
Low Overhead Predictability Enhancement in Non-

preemptive Network-On-Chip Routers using Priority

Forwarded Packet Splitting

Bharath Sudev and Leandro Soares Indrusiak

Department of Computer Science

The University of York, U.K. YO10 5GH

Email: [bs638, leandro.indrusiak]@york.ac.uk

Abstract— Providing predictability enhancement for NoC

packets can be a difficult proposition when dealing with

simple non-preemptive designs primarily due to

occurrence of head of line blocking and tail backing of

high priority packets as a result of lower priority packets.

Typically, predictability is enhanced by making the NoC

preemptive by the use of Virtual Channels or employing

techniques like Time Division Multiplexing which are

generally expensive. This paper presents a low overhead

predictability enhancement approach for non-preemptive

NoCs which utilises low overhead techniques to resolve

head of line blocking and tail backing. As per the

technique, head of line blocking is resolved by enabling the

low priority packet causing the block to inherit the

priority of the blocked high priority packet while tail

backing is resolved by splitting the low priority packet that

cause the tailback. We then demonstrate the effectiveness

of the technique using a prototype and evaluate the

implementation overhead.

Keywords- Network-on-Chip, Predictability, Priority

Forwarded Packet Splitting, Non-preemptive Network-on-

Chip, PFS.

I. INTRODUCTION

Packet predictability in Network-On-Chip (NoC) designs is

usually enhanced by utilising techniques like Virtual Channels

(VC) [1] or Time Division Multiplexing (TDM) [2] both of

which result in significant hardware complexity and buffer

utilisation, thus resulting in increased area and power

requirements. Considering predictability enhancement as the

reduction of variability in latency [3], we present a low

overhead technique to improve predictability of simple non-

preemptive NoCs by resolving head of line (HOL) blocking

and tail backs which affects non-preemptive NoC packets.

HOL blocking and hence the resultant tail back is a

significant factor degrading non-preemptive packet

predictability and quoting Huang et al from [4] “due to HOL

blocking, the throughput of the links is typically limited to 58%

under uniform traffic with fixed packet length”. The Priority

Forwarded Packet Splitting (PFS) technique we present here,

employs Priority forwarding [5] to resolve HOL blocking in

routers so that when a high priority packet is blocked by a low

priority packet, the low priority packet would be forwarded

with the priority of the high priority packet thereby resolving

the block. Tailbacks are resolved by employing a low

performance low overhead emulation of preemption called

Selective Packet Splitting (SPS) [6] using which lower priority

packets causing tailbacks are split (rather than preempted) so as

to allow the high priority communication to occur immediately.

Both of these techniques are relatively inexpensive and

complimentary thereby providing predictability enhancement

for packets without major overheads. We demonstrate the

effectiveness of PFS within a simple non-preemptive NoC

architecture and evaluate the resultant implementation

overhead.

The paper continues with the review of literature in Section

II followed by Section III where a HOL blocking scenario is

provided as an example to motivate the improvements that can

be achieved with the technique. Section IV then details the PFS

approach along with the prototype implementation details. The

implementation results are added in Section V followed by

conclusion, acknowledgment and references as subsequent

sections.

II. BACKGROUND

As NoCs provide a wide variety of tuneable parameters for

the designers, there have been several architectures developed

over the years each presenting a specific kind of trade-off

between benefit and overhead. The simplest of them all is the

Hermes [7] NoC by Moares et al which is a lightweight design

utilising wormhole switching and XY routing with simple

round robin arbitration. This simplicity came at the cost of

prioritisation for packets and hence lacked provision for

performance guarantees. On the contrary, packet predictability

was ensured in AEthereal [8] NoC but employing TDM

thereby making the NoC almost completely predictable.

Though TDM ensured the timeliness of the packets in this case

it made AEthereal bulky and as TDM utilises slot tables, it

limited the scalability and link utilisation.

Another means of predictability enhancement frequently

employed by NoC designers is the use of Virtual Channels like

seen in QNoC [9] and MANGO [10]. With virtual channels,

the routers would be able to transmit a higher priority packet

even when the link is being used by a lower priority packet.

