
PFT- A Low Overhead Predictability Enhancement

Technique for Non-Preemptive NoCs

Bharath Sudev, Leandro Soares Indrusiak

Department of Computer Science

The University of York, U.K. YO10 5GH

Email: [bs638, leandro.indrusiak]@york.ac.uk

Abstract— Performance predictability in Networks-on-

Chip usually comes with high area and energy overheads.

As an alternative approach, this paper presents a low

overhead technique called Priority Forwarding and

Tunnelling (PFT) which aims to enhance performance

predictability in simple non-preemptive NoC routers. It

addresses the negative impact of Head-of-line (HOL)

blocking by temporarily boosting the priority of low

priority packets that prevent the timely transmission of

high priority packets. Further HOL blocking is prevented

by opening priority tunnels across the NoC, preventing

lower priority packets from acquiring output ports that

will be needed by high priority packets in the near future.

Extensive evaluation using the R3 NoC under different

traffic loads shows the effectiveness of the proposed

technique and quantifies the required hardware

overheads.

Keywords- Network-on-Chip, Predictability, Head-of-line

blocking, Priority Forwarding and Tunnelling

I. INTRODUCTION

Over the years, advancement in chip technologies and the

surge in processing element numbers elevated communication

infrastructure as a major limiting factor as far as both

performance and power consumption are concerned [1].

Though Network-On-Chip (NoC) is a prominent technology

to address this issue, designing one has always been a trade-

off between bandwidth, latency, power consumption and area

overhead. In this paper, our focus is on the ability of a NoC to

provide predictable communication performance, i.e. reduced

variability in communication latencies.

To increase predictability, NoC designers have been using

several techniques like preemptive arbitration [2], Virtual

Channels (VCs) [3] and Time Division Multiplexing (TDM),

all of which have high area and energy overheads. Though

expensive, choosing not to use those techniques can have a

negative impact on the NoC’s predictability, as it makes it

susceptible to Head-of-Line (HOL) blocking. As a result, high

priority packet latencies can increase as they can fail to secure

arbitration when low priority packets utilising the same

communication channel are blocked down the line. This paper

presents Priority Forwarding and Tunnelling (PFT), a low

overhead predictability enhancement technique for non-

preemptive NoCs, aiming to minimise the negative impact of

HOL blocking and increase performance predictability. We

demonstrate the effectiveness of the proposed technique

within the R3 NoC, a simple priority-based non-preemptive

architecture.

The paper continues with the review of some of the well-

known NoC architectures and in Section III a typical HOL

blocking scenario is depicted to motivate the improvements

that are achieved through PFT. Section IV then details the

proposed PFT technique and the R3-based evaluation setup is

presented in Section V followed by simulation results in

Section VI.

II. BACKGROUND

NoC is a promising communication infrastructure for

multicores particularly due to the wide array of variable

parameters presented to the designer, like topology, routing

algorithm and switching strategy yielding a multitude of

optimisation opportunities and its associated overheads. For

example, the Hermes [4] NoC by Moraes et al was intended to

be a low overhead and simple NoC architecture and hence it

utilised wormhole switching and XY-routing making it

extremely lightweight. Such a choice reduced the resource

requirements to a bare minimum, but prevented the provision

of packet latency guarantees, making it unpredictable.

QNoC, a predictability enhanced NoC was presented by

Bolotin et al in [2] where packets can be provided with one of

the four priority classes, and the priority value is used by the

arbiter to deal with contention over output links. QNoC

architecture featured preemption by which a higher priority

packet requesting arbitration to a link is allowed transmission

even if the link is engaged by a lower priority packet by

preempting the lower priority transmission into buffers. QNoC

does succeed in improving predictability of high priority

packets but implementation of preemption increases

significantly the area and energy overheads due to buffers and

crossbars. Other approaches such as MANGO [5] use VCs to

enhance predictability and improve latency figures under

blocking. VC implementation costs both in logic hardware as

well as buffering making the overall design bulky. This is

quite clear in the work by Mello et al. in [6] where an

advanced version of Hermes NoC with VCs was tested. It

stated that while the Hermes with a single VC took 17% of the

logic area of their hardware test-bed, the design with two and

four VCs took 32.61% and 75.41% of the logic area

respectively, which certainly cannot be neglected.

AEthereal [7] on the other hand implemented TDM as the

means to bring about creditable predictability but as similar to

VCs, TDM is expensive and the increase of NoC size results

mailto:bs638@york.ac.uk
mailto:leandro.indrusiak@york.ac.uk

(1,0)

(1,1)

(1,2) (0,2) (2,2)

(0,0) (2,0)

(2,1) (0,1)

8 3 9

4

1

in the increase of TDM slot tables, thus limiting scalability.

