
Immune-Inspired Self Healing in Wireless Sensor

Networks

TiongHoo Lim1,3, HuiKeng Lau1,4, Jon Timmis1,2, and Iain Bate1

1 Department of Computer Science, University of York
2 Department of Electronics, University of York,

Heslington, YO10 5DD, UK
3 Electrical and Electronics Engineering,

Institut Teknologi Brunei, Tungku Link, Gadong BE 1410, Negara Brunei Darussalam
4 School of Engineering and IT, Universiti Malaysia Sabah,

88999 Kota Kinabalu, Sabah, Malaysia
{tl540,hl542,jon.timmis,iain.bate}@york.ac.uk

Abstract. Link failure and unreachable nodes due to interference from
external devices are common problems in WSNs. These interferences can
be a major inhibitor to node performance and network stability. In order
to tolerate these failures, we propose an immune-inspired self healing
system where an individual node can detect degradations in network
performance, perform diagnostic tests, and provide automated immedi-
ate response to recover the network to a stable state. We evaluate and
compare the performance of our approach with other routing protocols
on a testbed environment using TelosB hardware motes.

Keywords: wireless sensor networks, error detection, error classification,
error recovery, receptor density algorithm, routing protocol.

1 Introduction

Advances in microchip and communication technologies have enabled mass pro-
duction of small and cheap devices called sensor nodes that are capable of sens-
ing the environment and interact with each other. These nodes interact over
the radio channel to form wireless sensor networks (WSNs) [1]. Each node can
operate autonomously to monitor and collect data, and send the data packet
over the wireless network via multi-hop routing protocols. To date, it has been
used for indoor and outdoor applications such as remote patient health moni-
toring, fire search and rescue operation, and disaster management [1]. This type
of application requires a specific level of quality of service (QoS) and availabil-
ity of real-time data from the nodes to allow informed decisions and actions to
be made.

An important issue is, real-world implementations of WSNs are usually dif-
ficult to control and susceptible to anomalies [19]. Anomalies, such as commu-
nication failure caused by battery depletion, component malfunction, human
activity, obstruction, and interference, may occur in WSNs. This is in particular
true when other devices operating at the same radio frequency as WSNs, e.g.
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IEEE 802.11 devices, are deployed very close to the sensor nodes [18]. The inter-
ferences created by these devices may exhibit unique and distinct characteristics
that can be classified into different categories. In order for WSNs to operate
over extended periods of time, individual nodes must be able to tolerate these
interferences effectively. This can be achieved with a combination of detection,
diagnostic and recovery mechanisms.

Over the years, many immune-inspired anomaly detection systems (ADSs)
have been successfully applied to WSNs. This is partly motivated by the analogy
between the characteristics of WSNs and the immune system. The Dendritic
Cell Algorithm [8] and Negative Selection Algorithm [5] have been successfully
applied to detect network and traffic anomalies. To be able to establish the
anomalies that can lead to major failures is essential. Drodza et al. [4] applied
the interaction between innate and adaptive immunity to classify the errors that
can lead to degradation in packet delivery rate. However, these works mainly
focus on detection, not on recovery. If real time remedial action is not performed,
the network condition is likely to get worse. Recently, an automated response
system based on Cognitive Immune System (CIS) has been proposed in [17] to
network failure that assumed an accurate detection system is present to trigger
the response system. However, detection without effective diagnosis of network
disruptions is not sufficient to determine the underlying cause of the problem,
and confirm the presence of the interference for an appropriate remedial action
to be taken. These three actions have to be integrated into one component. In
addition, for all these studies, the proposed solutions mainly focused on failure
caused by malicious attacks. These attacks usually have unique features that can
easily be detected. Little work has investigated anomalies due to interference
in the operating environment, either using ADSs or with more conventional
approaches. One of challenges in detecting anomalies due to interference is that
the duration and occurrence for these type of anomalies are unpredictable and
changes with time [14]. Thus, it is difficult to be detected and classified using
existing AIS or conventional approaches [2].