This was enabled by utilising buffers to preempt the low

priority flow so that the higher priority packet can be

978-1-4799-5810-8/14/$31.00 ©2014 IEEE

mailto:bs638@york.ac.uk
mailto:leandro.indrusiak@york.ac.uk

(1,0)

(1,1)

(1,2) (0,2) (2,2)

(0,0) (2,0)

(2,1) (0,1)

2 3 7

5

1

Figure 1: Blocking Example

transmitted as soon as possible. VCs are also used in

commercial NoCs like seen in Tilera’s [11] processors and

NetSpeed [12] designs but the use of VCs bring about a heavy

overhead of buffers and associated hardware. This effect is

visible in the work by Mello et al in [13] where a Hermes NoC

with Virtual Channels was evaluated. The paper stated that

while the Hermes NoC with a single VC took 17% of the logic

area of their hardware test-bed, the design with two and four

VCs took 32.61% and 75.41% of the logic area respectively,

which certainly cannot be neglected. Link Division

Multiplexing (LDM) [14] is a similar technique where the

physical link is multiplexed to transfer multiple packets

simultaneously. Though LDM needs fewer buffers than TDM

or VCs, it also results in significant hardware overhead. Most

of the above techniques depend broadly on the use of buffers

and this can be infeasible for lightweight embedded systems as

buffers cost in area and power. For example; in [15] Kundu

points out that buffers alone amount to 15% of the area of their

basic router and account for 46% of the total power

consumption. For embedded applications having resource

restrictions, such excessive resource requirements can be quite

infeasible.

Other predictability enhancement approaches use adaptive

routing based on the traffic scenario in the NoC [16], [17],

[18]. While Ge et al. in [16] utilised a centralised monitoring

module to dynamically alter the source routing, Cidon et al. in

[17] utilised traffic maps in their design for a similar mode of

operation. Rantala et al. in [18] dealt with adaptability in a

distributed perspective where the source routing at each

network interface was altered depending on the congestion

information retrieved from neighbouring routers.

With this paper, we investigate the use of priority

forwarding coupled with packet splitting in routers so that

HOL blocking and tail backing can be resolved, thereby

improving packet priority without using expensive priority

enhancement techniques or adaptive approaches. Since the

techniques utilised here are relatively simple and less

hardware intensive; the resulting routers would be light weight

and hence more suitable to be used in lightweight embedded

systems.

III. MOTIVATING EXAMPLE

 To demonstrate the issues that can affect simple priority

based NoC packets, a traffic scenario is depicted in Figure 1

where boxes represent routers, arrows represent packet flows,

while the number inside the circles depicts packet priority.

Assuming 1 as the packet with the highest priority and that the

priority decreases with increase in numeric value (i.e. 2 less

than 1, 3 less than 2 and so on), if all packets in the figure have

destination south of the router (1,2), it can be observed that

packets 2, 3 and 5 are withheld from securing arbitration as

packet 7 is utilising the south port of router (1,2).

As packet 7 is of lower priority, it can be blocked down the

line easily; hence has a potential to block the other packets (1,

2, 3 and 5) up the line despite the higher priority values. Even

after packet 7 gets transmitted, the issue would prevail as

packet 2 would get arbitration ahead of packet 5 forcing packet

1 to wait further up the line. Followed by the transmission of

packet 2, packet 3 would be transmitted while packet 1 remains

detained behind packet 5. As a result it would be after the

transmission of packet 3 and 5 that packet 1 would be

transmitted eventually.

So, despite the highest priority value possible, packet 1

would have to wait until all the other packets get transmitted

thus increasing its latency. Since the packets that would secure

arbitration before packet 1 would be susceptible to further

blocking down the line due to their lower priority values,

packet 1 is susceptible to further waiting stages which could

worsen its latency even more thus rendering application level

priority assignment pointless.

In the above scenario, we can observe that packet 1 is

disadvantaged due to primarily two reasons: HOL blocking and

tail backing.

Assume that the packets have 100 flits each. As a result of

HOL blocking; packets 2 and 3 would secure arbitration before

packet 5 and hence the latency of packet 1 would go up by at

least 200 clock cycles (size of packet 2 + size of packet 3) if

the routers take one cycle per flit.

As packet 5 is ahead of packet 1 causing tailback and

packet 7 is further down causing more tailback, a further delay

of at least 200 clock cycles (size of packet 5 + size of packet 7)

would be encountered bringing up the total delay to 400 clock

cycles without accounting for arbitration delay and interference

from any other traffic on the NoC.