For enhancing predictability, approaches like [8], [9] and [10]

used dynamically adaptive routing by monitoring traffic in the

NoC in real-time. While Ge et al. in [8] utilised a centralised

monitoring module to alter the source routing depending on

the traffic on the NoC, Cidon et al. in [9] utilised traffic maps

in their design for a similar mode of operation. Rantala et al.

in [10] dealt with adaptability in a distributed perspective

where the source routing at each network interface was altered

depending on the congestion information retrieved from

neighbouring routers. While these techniques deal with

congestion in a defensive manner by avoiding routing of

packets to congested routers, PFT provides more of an

aggressive approach by confronting congestion head on.

III. MOTIVATING EXAMPLE

The evaluation platform for PFT is designated as the R3

NoC and it follows a five port router architecture based

roughly around Hermes [8] hence employing XY-routing and

wormhole switching to reduce hardware requirements. R3

NoC follows a mesh topology and unlike Hermes, each R3

packet header includes a priority value which is used by the

arbitration unit of the router to resolve contention between

packets over output ports.

One of the issues with such non-preemptive NoCs is that

high priority packets could fail to secure arbitration if low

priority packets already occupying the link are blocked down

the line by other packets. This is called HOL blocking and a

typical HOL blocking scenario is depicted in Figure 1 where

boxes represent routers and arrows represent packets with the

number inside the circles depicting its priority. Assuming 1 as

the packet with the highest priority and that the priority

decreases with increase in the numeric value (i.e. 2 less than 1,

3 less than 2 and so on), if all packets in the figure have

destination south of the router (1,2), it can be observed that

packets 3, 4 and 8 are withheld from securing arbitration as

packet 9 is utilising the south port of router (1,2).

Figure 1 : Head-of-line blocking example

As packet 9 is of lower priority than others, it can be

blocked down the line easily; hence indefinitely blocking

higher priority packets like 1, 3, 4 and 8 up the line despite

their higher priorities. Even if packet 9 goes through, the issue

elevates further as packet 3 would get arbitration ahead of

packet 4 forcing packet 1 to wait further up the line. When

packet 3 finishes transmission, packet 4 would be transmitted

followed by packet 8 ahead of 1 unless the router is designed to

provide arbitration to packets immediately after the transfer of

the preceding packet. As a result despite the highest priority

value possible, packet 1 would have to wait until all the other

packets get transmitted. Since all the other packets are

susceptible to further blocking down the line due to their lower

priority values, packet 1 is susceptible to have further waiting

stages which could hamper its latency even more. Thus, under

ordinary situation, the final transmission order of router (1,2)’s

south port would be 9-3-4-8-1 (8 before 1 if arbitration in

routers take more than a clock cycle) which goes against

application-level priority assignment. Consider the case where

the priority of packets sent from router (0,2) is 2 rather than 8.

Under this situation, unless the period of packets from routers

(0,2) and (2,2) is sufficiently high, packet 4 would never get

arbitration as the packets from routers (0,2) and (2,2) would

utilise the link in turns, one after the other hence blocking

packet 1 up the line for ever.

 R3 router utilises PFT to deal with all of the above issues

hence ultimately enabling the south port of router (1,2) to

transmit packets in the order 9-4-1-3-8. The use of PFT also

prevents indefinite blocking of packet 9 and 4 down the line

by other packets which would improve latency figure of

packet 1 even further.

IV. PRIORITY FORWARDING AND TUNNELLING (PFT)

To resolve HOL-blocking, the first step as per PFT is to

forward the priority of the high priority packet (blocked up the

line) through the network until the blocked header of the low

priority packet is encountered. Once the header is found, its

priority is boosted to the priority of the high priority packet so

that the block is resolved. For enhanced performance, the

output port in the path that will be used by the high priority

packet in the future will be tunnelled (locked) for that specific

priority value such that packets with lesser priority will not be

granted arbitration to that port temporarily until the high

priority packet is transferred.

As an example, the functionality of a PFT-enabled R3 NoC is

shown in Figure 2, detailing the internal design of routers (1,1)

and (1,2) under the scenario depicted in Figure 1. Whenever a

R3 packet gets blocked and the flow that caused the block is

blocked as well, its destination address and priority value are

stored into a ‘local blocking data’ register called -register as

seen inside the north port of router (1,1) (where packet 1 is

blocked). This information is sent through the network to the

router to which the port is requesting arbitration towards and

when the next router receives this data, it is stored into its

‘remote blocking data’ register called -register (as shown

inside the north port of router (1,2)). Similarly, this

information is transferred from router to router until it reaches

the header of the blocked packet (down the line) and if the

arbitration request priority of the blocked packet is less than

that of the blocking information carried in the corresponding

-register, the priority of the request is boosted to that of the

packet blocked up the line (in this case, priority of arbitration

request of packet 4 boosted to 1 at north port of router (1,2)).

