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Abstract— Performance predictability enhancement in
Network-on-chip routers are usually brought about by
employing techniques like Time Division Multiplexing or
Virtual Channels, which comes with overheads in area and
energy which can be substantial. With this paper, we
present an alternative approach that can emulate the effect
of preemption without the major area overheads which are
associated with preemption implementation. The
technique employs routers capable of splitting low priority
packets (rather than preempting) when a higher priority
packet is encountered which is destined to use the same
link. This splitting would hence allow the high priority
packet to have the same effect as if the low priority packet
was preempted while having lower implementation
overhead as the splitting logic is simpler. We test the
technique with different traffic scenarios and load levels,
and analyse performance merits as well as implementation
overheads.

Keywords- Network-on-Chip, Predictability, Packet Splitting,
Non-preemptive Network-on-Chip.

I. INTRODUCTION

Predictability enhancement techniques like Preemptive
arbitration [1], Virtual Channels [2] and Time Division
Multiplexing [3] usually comes with high hardware (and hence
power) requirements primarily due to the use of buffers which
are expensive in both aspects. With this paper we explore the
Selective Packet Splitting (SPS) technique which aims to
improve Network-On-Chip (NoC) packet predictability by
emulating the effect of preemption without employing a
massive array of buffers hence making the NoC simpler and
less expensive. This would allow NoC routers to provide
prioritisation for packets without the use of excessive hardware
hence making it a viable option for embedded applications with
strict resource restrictions. Using a prototype, we validate the
performance enhancement brought about by the technique and
estimate the resultant implementation overhead.

The paper continues with the review of literature from the
field in Section II followed by Section III where the details of
proposed technique can be seen. Section IV provides the
implementation results followed by future work and conclusion
as subsequent sections V and VI.

II. BACKGROUND

Several NoC architectures have been developed and used
over the years like Hermes [4], QNoC [5], AEthereal [6] and
MANGO [7], each presenting a specific kind of trade-off
between benefit and overhead. For example; Moraes et al
designed the Hermes NoC to be extremely light weight and
simple but it came with the overhead of its inability to provide
latency guarantees hence making it unpredictable. On the
contrary, AEthereal used TDM to ensure packet predictability
guarantees thereby making the NoC almost completely
predictable. Even though TDM ensured the timeliness of the
packets in this case it made the NoC bulky and as TDM utilises
slot tables, it limited the scalability and link utilisation.

Designers have also employed Virtual Channels to ensure
packet predictability like in QNoC and MANGO where the
routers would be able to transmit a higher priority packet even
when the link is being used by a lower priority packet. Such
NoCs utilised buffers to preempt the low priority packet so that
the higher priority packet can be transmitted as soon as
possible. Commercial NoCs like seen in Tilera’s [8] processors
and NetSpeed [9] designs also use VCs but the use of VCs
bring about a heavy overhead of buffers and associated logic
hardware. This effect is quite clear in the work by Mello et al
in [10] where a Hermes NoC with Virtual Channels was
evaluated. The paper stated that while the Hermes NoC with a
single VC took 17% of the logic area of their hardware test-
bed, the design with two and four VCs took 32.61% and
75.41% of the logic area respectively, which certainly cannot
be neglected.

Another similar technique is Link Division Multiplexing
(LDM) [11] where the physical link is multiplexed to transfer
multiple packets simultaneously. Though LDM needs fewer
buffers than TDM or VCs, it also results in significant
hardware overhead due to its complexity.

One of the prominent characteristics shared by most of
these designs is the extensive use of buffers. This can be
infeasible for lightweight embedded systems as buffers cost
heavily in area and consume high magnitudes of power. For
example; Kundu in [12] point out that the buffers amount to
15% of the area of their basic router and it consumes 46% of
the total power and in the case of the TRIPS [5] processor,
75% of the router area is dominated by input buffers alone.

For industrial or automotive embedded applications that are
supposed to be minimalistic; such excessive use of resources
can be quite infeasible even though there might be packet flows



which are time critical. With this paper, we are investigating
the use of packet splitting in NoC routers so that the effect of
preemption can be emulated without the wide use of buffers as
seen with the classical preemption technique. Since the packet
splitting logic is relatively simple and less hardware intensive;
routers employing packet splitting would be light weight and
hence more suitable to be used in lightweight embedded
systems.