In this paper, we propose an integrated immune-inspired Interference Detec-
tion and Recovery System (IDRS) based on CIS [3] to allow individual nodes to
detect, diagnose and make decision as to how to response to network failure due
to radio interference. The CIS postulates that the immune systems do not only
protect the body, but it also performs body maintenance through the process of
recognition, cognition and response, with respect to its environment [3]. Based on
this principle, we combine the use of the Multi-modal Routing Protocol (MRP)
[11] and the Receptor Density Algorithm (RDA) [15]. The MRP is a multi-modal
routing protocol proposed to overcome transmission failure by providing auto-
mated responses based on existing routing protocols. The RDA is an artificial
immune system algorithm based on a T-Cell signalling model with statistical
kernel density function to detect anomalies [15]. The main contributions of this
paper are 1) A novel distributed anomalies detection, diagnostic, and recovery
system that can identify and respond to network anomalies caused by radio in-
terference, 2) The application of the RDA as a diagnostic tool to identify the
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different types of interference in the radio channel and to aid recovery decision,
and 3) A quantitative evaluation of the proposed IDRS.

The remaining of the paper is structured as follows. Section 2 formulates the
problem before an insight into the design and implementation of the proposed
IDRS design and algorithm is presented in Section 3. The accuracy, efficiency
and reliability of IDRS are evaluated and discussed in Section 4. Section 5 ends
the paper with the conclusion and future work.

2 Radio Interference in Wireless Sensor Network

Network failures in WSNs due to interference are common as WSNs uses the
same radio frequency with other devices such as portable phones, microwave
ovens, Bluetooth devices, and Wi-Fi networks. Lin et al. [13] has classified the
radio interference in three distinct patterns namely: small fluctuation created by
multi-path fading of wireless signals; large disturbance due to shadowing effect of
the presence of obstacles; continuous large fluctuations caused by Wi-Fi devices.
Each of these interference patterns can have different decremental effects on the
Packet Sending Ratio (PSR). Recent work by Wang et al. [18] has shown that
due to interference from a Wi-Fi network, packet loss in WSNs can reach up
to 30%. To overcome this interference, the nodes may need to retransmit their
packet, or even increase their transmission power in order to communicate with
their neighbour. In other cases, when the interference source is strong, the node
may need to establish a new route in order to send the packet. All these recovery
steps may aggravate a congested network and reduce the availability and lifetime
of the network if it is not executed according to the interference patterns.

Fig. 1. Interference source is introduced near node 5 to disrupt the radio communica-
tion between node 2 and 3

To illustrate, six static and functionally homogeneous sensor nodes can be
deployed in the topology shown in Fig.1. Each sensor node is capable of packet
forwarding and produce network statistics. When a Wi-Fi device is placed close
to node 5, the communication between node 5 and its neighbouring nodes (node
4 and 7) can be disrupted resulting in packet loss. As a result, the affected nodes
will attempt to recover from the transmission failure by executing protocol-
specific recovery functions such as retransmission, flooding and collision
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avoidance [16]. However, these responses are only effective if they are applied
correctly, depending on the durations and intensity of the interference. Hence, it
is not only a matter of detecting the presence of an anomaly, but also the cause
of an anomaly, in order to make accurate and automated recovery decision.

3 IDRS: Interference Detection and Recovery Systems

The immune-inspired Interference Detection and Recovery System (IDRS) serves
two purposes:

1. to accurately identify the interference that is affecting the communication
between a node and its neighbour in a distributed manner,

2. to make autonomous decision on the recovery action to mitigate the effect
of the interference, and improve the network reliability and efficiency.

Fig. 2. The architecture of the CIS-based Interference Detection and Recovery System

The IDRS (Fig.2) consists of three modules, representing each stage in the
CIS: MRP Detection Module (MDM), RDA Diagnostic Module (RDM), and
Radio Interference Response Module (RIRM). Inputs to the IDRS are the PSR
and the Receive Signal Strength Indicator (RSSI). These inputs can easily be
obtained and calculated from the node. The MDM acts as the first line of defence
to provide early detection and response to the interference when PSR is less
than a predefined threshold value. If the condition does not improve, the MDM
will activate the RDM to identify the type of interference based on the RSSI.
Based on the results from both the MDM and the RDM, the RIRM will activate
one or a combination of responses based the cognitive theory of regeneracy [3].
By using the close feedback loop provided by link layer, the effectiveness of
the responses can be evaluated by the MRP. The cost of each response will
be adjusted accordingly. Hence, IDRS is able to recognise and respond more
effective from novel or existing interference based on the history of the response,
and the strength and duration of the interference.