N

S L

W E

N

S L

W E

(1,1)

(1,2)



 

4

prio

3

Min_prio

8

9

1

Figure 2 : PFT operation example

In this example, this allows packet 4 to obtain arbitration to

the south port of router (1,2) ahead of packet 3 despite its

lower priority value. To prevent other packets from securing

arbitration to the south output port of router (1,2), R3 also

preforms what we call tunnelling by which the minimum

priority for arbitration to a specific output port can be set. In

the example, the south port is tunnelled to priority 1 which

would prevent packet 8 from securing arbitration before

packet 1 if the design takes more than once clock cycle for

arbitration. This lockable arbitration feature is built into the

arbitration unit which enables R3 routers to prevent further

HOL blocking on those specific routers by other packets.

 This tunnelling of output port may or may not be done to

the same port to which the packet blocked down the line

(packet 4 in this case) is requesting arbitration to. In the

current example, since packet 4 and 1 have the same

destination, the same path of packet 4 is tunnelled for packet

1. Consider the case if the destination of packet 1 is (1,2).

Then packet 1 would be utilising the local port of (1,2) after

packet 4 is transmitted and hence the local port would be the

one that has to be tunnelled in advance. This is why the

destination information of the packet blocked up the line is

send as part of the blocking data so that the R3 routers down

the line can determine the appropriate router and its

appropriate output port to tunnel.

 In the actual implementation, each input port of each

router would have a -register and each input port apart from

the local port would have a -register though it’s not shown in

Figure 2 for simplicity. Similarly, to lock output ports for

specific priority values, each output port would have a register

to hold such information if necessary.

 -registers and -registers would be serviced one at a time

in round robin fashion such that if the required operation is not

possible (due to busy connection lines or registers), that

register is skipped and the next register is serviced. For lower

hardware overhead, there is another low performance version

of R3 featuring TDM for servicing the registers. As

transactions do not occur when packets are blocked, the data

links itself could be used to transfer -register and -register

data in-between routers hence reducing any additional

overhead of extra connection lines. Although the current R3

implementation (R3B4) uses dedicated lines, future versions

are planned without those for lower hardware overhead.

V. EVALUATION SETUP

The evaluation prototype based on the R3 NoC was

designed in Bluespec and simulated using BlueSim simulator.

The setup consists of the router design enveloped in a

parameterisable test-bench which replicates and interconnects

the routers according to a 2D-mesh topology. The local port of

each router was connected to packet-generators which could

be pre-set with parameters like start time, period, packet size,

priority and destination. Apart from conditioning the data to

the required flit format and injecting into the NoC, the packet-

generators also receive packets from the NoC and export

evaluation figures to an external file. For testing the

performance of PFT under different load conditions, we use

average load per link (V) as the metric to classify the different

evaluation scenarios used. For a fixed task mapping, as the

total load in the NoC could be found by summing the ratio of

total transmission time and period of each kind of packet,

dividing it by the number of links would provide the average

load per link (V) as shown in Equation 1.

 {∑ ∑ (

)

 }

 Eq. 1

(W- NoC Width, H- NoC Height, C- Latency, H- Hops, P- Period, L- Number of links)

 As per the equation, V increases with the load in the NoC

and a 4x4 NoC was tested with and without PFT under

different values of V by adjusting the periods of packets.

VI. IMPLEMENTATION RESULT

The latency figures of the NoC with and without PFT under

V=0.464 and V=0.755 are presented as box-plots in Figures 3

and 4 respectively. The box-plot whiskers (thin lines connected

to each box) represent the extreme cases of latency (hence best

and worst case) and the boxes enclose the upper and lower

quartile of latency with the middle line depicting the median.

For a specific packet, the closer the boxplot is to the X-axis the

lower the latency and the shorter the box of the boxplot, the

lower the variability in latency.

As contentions would have been rare events, at extremely

low load conditions, PFT provided only minor improvement in

latency and variability for V=0.464 (Figure 3). When the NoC

was loaded with higher intensity traffic (V=0.755) contention

situations increased and hence the performance as seen in

Figure 4.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy
 o

f
re

ce
iv

ed
 p

ac
ke

ts

Priority

OFF

ON

PFT

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: Latency comparison at V=0.755

La
te

n
cy

Priority

PFT
OFF ON

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14

OFF ON

La
te

n
cy

Priority

PFT

Figure 3: Latency comparison at V=0.464

Figure 5: Packet reception Cumulative Frequency at V=1.54

In Figure 4, it can be seen that when PFT was switched on,

for high priority packets (packets 1,2,3,4 and 5), the box and

whiskers got lower and shorter depicting lower latency and

lesser variability at the cost of low priority packets (like

packets 10 and 11).

