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Abstract— Performance predictability in Networks-on-

Chip usually comes with high area and energy overheads. 

As an alternative approach, this paper presents a low 

overhead technique called Priority Forwarding and 

Tunnelling (PFT) which aims to enhance performance 

predictability in simple non-preemptive NoC routers. It 

addresses the negative impact of Head-of-line (HOL) 

blocking by temporarily boosting the priority of low 

priority packets that prevent the timely transmission of 

high priority packets. Further HOL blocking is prevented 

by opening priority tunnels across the NoC, preventing 

lower priority packets from acquiring output ports that 

will be needed by high priority packets in the near future. 

Extensive evaluation using the R3 NoC under different 

traffic loads shows the effectiveness of the proposed 

technique and quantifies the required hardware 

overheads.   
 

Keywords- Network-on-Chip, Predictability, Head-of-line 

blocking, Priority Forwarding and Tunnelling  

I. INTRODUCTION 

Over the years, advancement in chip technologies and the 

surge in processing element numbers elevated communication 

infrastructure as a major limiting factor as far as both 

performance and power consumption are concerned [1]. 

Though Network-On-Chip (NoC) is a prominent technology 

to address this issue, designing one has always been a trade-

off between bandwidth, latency, power consumption and area 

overhead. In this paper, our focus is on the ability of a NoC to 

provide predictable communication performance, i.e. reduced 

variability in communication latencies.  

To increase predictability, NoC designers have been using 

several techniques like preemptive arbitration [2], Virtual 

Channels (VCs) [3] and Time Division Multiplexing (TDM), 

all of which have high area and energy overheads. Though 

expensive, choosing not to use those techniques can have a 

negative impact on the NoC’s predictability, as it makes it 

susceptible to Head-of-Line (HOL) blocking. As a result, high 

priority packet latencies can increase as they can fail to secure 

arbitration when low priority packets utilising the same 

communication channel are blocked down the line. This paper 

presents Priority Forwarding and Tunnelling (PFT), a low 

overhead predictability enhancement technique for non-

preemptive NoCs, aiming to minimise the negative impact of 

HOL blocking and increase performance predictability. We 

demonstrate the effectiveness of the proposed technique 

within the R3 NoC, a simple priority-based non-preemptive 

architecture.  

The paper continues with the review of some of the well-

known NoC architectures and in Section III a typical HOL 

blocking scenario is depicted to motivate the improvements 

that are achieved through PFT. Section IV then details the 

proposed PFT technique and the R3-based evaluation setup is 

presented in Section V followed by simulation results in 

Section VI.  

II. BACKGROUND 

NoC is a promising communication infrastructure for 

multicores particularly due to the wide array of variable 

parameters presented to the designer, like topology, routing 

algorithm and switching strategy yielding a multitude of 

optimisation opportunities and its associated overheads. For 

example, the Hermes [4] NoC by Moraes et al was intended to 

be a low overhead and simple NoC architecture and hence it 

utilised wormhole switching and XY-routing making it 

extremely lightweight. Such a choice reduced the resource 

requirements to a bare minimum, but prevented the provision 

of packet latency guarantees, making it unpredictable.  

QNoC, a predictability enhanced NoC was presented by 

Bolotin et al in [2] where packets can be provided with one of 

the four priority classes, and the priority value is used by the 

arbiter to deal with contention over output links. QNoC 

architecture featured preemption by which a higher priority 

packet requesting arbitration to a link is allowed transmission 

even if the link is engaged by a lower priority packet by 

preempting the lower priority transmission into buffers. QNoC 

does succeed in improving predictability of high priority 

packets but implementation of preemption increases 

significantly the area and energy overheads due to buffers and 

crossbars. Other approaches such as MANGO [5] use VCs to 

enhance predictability and improve latency figures under 

blocking. VC implementation costs both in logic hardware as 

well as buffering making the overall design bulky. This is 

quite clear in the work by Mello et al. in [6] where an 

advanced version of Hermes NoC with VCs was tested. It 

stated that while the Hermes with a single VC took 17% of the 

logic area of their hardware test-bed, the design with two and 

four VCs took 32.61% and 75.41% of the logic area 

respectively, which certainly cannot be neglected.  