IV. PRIORITY FORWARDED PACKET SPLITTING

PFS logic utilises priority forwarding to deal with HOL

blocking of packets and hence whenever a packet gets blocked

by a blocked lower priority packet, the priority of the high

priority packet (blocked up the line) would be forwarded down

the line to the blocked low priority packet header. This would

enable the low priority header to assume the priority of the

high priority packet temporarily hence resolving the HOL

blocking scenario.

In the example in Figure 1, as packet 1 gets blocked by the

blocked packet 5, the priority of packet 1 would be assigned to

the header of packet 5 by employing priory forwarding. This

would enable packet 5 to secure arbitration ahead of packet 2

and 3, and hence eliminating the latency surge owing to those

two packets.

Tailbacks are resolved by employing selective packet

splitting technique so that higher priority packets behind the

line would be able to secure arbitration by splitting the low

priority packet (that is causing tailback) effectively pre-

empting the low priority packet using minimal hardware

overhead.

 In the example, as packet 5 is arbitrated to the south port of

router (1,1) and as the higher priority packet 1 is destined to

use the same port, the packet splitting logic would be triggered

thereby splitting packet 5 and hence terminating the already

arbitrated connection with a tail flit. The rest of packet 5 would

be then provided with a new header and a new arbitration

request would be imitated at router (1,1). As priority

forwarding would already have updated the priority of the

header of packet 5 to 1 in router (1,2), router (1,2) would then

be able to split the packet which would be utilising the south

port then so that the split packet 5 (of the width of a few flits)

can be transmitted immediately followed by the entire bulk of

packet 1.This would enable packet 1 to split packet 5 and

packet 7 into two separate packets, thereby allowing packet 1

to secure arbitration to the south port before the other packets

get transmitted completely.

Assuming the input buffer depth to be 2, this would

theoretically allow packet 1 to secure arbitration in under 20

clock cycles if further blocking doesn’t occur down the line.

A. Prototype Implementation

The prototype router was designed as a five port

architecture based roughly around Hermes hence employing

XY-routing and wormhole switching to reduce hardware

requirements. The design uses a uniform mesh topology and

unlike Hermes, each packet header includes a priority value

which is used by the arbitration unit of the router to resolve

contention between packets over output ports.

As shown in Figure 2, the routers have buffered input ports

which on reception of a packet header employ XY-routing to

set the ‘port request’ register and the ‘priority’ register in

accordance with the destination and priority information

carried. The arbitration unit in the router then checks ‘port

request’ and ‘priority’ registers of all input ports to provide

arbitration to the qualified ports.

The arbiter then establishes connection by setting the ‘out

port’ and ‘flits left’ registers on the input port. This permits the

input port to send flits to the allocated output port so that the

flits could be transferred away through the communication

links. As the flits are being transferred, the input port also

decrements the value in the ‘flits left’ register so that when the

value reaches zero, the connection can be closed by re-setting

the ‘out port’ register value to zero.

1) HOL blocking resolution using Priority Forwarding

The aim of priority forwarding is to resolve HOL blocking

by forwarding the priority of the high priority packet (up the

line) to the blocked low priority packet down the line. So,

when a packet gets blocked by a blocked packet of lower

priority, the priority of the high priority packet would be

loaded into a local blocking register called α register.

To load local blocking information, each of the five input

ports are provided with α registers capable of storing a priority

value each. The internal functionality of the routers in the

N

S L

W E

N

S L

W E

(1,1)

(1,2)



 

5

prio

3
2

7

1

Figure 3: Priority Forwarding Logic Implementation

Input
port

XY

Router

Port request

Priority

Out port

Flits left

 Buffer
Communication
channel

To arbiter

From arbiter

 Router

N

S

E W

L

 Router

N

S

E W

L

To arbiter

Figure 2: Basic Router Design

previous example is depicted in Figure 3 where it can be seen

that as packet 1 is blocked by the blocked packet 5, the priority

of packet 1 is stored into the α register inside the north port of

router (1,1).

The information inside the α register would be then

forwarded down the line through the blocked path to the next

router and every time it reaches a new router, it would be

stored into a remote blocking register called β register. Each

input port other than the local port would have β registers to

store such blocking information coming from nearby routers.