When the NoC was put under heavy traffic condition

(V=1.54), the ill effects of HOL blocking becomes critically

prominent. Without engaging PFT, high priority packets 1 and

2 get blocked indefinitely and as a result, less than two packets

of priority 1 and 2 got through the network in 10
5
 clock cycles

while hundreds of packets with lower priority reached their

destination. This can be seen in Figures 5 where the

cumulative frequency of packet reception numbers is plotted.

In the plot, it can be seen that the line depicting the

performance with ‘PFT ON’ is ahead of the other line for high

priority packets (packets 1 to 10) hence depicting higher

reception numbers.

Despite the performance figures, PFT logic has modest

hardware requirements. On evaluation with Xilinx tools, it

was verified that the overhead of R3 router with PFT logic

was 8% adder/subtractors, 27% registers and 142%

comparators compared to the R3 router without PFT logic.

VII. CONCLUSION

 To increase predictability of non-preemptive NoCs, this

paper introduced the PFT technique which counters the ill

effects of HOL blocking. The paper also presented the R3

NoC, the evaluation prototype for PFT and its implementation

and operational details along with preliminary test results.

Under normal load conditions, PFT provided lower latency

and variability than the baseline NoC architecture and under

heavy load conditions; it provided increased responsiveness

by preventing high priority packets from getting blocked

indefinitely by low priority packets. Though the performance

improvement is significant as shown by the simulation results,

the hardware overhead associated with PFT logic on the R3

NoC is modest. Future work will optimise the technique even

further by allowing the PFT control messages to use the full

bandwidth of the NoC links. This can be done without any

impact on performance, as PFT is only used over paths that

are completely blocked and thus not utilised.

VIII. ACKNOWLEDGEMENT

This work is supported by EPSRC project LowPowNoC

(EP/J003662/1) and EU FP7 project T-CREST (288008).

IX. REFERENCES

[1] J. Henkel, W. Wolf, and S. Chakradhar, ‘On-chip networks: a

scalable, communication-centric embedded system design paradigm’,

VLSI D. Proceedings, 2004, pp. 845–851.
[2] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, ‘QNoC: QoS

architecture and design process for network on chip’, Journal of

Systems Architecture, vol. 50, no. 2–3, pp. 105–128, Feb. 2004.
[3] W. J. Dally, ‘Virtual-channel flow control’, in Proceedings of the

ISCA, New York, NY, USA, 1990, pp. 60–68.

[4] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, ‘HERMES:
an infrastructure for low area overhead packet-switching networks on

chip’, Integr. the VLSI Journal, vol. 38, no. 1, pp. 69–93, Oct. 2004.

[5] T. Bjerregaard and J. Sparso, ‘Implementation of guaranteed services
in the MANGO clockless network-on-chip’, Computers and Digital

Techniques, IEE Proceedings -, vol. 153, no. 4, pp. 217 – 229, Jul.

2006.
[6] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, ‘Virtual channels

in networks on chip: implementation and evaluation on hermes NoC’,

in Proceedings of the SBCCI, NY, USA, 2005, pp. 178–183.

[7] K. Goossens, J. Dielissen, and A. Radulescu, ‘AEthereal network on

chip: concepts, architectures, and implementations’, IDTC, IEEE, vol.
22, no. 5, pp. 414 – 421, Oct. 2005.

[8] F. Ge, N. Wu, and Y. Wan, ‘A network monitor based dynamic

routing scheme for Network on Chip’, in Microelectronics
Electronics, 2009. PrimeAsia 2009. Asia Pacific Conference on

Postgraduate Research in, 2009, pp. 133 –136.

[9] R. Manevich, I. Cidon, A. Kolodny, I. Walter, and S. Wimer, ‘A Cost
Effective Centralized Adaptive Routing for Networks-on-Chip’, in

DSD, 2011 pp. 39 –46.

[10] V. Rantala, T. Lehtonen, P. Liljeberg, and J. Plosila, ‘Distributed
Traffic Monitoring Methods for Adaptive Network-on-Chip’, in

NORCHIP, 2008., 2008, pp. 233 –236.

[11] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost, ‘HERMES:
an infrastructure for low area overhead packet-switching networks on

chip’, Integr. VLSI J., vol. 38, no. 1, pp. 69–93, Oct. 2004.