In the following subsections, a detailed description of the proposed IDRS
Algorithm, in Appendix, is presented.
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3.1 MDM: The MRP Detection Module

In WSNs, the packet reception ratio (PRR) is commonly used as a metric to
detect network anomalies. The PRR is shared between neighbouring nodes [12].
This data is usually piggybacked on existing packet. However, in the presence
of interference this data may be lost or corrupted. Hence, we advocate that the
detection module should be implemented at the transmitting node. In the IDRS,
we propose the use of the MRP [11] to detect the presence of interference based on
the PSR and provide an initial response. The PSR is the total number of packets
successfully send over the total number of attempts made in a given time window.
The MRP detects deviation in the PSR and utilises the packet acknowledgement
(Pack) to provide network recovery responses [11] and to activate the RDM.
Each route recovery response incurs a specific cost (RTcost for retransmission,
LDcost for local recovery). Associated with each recovery response is a maximum
cost threshold: RTmax for retransmission, and LDmax for recovery. The recovery
response will only be selected if the cost of carrying out the response is lower than
the maximum threshold. All these responses utilise the existing acknowledgement
mechanisms on the link layer. As such, no additional communication overhead is
incurred in the network. Work by Lim et al. [11] has demonstrated by employing
MRP, significant network improvement has been achieved.

3.2 RDM: The RDA Diagnostic Module

To identify the cause of a transmission failure, the Received Signal Strength
Indicator (RSSI) is used. Monitoring the RSSI in WSNs has been widely used to
decide the required transmission power to transmit a packet [2,12]. However, as
illustrated in Fig.3 (a1) and Fig.3 (a2), the RSSI values are sensitive to changes
in environment. It has been demonstrated to be a challenging task to classify
the RSSI values with traditional statistical techniques [2]. Small changes in the
operating environment can trigger large variations in the RSSI, making it difficult
to accurately determine the type of interference [9]. Here, we propose the use of
the RDA [10,15] to filter the background noise and classify the interference. The
RDA has been used to detect partial failure in swarm robotic system [10] and
chemical substances [7] with high positive detection rate and low false detection
rate. Its ability to recognise anomalies in a dynamic environment has motivated
its application to WSNs.

The RDA was developed based on the immunological modelling on the acti-
vation of the T Cell Receptor (simply referred to as the receptor in this paper)
when presented with antigen on the surface of an antigen presenting cell [15].
Depending on how often the receptor encounters the antigen, the receptor can
become more sensitive or less sensitive (lower activation threshold) towards the
antigen. To apply the RDA, the input data is divided into s discretised locations
and a receptor xs is placed at each of these locations. A receptor has a length
� = (

√
2π)−1, a position rp ∈ [0, �], and a negative feedback rn ∈ (0, �). At

each time step t, each receptor takes input xi and performs a binary classifica-
tion ct ∈ 0,1 to determine whether that location is considered anomalous. The
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Fig. 3. The raw RSSI data collected (both normal (a1) and abnormal (a2) samples)
from the radio interface are fed into RDA to product normal (b1) and abnormal (b2)
signatures of activated receptors. Using the outputs generated by RDA, the interference
can be classified into either Class I, II, or III based on the euclidean distance of the
furthest activated receptor and the number of activated receptors above the threshold
l, represented by the global maximum and vertical lines in (c) respectively

classification decision is determined by the dynamics of rp and negative feedback
rn ∈ (0, �).

The process for initialisation and classification of the RSSI values are described
as follows:
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Phase 1: Initialisation

1. Present the normal RSSI values X (Figure 3a1) to the RDA to generate
its normal signature (Figure 3b1). For each receptor x , calculate the sum
of stimulation S(x) on each receptor x for each RSSI input xi, xi ∈ X .

S(x) =

n∑

i=1

e
−(x−xi)

2

2h2

h
√
2π

(1)

where h is the kernel width and set to 5 in this paper, and n is the total
number of normal RSSI values.

2. Calculate the negative feedback rn(x) for each receptor x. The base
negative barrier β is set to a small value, 0.01 in this paper.

rn(x) =

{
S(x)− β, if S(x) ≥ β

0, otherwise
(2)

Phase 2: Classification

1. Initialise the receptor position rt(x)=0 for all receptors.
2. Based on the MAX(rp(x)) of normal signature, set the threshold value

of the receptor length � = (
√
2π)−1 .

3. Calculate the new receptor position rp(x) with current RSSI values V.

Ks =

n∑

i=1

e
−(x−vi)

2

2h2

h
√
2π

, rp(x) = Ks − rn(x) (3)

where each RSSI value vi ∈ V.
4. Classify V:

A receptor is activated when

V =

{
Normal, if rp(x) < l

Interference, otherwise.
(4)

The classification of v to different classes of interference is based on two
variables (Figure 3c):

– The difference between distance of the highest receptor position and
� (max(�− rp(x))), referred to as Intensity;

– The number of activated receptors, referred to as Duration.