α and β registers would be serviced in a round robin fashion

and every time a β register is serviced the router would check

for the presence of the blocked header and if the header is

further down the line, the information would be forwarded to

the next router until the blocked header is reached.

Once the header is found and the corresponding β register

is serviced, the arbitration request priority will be updated by

altering the value inside ‘priority’ register inside the

corresponding input port. As priority forwarding only modifies

the arbitration request (instantaneously to resolve blocks) and

not the packet itself, there would be no risk of low priority

packets assuming high priorities permanently hence affecting

higher priority packets negatively.

In the current example, priority value 1 would be forwarded

from the α register in router (1,1)’s north port to the β register

in the north port of router (1,2), hence ultimately enabling the

router to modify the value in the ‘priority‘ register, thus

providing the arbitration request of packet 5 with the priority

value 1.

Though the current prototype uses dedicated links to

transfer the blocking information between routers, the same

data links can theoretically be used for the purpose as the data

links would be idle when they are blocked. This would require

implementation of a credit based flow control system to

prevent input buffers from getting blocked however further

experiments has not been done in this respect and is considered

as future work.

2) Tailback resolution using Selective Packet Splitting

Selective packet splitting aims to improve packet

predictability by enabling routers that encounter preemptible

scenarios to split the associated low priority packet so that the

high priority packet can be transmitted as soon as possible. The

decision to split a packet would depend on two parameters:

priority difference (PD) between competing packets and the

number of remaining flits (RF) from the low priority packet.

Both parameters can be assigned statically or varied

dynamically according to the required magnitude of slack in

predictability. These two parameters would allow the NoC to

vary its effort in predictability enhancement depending on the

criticality of scenario.

 If a packet satisfies these two conditions, the router would

split the transmission by sending a tail flit followed by the

construction of a new header which would then initiate a new

arbitration request at that router. This would allow the higher

priority packet (which would already have requested

arbitration) to secure arbitration immediately and hence reduce

latency.

As shown in Figure 4, the state machine that manages the

different stages of communication (arbitration request,

arbitration, data transfer and close connection) has an extra

state to perform packet splitting depending on the parameters

set. So, once the conditions are satisfied for packet splitting,

the input port concludes the active low priority communication

with a tail flit and then releases the associated output port by

setting the respective ‘out port’ register to zero. Simultaneously

with the termination of the communication the input port issues

a new arbitration request for the splitted packet so that once the

high priority communication is completed, the low priority

communication can be resumed. To enable this, each input port

would have a register to store a newly constructed header and

the most significant bit of every flit is used to denote a tail flit

so that the routers would be able to identify termination of a

packet.

V. IMPLEMENTATION AND RESULTS

The evaluation prototype was designed in Bluespec System

Verilog and was developed as a router design enveloped in a

parameterisable test bench which was used to replicate and

interconnect the routers according to a 2D-mesh topology. The

local port of each router was connected to packet-generators

which could be set with packet parameters like start time,

period, packet size, priority and destination according to

which packets would be generated.

The packet-generator configuration is auto-generated as

Bluespec source code using a custom built code generator

which could either configure the generators randomly or in

State 1: Arbitration

Request

State 2: Arbitration

State 3: Data Transfer

State 4: Close Connection

State 5: Send Tail Flit, Close

Connection and

 Issue New Arbitration request

PD and RF

Conditions

Satisfied

Basic Router

RF = 0

Figure 4: Splitting Operation

accordance with a series of algorithms to generate specific

configuration patterns.

The packet generators also include logic to receive packets

from the NoC and export evaluation figures to an external file.

Every time a packet generation or reception occurs, the event

is documented an entry onto the external data file so that our

custom built macro code running inside the spread sheet

software would be able to analyse it to generate latency

statistics and graphs.

A. Performance

As PFS does not employ separate buffers to deal with each

of the service levels, NoCs utilising PFS can be scaled without

issues. We used average load per link (V) (detailed in Eq. 1) as

the measure of the load on the NoC and a 4x4 NoC was

analysed with different traffic scenarios to extract performance

statistics. For a fixed task mapping, as the total load in the NoC

could be found by summing the ratio of total transmission time

and period of each kind of packet, dividing it by the number of

links would provide the average load per link V.