III. SELECTIVE PACKET SPLITTING

Consider QNoC as an example for a typical priority
preemptive NoC architecture. QNoC has a 4 virtual channel
design hence supporting packets with four service levels. In
QNoC, preemption allows the transmission of high priority
packets even if the corresponding link is being used by a lower
priority packet. To enable preemption, QNoC routers have
buffers for each service levels each of which would be capable
of storing a few flits. Having buffer for the four service levels
on each of the five input ports on each and every router can
have an undesirable impact on the overall hardware
requirements primarily when dealing with embedded systems
where hardware and power requirements are restricted.
Similarly, as the number of VCs increase, the associated
overhead also multiplies many folds along with increase in
power consumption.

By this paper we are exploring a low overhead technique to
emulate the effect of preemption by splitting packets. SPS aims
to improve packet predictability by enabling routers that
encounters preemptible scenarios to split the associated low
priority packet so that the high priority packet can be
transmitted as soon as possible. The decision to split a packet
would depend on two parameters: priority difference (PD)
between competing packets and the number of remaining flits
(RF) from the low priority packet. Both parameters can be
assigned statically or varied dynamically according to the
required magnitude of slack in predictability. These two
parameters would allow the NoC to vary its effort in
predictability enhancement depending on the criticality and
type of data.

If a packet satisfies these two conditions, the router would
split the transmission by sending a tail flit followed by the
construction of a new header which would then initiate a new
arbitration request at that router. This would allow the higher
priority packet (which would already have requested
arbitration) to secure arbitration immediately and hence reduce
latency. This would hence relieve the routers from the issue of
handling multiple service levels simultaneously using buffers
thereby allowing routers to be simple and lightweight.

The technique was tested using a router design following a
five port architecture based roughly around Hermes [4] hence
employing XY-routing [13] and wormhole switching to
reduce hardware requirements. The design uses a uniform
mesh topology and unlike Hermes, each packet header
includes a priority value which is used by the arbitration unit
of the router to resolve contention between packets over
output ports.

As shown in Figure 1, the routers have buffered input ports
which on reception of a packet header employ XY-routing to
set the ‘port request’ register and the ‘priority’ register in
accordance with the destination and priority information
carried. The arbitration unit in the router then checks ‘port
request’ and ‘priority’ registers of all input ports to provide
arbitration to the qualified ports.

The arbiter then establishes connection by setting the ‘out
port’ and ‘flits left’ registers on the input port which permits
the input port to send flits to the allocated output port so that
the flits could be transferred away through the communication
links. As the flits are being transferred, the input port also
decrements the value in the ‘flits left’ register so that when the
value reaches zero, the connection can be closed by re-setting
the ‘out port’ register value to zero.

As shown in Figure 2, the state machine that manages the
different stages of communication (arbitration request,
arbitration, data transfer and close connection) has an extra
state to perform packet splitting depending on the parameters
set. So, once the conditions are satisfied for packet splitting,
the input port concludes the active low priority communication
with a tail flit and then releases the associated output port by
setting the respective ‘out port’ register to zero. Simultaneously
with the termination of the communication the input port also
issues a new arbitration request for the splitted packet so that
once the high priority communication is completed, the low
priority communication can be resumed. To enable this, the
most significant bit of every flit is used to denote a tail flit.
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Figure 1: Basic Router Design
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Figure 2: Input port operation

As SPS does not employ buffers to deal with each service
level, the NoC can be scaled easily and the technique would be
able to function irrespective of the number of service levels.

IV. IMPLEMENTATION RESULT

The evaluation prototype for the technique was designed in
Bluespec System Verilog [14] and consists of the router
design enveloped in a parameterisable testbench which
replicates and interconnects the routers according to a 2D-
mesh topology. The local port of each router was connected to
packet-generators which could be pre-set with parameters like
start time, period, packet size, priority and destination. The
packet-generator configuration is auto-generated as Bluespec
source code using a custom built code generator which could
either configure the generators randomly or in accordance
with a series of algorithms to generate specific configuration
patterns. Apart from conditioning the data to the required flit
format and injecting into the NoC, the packet-generators also
receive packets from the NoC and export evaluation figures to
an external file. This external data file is then analysed by a
custom built macro code running inside the spread sheet
software to generate latency statistics and graphs.