3.3 RIRM: The Radio Interference Response Module

We assume that based on the RSSI and the PSR values, the interference can be
classified into three classes according to the different duration (short or long)
and intensity (weak or strong). Also, four different responses can be used to
overcome the interference:
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1. Retransmission (RT): Retransmission is the default action and activated
when the MDM detects that the acknowledgement packet Pack is not received
and the cost of retransmission RTcost has not exceed the threshold RTmax.
This response is particularly effective when the interference noise signal is
weak and short (CLASS I).

2. Local Discovery (LD): Local discovery is activated when the node failed to
send the packet after several RT attempts (as indicated by PSR lower than
90%) or when the RDM identified a CLASS II interference. This response is
best executed only when the next node is unavailable and the interference
noise signal is weak and long (CLASS II).

3. Global Discovery (GD): This is usually the last option to take when the
existing route is known to be unreliable. This action is usually taken when
all the previous responses have failed, and there is no local node available to
re-route the traffic, or the interference source is strong and long (CLASS III).

4. Transmission Power Control (TPC): This is an additional response to han-
dle unavailable route cause by node failure or obstruction. It is a common
approach to increase the transmission power in order to communicate with
the next hop neighbouring node [2,12]. However, the use of higher trans-
mission power can only be applied when necessary as it consumes more
battery power and can interfere with other nodes. Hence, TPC is only ap-
plied when CLASS I interference is detected with the PSR is lower than 90%
and the transmission power Txpower is less than a predefine maximum power
Txmax.

To clarify, a decision tree, based on expert knowledge, is presented in Figure
4 to show the response strategy to be selected based on the current network
environment.

Is RTcost > RTMax

Is RSSI High? Retransmit

Retransmit

Is Local Discovery
success?

Is High RSSI
Duration Short?

Yes

Yes

Global
Discovery

Is Low RSSI
duration Long?

No

NoYesNo

Retransmit

Is TXPower > TXMax?

Yes

Retransmit
With High Power

Local
Discovery

NoYes

No

No

Is LDcost < LDMax?

Yes

Global
Discovery

No Yes

Fig. 4. Decision tree based on the RIRM and MDM to response to different
interference
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4 Experiments and Results

In order to evaluate the proposed IDRS, we conducted two experiments. The
first experiment examines the effectiveness of the RDA classifier in the RDM
whilst the second experiment evaluates the efficacy of the proposed IDRS when
compared to other methods.

4.1 Evaluation of the RDM

In the RDM, we use over 850,000 RSSI readings to classify the interference
into three classes: CLASS I, CLASS II, and CLASS III. The RSSI values are
obtained from the TelosB radio module, exposed to different interference source.
The spectrum of the RSSI values used is the range of -100dBm to -10dBm. This
spectrum is uniformly divided into 30 slots and a receptor is used to represent
each slot (the value x in Eq. 1).

In order to classify the interference into the three classes, an unsupervised
K-mean clustering algorithm is applied to the set of training data (offline). The
derived classes based on Intensity (C1) and Duration (C2) are in Table 1.

Table 1. Interference Class

Intensity, C1 Duration, C2 Class Remarks

0 < C1 ≤ 2.8 0 < C2 ≤ 5 I weak intensity, short duration

2.8 < C1 ≤ 11.0 5 < C2 ≤ 16 II weak intensity, long duration

C1 > 11.0 C2 > 16 III strong intensity, long duration

We evaluate the performance of the RDM in TelosB mote based on sensitivity
(Eq. 5) and precision (Eq. 6).

Sensitivity =
TP

TP + FN
(5) Precision =

TP

TP + FP
(6)

Sensitivity measures how well the RDM can correctly classify the interference
source whilst precision measures the probability of a detected event is repre-
senting a true positive result rather than a false positive. Precision ensures the
appropriate response is taken for the corresponding interference.

Experimental Setup: Two static nodes are deployed across a distance of 10
metres. One node is configured to transmit packets at the rate of 8 packets per
second while sampling its radio channel at the rate of 1 KHz to collect the RSSI
values and perform online detection.

Eight different network conditions are used to test the system namely: normal
WSN communication, object blocking, jamming from another node, Wi-Fi traf-
fics such as web browsing (WWW), slow video streaming, fast video streaming,
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slow file downloading, and fast file downloading. In each run, only one type of
interference was injected into the network at periodic interval. This is done by
placing a laptop next to the receiving node. Due to the limited log size in the
motes, each experiment was run for 5 minutes to generate 2400 packets and is
repeated 15 times.