 {∑ ∑ (

)

 }

 Eq. 1

(W- NoC Width, H- NoC Height, D- No load latency, H- Hops, P- Period, L- Number of links)

The latency performance of the technique is interpreted in

the paper as boxplots with priority of the packet on the X-axis

and latency (in clock cycles) on the Y-axis. In box plots the

whiskers shows the extreme cases of latency and the boxes

indicate the upper and lower quartile of latency with the

middle line depicting the median. So, shorter box and

whiskers show lower variability in latency and lower box and

whiskers show lower magnitude of latency. On each of the

box plots, the box and whiskers representing latency

performance are seen in pairs per priority level and the first

box and whisker of each pair (red one) depicts the

performance of a priority non-preemptive NoC based on

Hermes and the second one (green one) depicts the

performance of the NoC employing PFS.

1) Performance with random traffic

To verify the performance merit of PFS, we tested the

prototype with several random traffic scenarios (for 10
5
 clock

cycles) and the latency performance figures are interpreted as

Figure 5, Figure 6 and Figure 7.

In the figures, it can be noted that the box and whiskers for

the high priority packets (like 1 to 6) are seen mostly shorter

and lower with PFS engaged compared to the basic NoC

depicting lower variability and magnitude of latency.

However, there are some packets that show higher magnitude

or variability in latency like packet 6 in Figure 6 and packet 7

in Figure 7. These are side effects of PFS improving

predictability of even higher priority packets and such effects

occur as the characteristic of the specific traffic scenario used

and the load level on the NoC.

2) Effect of load variation by varying payload flit count

To evaluate the effect of increased load due to the increase

in the overall number of payload flits in the NoC, we tested a

traffic scenario with increasing load level by varying the

packet sizes. Test results with V values 0.7, 0.9, 1.3 and 1.5

can be seen as Figure 8, Figure 9, Figure 10 and Figure 11

respectively.

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

20

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes based

PFS

Hermes based

PFS

Hermes based

PFS

L
at

en
cy

L
at

en
cy

L
at

en
cy

Priority

Priority

Priority

Figure 5: Performance with random traffic 1

Figure 6: Performance with random traffic 2

Figure 7: Performance with random traffic 3

It can be seen in Figure 8, Figure 9 and Figure 10 that as the

load on the NoC was increased, it had a negative impact on

the latency performance thus resulting in longer and higher

box and whiskers depicting higher variability and magnitude

of latency.

 With the basic NoC, this happens almost evenly

irrespective of the priority value which can be unjustifiable

with high priority packets. However with the employment of

PFS, these effects are minimised for the high priority packets

thus resulting in lower and shorter box and whiskers for high

priority packets.

For the purpose of evaluation, we also tested the NoC with

extremely high load of V = 1.5 and the test result show that

the performance enhancement brought about to some high

priority packets (like packets 1, 3 and 5) were severely

affecting some lower priority packets (like packets 4 and 6) as

evident from Figure 11.

Because packet 2 was sharing part of packet 1’s traversal

path as the characteristics of that specific traffic scenario, it

can be seen that the performance enhancement brought about

to packet 1 affects packet 2’s latency negatively.

3) Effect of load variation by varying header flit count

To evaluate the effect of increased load due to the increase

in the overall number of header flits in the NoC, we tested a

traffic scenario with increasing load level by varying the

packet periods. Test results with V values 0.7, 0.9, 1.3 and 1.5

can be seen as Figure 12, Figure 13, Figure 14 and Figure 15

respectively. As seen with the tests in the previous section, the

use of PFS was seen to cause lower latency variability and

20

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

80

800

8000

80000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

50

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

20

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes based

PFS

Hermes based

PFS

Hermes based

PFS

Hermes based

PFS

Hermes based

PFS

L
at

en
cy

L

at
en

cy

L
at

en
cy

L
at

en
cy

L

at
en

cy

Priority

Priority

Priority

Priority

Priority

Figure 8: Performance at V=0.7

Figure 9: Performance at V=0.9

Figure 10: Performance at V=1.3

Figure 11: Performance at V=1.5

Figure 12: Performance at V=0.7

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PD: 1

PD: 2

PD: 4

PFS OFF

L
at

en
cy

Priority

Figure 17: Effect of PD variation

magnitude for the high priority packets on the cost of lower

priority packets.

 Test with extreme load of V=1.5 also seem to produce

similar performance box plots as seen in the previous section.

4) Effect of RF and PD variation.