AEthereal [7] on the other hand implemented TDM as the 

means to bring about creditable predictability but as similar to 

VCs, TDM is expensive and the increase of NoC size results 
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in the increase of TDM slot tables, thus limiting scalability. 

For enhancing predictability, approaches like [8], [9] and [10] 

used dynamically adaptive routing by monitoring traffic in the 

NoC in real-time. While Ge et al. in [8] utilised a centralised 

monitoring module to alter the source routing depending on 

the traffic on the NoC, Cidon et al. in [9] utilised traffic maps 

in their design for a similar mode of operation. Rantala et al. 

in [10] dealt with adaptability in a distributed perspective 

where the source routing at each network interface was altered 

depending on the congestion information retrieved from 

neighbouring routers. While these techniques deal with 

congestion in a defensive manner by avoiding routing of 

packets to congested routers, PFT provides more of an 

aggressive approach by confronting congestion head on.  

III. MOTIVATING EXAMPLE 

The evaluation platform for PFT is designated as the R3 

NoC and it follows a five port router architecture based 

roughly around Hermes [8] hence employing XY-routing and 

wormhole switching to reduce hardware requirements. R3 

NoC follows a mesh topology and unlike Hermes, each R3 

packet header includes a priority value which is used by the 

arbitration unit of the router to resolve contention between 

packets over output ports. 

One of the issues with such non-preemptive NoCs is that 

high priority packets could fail to secure arbitration if low 

priority packets already occupying the link are blocked down 

the line by other packets. This is called HOL blocking and a 

typical HOL blocking scenario is depicted in Figure 1 where 

boxes represent routers and arrows represent packets with the 

number inside the circles depicting its priority. Assuming 1 as 

the packet with the highest priority and that the priority 

decreases with increase in the numeric value (i.e. 2 less than 1, 

3 less than 2 and so on), if all packets in the figure have 

destination south of the router (1,2), it can be observed that 

packets 3, 4 and 8 are withheld from securing arbitration as 

packet 9 is utilising the south port of router (1,2).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 : Head-of-line blocking example 

As packet 9 is of lower priority than others, it can be 

blocked down the line easily; hence indefinitely blocking 

higher priority packets like 1, 3, 4 and 8 up the line despite 

their higher priorities. Even if packet 9 goes through, the issue 

elevates further as packet 3 would get arbitration ahead of 

packet 4 forcing packet 1 to wait further up the line. When 

packet 3 finishes transmission, packet 4 would be transmitted 

followed by packet 8 ahead of 1 unless the router is designed to 

provide arbitration to packets immediately after the transfer of 

the preceding packet. As a result despite the highest priority 

value possible, packet 1 would have to wait until all the other 

packets get transmitted. Since all the other packets are 

susceptible to further blocking down the line due to their lower 

priority values, packet 1 is susceptible to have further waiting 

stages which could hamper its latency even more. Thus, under 

ordinary situation, the final transmission order of router (1,2)’s 

south port would be 9-3-4-8-1 (8 before 1 if arbitration in 

routers take more than a clock cycle) which goes against 

application-level priority assignment. Consider the case where 

the priority of packets sent from router (0,2) is 2 rather than 8. 

Under this situation, unless the period of packets from routers 

(0,2) and (2,2) is sufficiently high, packet 4 would never get 

arbitration as the packets from routers (0,2) and (2,2) would 

utilise the link in turns, one after the other hence blocking 

packet 1 up the line for ever. 

    R3 router utilises PFT to deal with all of the above issues 

hence ultimately enabling the south port of router (1,2) to 

transmit packets in the order 9-4-1-3-8. The use of PFT also 

prevents indefinite blocking of packet 9 and 4 down the line 

by other packets which would improve latency figure of 

packet 1 even further. 