Experimental Results: The results for the experiment are shown in Table 2.
In the table, the RDM achieved a precision above 80% for most of interferences
especially for interferences that have drastic impact on the PSR (PSR < 70%)
such as blocking and fast download. These two types of interference require a
different recovery approach. Hence, it is important to achieve a precision rate
above 80% precision rate to allow a specific response approach to be taken when
PSR < 75%. Although the false negative rate for Class II interference is high
due to misclassification, its impact on the network PSR is less extreme with only
up to 25% packet loss compared to blocking and fast download with packet loss
above 30%. Beside, high accuracy in Class II interference is usually not required
for accurate response as the sequential recovery step provided by the RIRM will
eventually trigger the right response.

Table 2. The sensitivity and precision of the RDM in classifying different sources
of interference. The RDM showed high sensitivity and precision for Class I and III
interference.

Interference Class True False True False Sensitivity Precision PSR
Source Type Positive Positive Negative Negative (Ave)

Normal I 98 0 0 0 100.00% 100.00% 95%
Blocking I 47 0 3 0 100.00% 100.00% 68%
Jamming I 30 5 28 0 100.00% 85.71% 70%
WWW II 12 10 7 8 60.00% 54.55% 80%
Slow Streaming II 54 0 23 49 52.43% 100% 81%
Slow Download II 14 5 2 4 77.78% 73.68% 76%
Fast Streaming III 14 1 23 4 77.78% 93.33% 63%
Fast Download III 39 8 13 6 86.67% 82.98% 45%

4.2 Evaluation of the IDRS

In this experiment, the performance of the IDRS will be compared to the Not So
Tiny’s AODV (NST) [6], the original MRP [11], and a modified MRP with TPC
(MTPC). MTPC protocol is used to evaluate the benefit of boosting the trans-
mission power with or without RDM. The performance of the routing protocols
is evaluated based on the following metrics:

– Packet Delivery Ratio (PDR): PDR represent the percentage of the
number of packets received by the receiver, to the total number of packets
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transmitted by the sender. This metric measures the reliability of the routing
protocol.

– Transmission Overhead (TO): TO is defined as the average number of
transmissions made by a node to deliver the packets to the receiver. This
metric represents the efficiency of the routing. It can be calculated by divid-
ing the sum of the transmissions made, including RT, LD and GD, to the
total number of packets received.

– Average Current Consumption (CC): CC can be determined by first
calculating the total currents, Itotal(i) consumed in a node, i, by multiplying
the number of packets transmitted to the current required to transmit one
packet at that power level. A typical current consumption for transmitting a
packet can be obtained from the Chipcon data sheet1. Finally, Itotal(i) can be
used to determine the network average current consumption by multiplying
Itotal(i) to the total of nodes in the networks.

Experimental Setup: Six static TelosB motes are placed 3 metres apart using
the topology shown in Fig.1. The experiment is conducted at the centre of a
room relatively free from uncontrolled radio sources to ensure its correctness
and validity. The node transmission is set to minimum power using the same
channel as the Wi-Fi in the room to treat it as a source of interference. The
LLN is enabled to allow packet acknowledgement. During initialisation, node
2 is configured to collect temperature reading from the sensor and transmit
the packet to node 3, at regular intervals of 256ms via the intermediate nodes.
Once the network route has been established, and the normal signature has
been collected by the RDM (after 30 seconds), different sources of interference
are introduced into the network (close to node 5) at 30 seconds intervals. Each
interference lasts for approximately 15 seconds. Each test is run for 10 minutes
and is repeated 15 times.

Experimental Results: The results for this experiment are shown in Table 3.
The results show that the IDRS outperformed the other three routing protocols
in term of energy efficient (CC) when interference was introduced. Under the
normal condition, all routing protocols consumed similar amount of energy to
transmit one packet successfully. However, when interference was introduced,
higher TO (up to an average of 14 transmissions per packet) has been observed in
NST as NST requires to retransmit the packet before performing local discovery.
The TO is significantly less for routing protocols with MRP especially for IDRS
as highlighted in Table 3. As a result, less current is used to deliver a packet
successfully.