A. Performance

We use average load per link (V) as the measure of the load
on the NoC (Eq. 1) and a 4x4 NoC was analysed with random
traffic to extract performance statistics.

ܸ = ൜∑ ∑ ൬
ೣ ,

ೣ ,
൰

௬ୀ௧ுିଵ
௫ୀ௧ௐ ିଵ ൠ/ܮ(ௐ ×ு) Eq. 1

(W- NoC Width, H- NoC Height, C- No Load Latency, H- Hops, P- Period, L- Number of links)

The latency performance of the technique is interpreted as
boxplots with priority of the packet on the X-axis and latency
on the Y-axis. In box plots the whiskers shows the extreme
cases of latency and the boxes indicate the upper and lower
quartile of latency with the middle line depicting the median.
So, shorter box and whiskers show lower variability in latency
and lower box and whiskers show lower magnitude of latency.

In the plots, the red box and whiskers (first one of each
pair) depict the performance of a priority non-premptive NoC
while the green box and whiskers (second one of each pair)
show the performance with SPS logic engaged under the same
scenario.

a) Variation with Traffic patterns

To verify the performance enhancement brought about by
the technique with varying traffic patterns, three 4x4 NoCs

Figure 3: Performance with Random Traffic
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with different traffic flow mappings were tested and the latency
statistics obtained from the simulation were interpreted. We
used a moderate load of V=0.8 for the three traffic patterns and
the resulting boxplots are added as Figure 3.

In the box plots in Figure 3, it can be observed that
irrespective of the traffic scenarios used, the box and whiskers
for the high priority packets (like 1,2,3 and 4) were mostly
shorter and lower with the employment of packet splitting
showing lower variability and magnitude of latency. As a
characteristic of some specific traffic scenarios some packets
can have decreased performance (like packet 4 in Figure 3b)
caused by higher priority packets than those and this is the
limitation brought about by the traffic pattern than the
technique.

b) Varying load by changing overall payload flit count

For verifying the effect of the increase in load on the NoC
due to the increase in payload flits, we carried out experiments
with a NoC increasing the packet sizes.

Figure 4a shows the latency comparison of a NoC at an
intermediate load of V =0.7 and the same NoC with increased
load levels of V=0.9 and V=1.3 are interpreted as Figure 4b
and Figure 4c.

It can be observed that as the load on the NoC was
increased it had an adverse effect on the latency performance
of the packets on the basic NoC hence resulting in longer and
higher box and whiskers. This can be quite acceptable with
low priority packets but the increased load would have similar
effect on high priority packets as seen in the plots. With SPS
logic engaged, the adverse effect on the latency of high
priority packets (like 1 to 5) can be seen less hence lower and
shorter box and whiskers are observed.

c) Varying load by changing overall header flit count

To increase the number of header flits in the NoC and
hence the load, the NoC was tested by decreasing the period of
tasks and the resulting performance is interpreted as Figure 5a,
Figure 5b and Figure 5c.
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Figure 5: Performance with increased header flit count

(a) V=0.7 (b) V=0.9 (c) V=1.3

400

4000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

Priority
(c)

V = 1.3

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V = 0.9

L
at

en
cy

Priority
(b)

200

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

V = 0.7

L
at

en
cy

Priority
(a)

Hermes based

SPS

Figure 4: Performance with increased payload flit count

(a) V=0.7 (b) V=0.9 (c) V=1.3



250

2500

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

PD: 0
PD: 2
PD: 4
SPS OFF

Figure 7: Effect of PD variation

Priority

L
at

en
cy

200

2000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 6: Effect of RF variation