To verify the effect of RF variation on performance, we

tested a NoC with RF condition set to 1, ¾ and ½ of the packet

size. With those tests the PFS logic was set to trigger only if

the flits left to send owing to the lower priority was equal to or

greater than 1, ¾ the packet size and ½ of the packet size

respectively and the result is interpreted as Figure 16

 In Figure 16, it can be observed that the effect of PFS can

be scaled by varying the RF condition. With RF set to 1, the

high priority packets were given the maximum preference and

hence high priority packets are seen to be with the lowest

variability and magnitude of latency. This comes at the cost of

the low priority packet performance as those suffer higher

variability and magnitude in latency. With the subsequent tests

with RF set to ¾ and ½, the effect get moderated towards the

low priority packet performance ultimately getting closer to the

performance of the basic non-premptive NoC.

As mentioned before, PD specifies the priority difference

between competing flows and we conducted tests with PD set

to 1, 2 and 4 and the result is interpreted as Figure 17. Though

the variation of PF had similar effect as RF, it was seen to

have wider and unpredictable performance variations than PD

as evident from Figure 17. This is due to the fact that as PD

scaling relays on the priority of the competing packets, it can

get affected by the specific characteristics related to the task

mapping used whereas RF is a more generic parameter. Due to

this, RF can be deduced as a better parameter than PF for

performance scaling applications.

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

50

500

5000

50000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Hermes based

PFS

Hermes based

PFS

Hermes based

PFS

RF: 1

RF: ¾

RF: ½

PFS OFF

L
at

en
cy

L

at
en

cy

L

at
en

cy

L
at

en
cy

Priority

Priority

Priority

Priority

Figure 13: Performance at V=0.9

Figure 14: Performance at V=1.3

Figure 15: Performance at V=1.5

Figure 16: Effect of RF variation

B. Hardware Overhead

The hardware overhead associated with PFS was evaluated

using Xilinx Vivado Design Suite by synthesising the

prototype for a Xilinx Artix FPGA. While the baseline router

(2-position input buffers) based on Hermes with priority

arbitration utilised 1209 Look Up Tables (LUTs) and 710 of

Slice Registers of the chosen FPGA, the PFS enabled NoC (2-

position input buffers) utilised 2382 LUTs and 1050 Slice

registers which is minimalistic.

As seen with [13] in Section II, Virtual Channel

implementation is expensive and when a comparable Virtual

Channel (4 VCs with 2-position buffers) based design we

implemented upon the same basic NoC architecture was

tested, Vivado generated a LUT requirement of 5289 and Slice

Register requirement of 2598 thereby demonstrating the

overhead associated.

From the results, the hardware overhead comparison for

the techniques on a 4x4 NoC is interpreted in Figure 18. It can

be observed that PFS has moderate hardware requirements

compared to the basic non-preemptive NoC while the Virtual

Channel based NoC costs more than four times.

VI. CONCLUSION

This paper has introduced the PFS technique by which

predictability of non-preemptive NoCs can be enhanced

without causing major hardware overheads. PFS employs a

combination of priority forwarding and selective packet

splitting technique to resolve HOL blocking and tail backing

of NoC packets thereby improving packet predictability. The

effectiveness of the technique was evaluated using a prototype

and it was tested with different traffic patterns and load levels

and the use of PFS was found to reduce variability and

magnitude of latency of high priority packets with the

hardware overhead of 97% LUTs and 47% registers.

VII. ACKNOWLEDGEMENT

This work is supported by EPSRC project LowPowNoC

(EP/J003662/1) and EU FP7 projects T-CREST (288008) and

DREAMCLOUD (611411).

VIII. REFERENCES

[1] W. J. Dally, ‘Virtual-channel flow control’, in Proceedings of the

17th annual international symposium on Computer Architecture,

New York, NY, USA, 1990, pp. 60–68.

[2] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens, ‘A TDM

NoC supporting QoS, multicast, and fast connection set-up’, in

Design, Automation Test in Europe Conference Exhibition

(DATE), 2012, 2012, pp. 1283 –1288.

[3] L. Thiele and R. Wilhelm, ‘Design for Timing Predictability’,

Real-Time Systems, vol. 28, no. 2–3, pp. 157–177, Nov. 2004.