IV. PRIORITY FORWARDING AND TUNNELLING (PFT) 

To resolve HOL-blocking, the first step as per PFT is to 

forward the priority of the high priority packet (blocked up the 

line) through the network until the blocked header of the low 

priority packet is encountered. Once the header is found, its 

priority is boosted to the priority of the high priority packet so 

that the block is resolved. For enhanced performance, the 

output port in the path that will be used by the high priority 

packet in the future will be tunnelled (locked) for that specific 

priority value such that packets with lesser priority will not be 

granted arbitration to that port temporarily until the high 

priority packet is transferred. 

As an example, the functionality of a PFT-enabled R3 NoC is 

shown in Figure 2, detailing the internal design of routers (1,1) 

and (1,2) under the scenario depicted in Figure 1. Whenever a 

R3 packet gets blocked and the flow that caused the block is 

blocked as well, its destination address and priority value are 

stored into a ‘local blocking data’ register called -register as 

seen inside the north port of router (1,1) (where packet 1 is 

blocked). This information is sent through the network to the 

router to which the port is requesting arbitration towards and 

when the next router receives this data, it is stored into its 

‘remote blocking data’ register called -register (as shown 

inside the north port of router (1,2)). Similarly, this 

information is transferred from router to router until it reaches 

the header of the blocked packet (down the line) and if the 

arbitration request priority of the blocked packet is less than 

that of the blocking information carried in the corresponding 

-register, the priority of the request is boosted to that of the 

packet blocked up the line (in this case, priority of arbitration 

request of packet 4 boosted to 1 at north port of router (1,2)). 
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Figure 2 : PFT operation example 

In this example, this allows packet 4 to obtain arbitration to 

the south port of router (1,2) ahead of packet 3 despite its 

lower priority value. To prevent other packets from securing 

arbitration to the south output port of router (1,2), R3 also 

preforms what we call tunnelling by which the minimum 

priority for arbitration to a specific output port can be set. In 

the example, the south port is tunnelled to priority 1 which 

would prevent packet 8 from securing arbitration before 

packet 1 if the design takes more than once clock cycle for 

arbitration. This lockable arbitration feature is built into the 

arbitration unit which enables R3 routers to prevent further 

HOL blocking on those specific routers by other packets. 

    This tunnelling of output port may or may not be done to 

the same port to which the packet blocked down the line 

(packet 4 in this case) is requesting arbitration to. In the 

current example, since packet 4 and 1 have the same 

destination, the same path of packet 4 is tunnelled for packet 

1. Consider the case if the destination of packet 1 is (1,2). 

Then packet 1 would be utilising the local port of (1,2) after 

packet 4 is transmitted and hence the local port would be the 

one that has to be tunnelled in advance. This is why the 

destination information of the packet blocked up the line is 

send as part of the blocking data so that the R3 routers down 

the line can determine the appropriate router and its 

appropriate output port to tunnel.  

      In the actual implementation, each input port of each 

router would have a -register and each input port apart from 

the local port would have a -register though it’s not shown in 

Figure 2 for simplicity. Similarly, to lock output ports for 

specific priority values, each output port would have a register 

to hold such information if necessary.   

      -registers and -registers would be serviced one at a time 

in round robin fashion such that if the required operation is not 

possible (due to busy connection lines or registers), that 

register is skipped and the next register is serviced. For lower 

hardware overhead, there is another low performance version 

of R3 featuring TDM for servicing the registers. As 

transactions do not occur when packets are blocked, the data 

links itself could be used to transfer -register and -register 

data in-between routers hence reducing any additional 

overhead of extra connection lines. Although the current R3 

implementation (R3B4) uses dedicated lines, future versions 

are planned without those for lower hardware overhead. 

V. EVALUATION SETUP 

The evaluation prototype based on the R3 NoC was 

designed in Bluespec and simulated using BlueSim simulator. 