RF: 1
RF: ¾
RF: ½
SPS OFF

L
at

en
cy

Priority

Hermes Based SPS VC

LUT 19344 26512 84624

Registers 11360 13264 41568

0

20000

40000

60000

80000

N
u

m
b

e
r

o
f

C
o

m
p

o
n

e
n

ts
R

e
q

u
ir

e
d

Hardware Requirements for a 4x4 NoC

Figure 8: Hardware overhead comparison

As observed with the tests in previous sub section, the use
of SPS was found to be effective with the increase in the load
as the high priority packets were observed to be causing lower
variability and magnitude in latency than the basic non-
preemptive NoC.

d) Effect of RF and PD variation

To verify the effect of RF variation on performance, we
tested a NoC with RF condition set to 1, ¾ and ½ of the packet
size. With those tests the SPS logic was set to trigger only if
the flits left to send owing to the lower priority was equal to or
greater than 1, ¾ the packet size and ½ of the packet size
respectively and the result is interpreted as Figure 6.

In Figure 6, it can be observed that the effect of SPS can be
scaled by varying the RF condition. With RF set to 1, the high
priority packets were given the maximum preference and hence
high priority packets are seen to be with the lowest variability
and magnitude of latency. This comes at the cost of the low
priority packet performance as those suffer higher variability
and magnitude in latency. With the subsequent tests with RF
set to ¾ and ½, the effect get moderated towards the low
priority packet performance ultimately getting closer to the
performance of the basic non-premptive NoC.

The variation of PD had a similar effect on latency
performance and the experimental results are added as Figure
7.

Though PD variation has similar characteristics as RF
variation, the later would have a better reliability in
performance scaling applications than PD. This is due to the
fact that as PD scaling relays on the priority of the competing
packets, it can get affected by the specific characteristics
related to each of the used task mapping whereas RF is a more
generic parameter.

B. Hardware Overhead

The hardware overhead associated with the technique was
evaluated using Xilinx Vivado Design Suite by synthesising
the design for an FPGA. While the baseline router (2-position
input buffers) based on Hermes with priority arbitration
utilised 1209 Look Up Tables (LUTs) and 710 of Slice
Registers of the chosen FPGA, the SPS-enabled NoC (2-
position input buffers) utilised 1657 LUTs and 829 Slice
registers which is minimalistic. When a comparable Virtual
Channel (4 VCs with 2-position buffers) based design
implemented upon the same basic NoC architecture was
tested, Vivado generated a LUT requirement of 5289 and Slice
Register requirement of 2598 thereby demonstrating the
overhead associated.

The hardware overhead comparison for the techniques on a
4x4 NoC architecture is interpreted in Figure 8. It can be
observed that SPS has moderate hardware requirements
compared to the basic non-premptive NoC while the Virtual
Channel based NoC costs more than twice as much.

V. FUTURE WORK

Even though the technique addresses the issue of link
utilisation of lower priority packets, it doesn’t make the NoC
immune from Head-of-line (HOL) blocking. HOL blocking
is one of the main issues that deteriorate the predictability of
non-preemptive NoCs and quoting Huang et al from [15],
“due to HOL blocking, the throughput of the links is typically
limited to 58%”.



As HOL blocking can affect the performance of SPS
enabled routers, the technique would be improved by coupling
it with Priority Forwarding [16] which would then enable the
routers to neutralise HOL blocking scenarios as it occurs. This
is achieved by forwarding the priority of the high priority
packet encountering HOL blocking to the low priority packet
blocked down the line and this can be performed alongside
SPS without any side effects.

VI. CONCLUSION

For increasing packet predictability in non-premptive
NoCs, this paper explored Selective Packet Splitting
technique, its performance and overhead. With a prototype,
we tested its performance with several random traffic
scenarios as well as with varied load intensity on the NoC and
the results were analysed. SPS was found to decrease latency
variation and latency magnitude of high priority packets at the
cost of low priority ones irrespective of the traffic pattern and
intensity. SPS also provided additional provision of tuning the
performance benefit hence providing a facility to scale the
performance depending on the overall criticality of the
situation. The paper also evaluated the implementation
overhead of the technique and it was found to be nominal
(37% Lookup tables and 17% Registers) from the basic non-
preemptive NoC.
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