contend for the priority level G2 shared resources and hence
contribute direct interference. Besides that, the activity of
indirect higher priority flow τ1 also can introduce some ex-
tra interference which is treated as interference jitter. So the
window for G2 is given by:

W (2) =
dW (2)

T2
eC2 + dW (2)+R3−C3

T3
eC3 + dW (2)

T4
eC4 + dW (2)

T5
eC5

which iteratively results in W (2) = 22.

For τ5,W (2) < T5, so only one instance is released during
this window. According to Theorem 2, R5 = W (2) = 22.

For τ4, since dW (2)
T4
e = 3, there are three packet instances

released during the priority window. We need check all these
instances to determine the worst case network latency. Uti-
lizing Theorem 3, the window phases for the first packet, first
two packets and the first three packets are w1(2), w2(2) and
w3(2) respectively. Using Eq.(14) and Eq.(15), we get:

w1(2) = 10 and R4(1) = 10− 0 = 10
w2(2) = 19 and R4(2) = 19− 8 = 11
w3(2) = 22 and R4(3) = 22− 8 ∗ 2 = 6

The maximum network latency is thus max(R4(1), R4(2),
R4(3)) = 11. All the flows meet their deadlines and the set
is schedulable.

6 Conclusion

The new on-chip communication architectures need to pro-
vide different levels of service for various components on the
same network. Wormhole switching with fixed priority pre-
emption has been proposed as a possible solution for real-
time on-chip communication. Utilizing a priority share pol-
icy, the resource overhead can be reduced effectively. How-
ever, in order to simplify the analysis process, an existing
technique imposes a deadline no more than period restric-
tion which will bring inflexibility to network exploration and
design. In this paper, we relax this constraint and present a
novel analysis approach to cover all possible situations. Uti-
lizing this new analysis scheme, we can flexibly evaluate at
design time the schedulability of traffic-flow sets with dif-
ferent QoS requirements in a real-time communication plat-
form.

References

[1] N. C. Audsley, A. Burns, M. Richardson, K. W. Tindell,
and A. J. Wellings. Applying new scheduling theory to
static priority pre-emptive scheduling. Software Engi-
neering Journal, 8:284–292, 1993.

[2] S. Balakrishnan and F. Ozguner. A priority-driven flow
control mechanism for real-time traffic in multipro-
cessor networks. IEEE Trans. Parallel Distrib. Syst.,
9(7):664–678, 1998.

[3] L. Benini and G. D. Micheli. Networks on Chips: A
New SoC Paradigm. Computer, 35(1):70–78, 2002.

[4] T. Bjerregaard and S. Mahadevan. A survey of research
and practices of network-on-chip. ACM Computer Sur-
vey, 38(1):1, 2006.

[5] T. Bjerregaard and J. Spars. A scheduling discipline
for latency and bandwidth guarantees in asynchronous
network-on-chip. In ASYNC ’05: Proceedings of the
11th IEEE International Symposium on Asynchronous
Circuits and Systems, pages 34–43, 2005.

[6] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
QNoC: QoS architecture and design process for net-
work on chip. Journal of Systems Architecture, 50(105-
128), 2004.

[7] W. J. Dally. Virtual-channel flow control. IEEE Trans.
Parallel Distrib. Syst., 3(2):194–205, 1992.

[8] W. J. Dally. Route packets, not wires: On-chip inter-
connection networks. Proceedings of the 38th Design
Automation Conference (DAC), pages 684–689, 2001.

[9] S. Furber and J. Bainbridge. Future trends in SoC in-
terconnect. In IEEE International Symposium on VLSI
Design, Automation and Test, pages 183–186, 2005.

[10] K. Goossens, J. Dielissen, and A. Radulescu. Aethereal
network on chip: Concepts, architectures, and imple-
mentations. IEEE Des. Test, 22(5):414–421, 2005.

[11] S. L. Hary and F. Ozguner. Feasibility test for real-time
communication using wormhole routing. IEE Proceed-
ings - Computers and Digital Techniques, 144(5):273–
278, 1997.

[12] N. Kavaldjiev, Gerard J. M. Smith, P. G. Jansen, and
P. T. Wolkotte. A virtual channel network-on-chip for
GT and BE traffic. In ISVLSI ’06: Proceedings of the
IEEE Computer Society Annual Symposium on Emerg-
ing VLSI Technologies and Architectures, page 211,
Washington, DC, USA, 2006. IEEE Computer Society.

9

[13] B. Kim, J. Kim, S. J. Hong, and S. Lee. A real-
time communication method for wormhole switching
networks. In ICPP ’98: Proceedings of the Interna-
tional Conference on Parallel Processing, pages 527–
534, 1998.

[14] Z. Lu, A. Jantsch, and I. Sander. Feasibility analysis of
messages for on-chip networks using wormhole rout-
ing. In ASP-DAC ’05: Proceedings of the 2005 con-
ference on Asia South Pacific design automation, pages
960–964, 2005.

[15] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch. Guar-
anteed bandwidth using looped containers in tempo-
rally disjoint networks within the Nostrum network on
chip. In Proceedings of the Design Automation and
Test Europe Conference (DATE), page 20890, February
2004.

[16] L. M. Ni and P. K. McKinley. A survey of worm-
hole routing techniques in direct networks. Computer,
26(2):62–76, 1993.

[17] Z. Shi and A. Burns. Real-time communication analy-
sis for on-chip networks with wormhole switching. In
Proceeding of the 2nd ACM/IEEE International Sym-
posium on Networks-on-Chip(NoCS), pages 161–170,
2008.

[18] Z. Shi and A. Burns. Real-time communication anal-
ysis with a priority share policy in on-chip networks.
In 21st Euromicro Conference on Real-Time Systems
(ECRTS), pages 3–12, 2009.

[19] D. Wiklund and D. Liu. Socbus: Switched network on
chip for hard real time embedded systems. In IPDPS
’03: Proceedings of the 17th International Sympo-
sium on Parallel and Distributed Processing, page 78.1,
Washington, DC, USA, 2003. IEEE Computer Society.

[20] P. T. Wolkotte, G. J. M. Smit, G. K. Rauwerda, and
L. T. Smit. An energy-efficient reconfigurable circuit-
switched network-on-chip. In IPDPS ’05: Proceedings
of the 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS’05) - Workshop 3, page
155.1, Washington, DC, USA, 2005. IEEE Computer
Society.

10