The setup consists of the router design enveloped in a 

parameterisable test-bench which replicates and interconnects 

the routers according to a 2D-mesh topology. The local port of 

each router was connected to packet-generators which could 

be pre-set with parameters like start time, period, packet size, 

priority and destination. Apart from conditioning the data to 

the required flit format and injecting into the NoC, the packet-

generators also receive packets from the NoC and export 

evaluation figures to an external file. For testing the 

performance of PFT under different load conditions, we use 

average load per link (V) as the metric to classify the different 

evaluation scenarios used. For a fixed task mapping, as the 

total load in the NoC could be found by summing the ratio of 

total transmission time and period of each kind of packet, 

dividing it by the number of links would provide the average 

load per link (V) as shown in Equation 1. 
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  Eq. 1         
 

(W- NoC Width, H- NoC Height, C- Latency, H- Hops, P- Period, L- Number of links) 
 

 

    As per the equation, V increases with the load in the NoC 

and a 4x4 NoC was tested with and without PFT under 

different values of V by adjusting the periods of packets. 

VI. IMPLEMENTATION RESULT 

The latency figures of the NoC with and without PFT under 

V=0.464 and V=0.755 are presented as box-plots in Figures 3 

and 4 respectively. The box-plot whiskers (thin lines connected 

to each box) represent the extreme cases of latency (hence best 

and worst case) and the boxes enclose the upper and lower 

quartile of latency with the middle line depicting the median. 

For a specific packet, the closer the boxplot is to the X-axis the 

lower the latency and the shorter the box of the boxplot, the 

lower the variability in latency.  

As contentions would have been rare events, at extremely 

low load conditions, PFT provided only minor improvement in 

latency and variability for V=0.464 (Figure 3). When the NoC 

was loaded with higher intensity traffic (V=0.755) contention 

situations increased and hence the performance as seen in 

Figure 4. 
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Figure 5: Packet reception Cumulative Frequency at V=1.54 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4, it can be seen that when PFT was switched on, 

for high priority packets (packets 1,2,3,4 and 5), the box and 

whiskers got lower and shorter depicting lower latency and 

lesser variability at the cost of low priority packets (like 

packets 10 and 11). 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

When the NoC was put under heavy traffic condition 

(V=1.54), the ill effects of HOL blocking becomes critically 

prominent. Without engaging PFT, high priority packets 1 and 

2 get blocked indefinitely and as a result, less than two packets 

of priority 1 and 2 got through the network in 10
5
 clock cycles 

while hundreds of packets with lower priority reached their 

destination. This can be seen in Figures 5 where the 

cumulative frequency of packet reception numbers is plotted. 

In the plot, it can be seen that the line depicting the 

performance with ‘PFT ON’ is ahead of the other line for high 

priority packets (packets 1 to 10) hence depicting higher 

reception numbers. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Despite the performance figures, PFT logic has modest 

hardware requirements. On evaluation with Xilinx tools, it 

was verified that the overhead of R3 router with PFT logic 

was 8% adder/subtractors, 27% registers and 142% 

comparators compared to the R3 router without PFT logic.  

VII. CONCLUSION 

    To increase predictability of non-preemptive NoCs, this 

paper introduced the PFT technique which counters the ill 

effects of HOL blocking. The paper also presented the R3 

NoC, the evaluation prototype for PFT and its implementation 

and operational details along with preliminary test results. 

Under normal load conditions, PFT provided lower latency 

and variability than the baseline NoC architecture and under 

heavy load conditions; it provided increased responsiveness 

by preventing high priority packets from getting blocked 

indefinitely by low priority packets. Though the performance 

improvement is significant as shown by the simulation results, 

the hardware overhead associated with PFT logic on the R3 

NoC is modest. Future work will optimise the technique even 

further by allowing the PFT control messages to use the full 

bandwidth of the NoC links. This can be done without any 

impact on performance, as PFT is only used over paths that 

are completely blocked and thus not utilised.  
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