[4] T.-C. Huang, U. Y. Ogras, and R. Marculescu, ‘Virtual Channels

Planning for Networks-on-Chip’, in 8th International Symposium

on Quality Electronic Design, 2007. ISQED, 2007, pp. 879–884.

[5] B. Sudev and L. S. Indrusiak, ‘PFT- A low overhead

predictability enhancement technique for non-preemptive NoCs’,

in 2013 IFIP/IEEE 21st International Conference on Very Large

Scale Integration (VLSI-SoC), 2013, pp. 314–317.

[6] B. Sudev and L. S. Indrusiak, ‘Predictability Enhancement in

Non-preemptive NoCs using Selective Packet Splitting’. 12th

IEEE International Conference on Industrial Informatics (INDIN),

Porto Alegre-Brazil, Jul-2014 (Accepted).

[7] F. Moraes, N. Calazans, A. Mello, L. Möller, and L. Ost,

‘HERMES: an infrastructure for low area overhead packet-

switching networks on chip’, Integration, the VLSI Journal, vol.

38, no. 1, pp. 69–93, Oct. 2004.

[8] K. Goossens, J. Dielissen, and A. Radulescu, ‘AEthereal network

on chip: concepts, architectures, and implementations’, Design

Test of Computers, IEEE, vol. 22, no. 5, pp. 414 – 421, Oct. 2005.

[9] R. Dobkin, R. Ginosar, and I. Cidon, ‘QNoC Asynchronous

Router with Dynamic Virtual Channel Allocation’, in 1
st

International Symposium on Networks-on-Chip,.2007, 7, p. 218.

[10] T. Bjerregaard and J. Sparso, ‘A router architecture for

connection-oriented service guarantees in the MANGO clockless

network-on-chip’, in Design, Automation and Test in Europe,

2005. Proceedings, 2005, pp. 1226 – 1231 Vol. 2.

[11] S. Park, T. Krishna, C.-H. Chen, B. Daya, A. Chandrakasan, and

L.-S. Peh, ‘Approaching the theoretical limits of a mesh NoC with

a 16-node chip prototype in 45nm SOI’, in 2012 49th

ACM/EDAC/IEEE Design Automation Conference (DAC), 2012,

pp. 398–405.

[12] A. Kahng, B. Li, L.-S. Peh, and K. Samadi, ‘ORION 2.0: A fast

and accurate NoC power and area model for early-stage design

space exploration’, in Design, Automation & Test in Europe

Conference & Exhibition, 2009. DATE ’09., 2009, pp. 423–428.

[13] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, ‘Virtual

channels in networks on chip: implementation and evaluation on

hermes NoC’, in Proceedings of the 18th annual symposium on

Integrated circuits and system design, New York, NY, USA,

2005, pp. 178–183.

[14] A. Morgenshtein, A. Kolodny, and R. Ginosar, ‘Link Division

Multiplexing (LDM) for Network-on-Chip Links’, in 2006 IEEE

24th Convention of Electrical and Electronics Engineers in Israel,

2006, pp. 245 –249.

[15] P. Kundu, ‘On-Die Interconnects for Next Generation CMPs’.

Proc. Workshop On- and Off-Chip Interconnection Networks for

Multicore Systems,, Dec-2006.

[16] F. Ge, N. Wu, and Y. Wan, ‘A network monitor based dynamic

routing scheme for Network on Chip’, in Microelectronics

Electronics, 2009. PrimeAsia 2009. Asia Pacific Conference on

Postgraduate Research in, 2009, pp. 133 –136.

[17] R. Manevich, I. Cidon, A. Kolodny, I. Walter, and S. Wimer, ‘A

Cost Effective Centralized Adaptive Routing for Networks-on-

Chip’, in Digital System Design (DSD), 2011 14th Euromicro

Conference on, 2011, pp. 39 –46.

[18] V. Rantala, T. Lehtonen, P. Liljeberg, and J. Plosila, ‘Distributed

Traffic Monitoring Methods for Adaptive Network-on-Chip’, in

NORCHIP, 2008., 2008, pp. 233 –236.

Hermes Based PFS VC

LUT 19344 38112 84624

Registers 11360 16800 41568

0

20000

40000

60000

80000

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts
 R

e
q

u
ir

e
d

Hardware Requirement for a 4x4 NoC

Figure 18: Hardware overhead comparison