When interferences with longer duration (CLASS II and CLASS III) are intro-
duced, the IDRS consumed the least current as precise response can be executed
by RIRM based on the diagnosis made by the RMD. For example, as shown
in Table 4 with Class II interference, the IDRS performed less RT and TPC as
the node was able to recognise the interference and performed LD immediately

1 downloadable at http://www.ti.com/lit/gpn/cc2420

http://www.ti.com/lit/gpn/cc2420
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without executing RT and TPC. The RMD in the IDRS managed to effectively
classify the interference as shown in class I, II, and III in Table 4. The total
number of responses performed by IDRS is significantly less than the MTPC

and thus more energy efficient.

Table 3. The performance on the reliability (PDR), efficiency (TO) and energy usage
(CC) for NST, MPR, MTPC and IDRS under difference sources of interference

NST MRP MTPC IDRS
Radio PDR

TO
CC PDR

TO
CC PDR

TO
CC PDR

TO
CC

Conditions (%) (mA) (%) (mA) (%) (mA) (%) (mA)

Normal 93.8 3.66 26.2 98.3 3.56 25.9 98.1 3.50 26.5 98.4 3.49 26.1
Class I 70.9 8.79 74.7 80.6 7.51 63.9 84.9 7.08 60.2 82.1 6.55 55.7
Class II 82.3 14.13 49.1 93.7 4.16 33.1 96.9 3.90 31.6 96.3 3.78 31.0
Class III 76.1 8.79 128.2 79.4 7.50 97.9 87.1 5.75 89.3 86.6 5.36 83.6

From Table 3, by increasing the transmission power as one of the response
during Class I interference has improved the PDR by 5% on average compared
to MTPC . Although both MTPC and IDRS exhibit similar PDR, IDRS has
performed TPC less frequent than MTPC during Class III error as Class I in-
terference has been correctly classified by RDM as shown in Table 4 leading to
better energy efficiency. Hence, the use of RDA to classify the radio signal noise
pattern has not only allowed the system to response accurately with minimal
energy consumption, but has also maintained a higher PDR.

Table 4. The execution of different responses with the interference classification in
the IDRS, and without in the MTPC . Results show that IDRS managed to execute
the right response compared to MTPC . Class III interference has been correctly clas-
sified resulting in higher number of Global discovery and lower number of high power
transmission.

Radio Number of Response Executed Interference Detected
Condition RT LD TPC GD Class Class Class

IDRSMTPC IDRSMTPC IDRSMTPC IDRSMTPC I II III

Normal 41 44 24 35 5 7 50 48 7 0 0
Class I 113 174 52 92 33 12 342 404 59 4 1
Class II 42 66 15 14 6 14 88 60 35 15 1
Class III 164 193 108 145 15 44 121 219 88 74 82

5 Conclusions

In this paper, we have presented an immune-inspired interference detection and
recovery system (IDRS). This system consists of the MPR detection module,
the RDA Diagnostic Module, and the Radio Interference Response Module. In
the RDM, we have extended the usage of the RDA to diagnose certain types of
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interference. Our experimental results have demonstrated that RDA can effec-
tively classify the interference based on the RSSI values. Together with the use
of the MRP, an effective response to network anomalies due to interference can
be achieved. The results show that the IDRS can improve the PDR by 11% and
reduce the energy consumption by 25.5% with Class I interference, and 10.5%
improvement in PDR and saving of 34.8% in energy with Class III interference.
It can also be used to detect anomalies that affecting the mote’s radio. As the
signature of normal RSSI can be easily regenerated as required, the IDRS can
be made to adapt to its changing environment. As future work, we will incor-
porate an adaptive tunable activation threshold based on its environment and
performance.
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Appendix: The Algorithm

input : Packet Send Ps

output: Response Action

1 while Packet Buffer is not Empty do
2 Send Packet Ps and wait for acknowledgement Pack;
3 if Pack is not received then
4

⎫
⎬

⎭

Activate MRM
Detection
Module.

Calculate Packet Sending Ratio, PSR
5 else
6 Decrease the cost for Retransmission, RTcost;
7 end
8 if PSR < 95% then
9

⎫
⎬

⎭

Activate RDA
Diagnostic
Module.

Determine interference CLASS from RDM ;
10 end
11 if not CLASS III and [PSR > 90% or RTcost < RTmax] and

Route is valid then
12 Retransmit

⎫
⎬

⎭

Trigger
Retransmission
Response.

;
13 Increase the cost for Retransmission, RTcost;

14 else if CLASS II and LDcost < LDmax then
15 Perform Route Discovery ;
16 Increase the cost for Local Discovery LDcost

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Trigger
Local Discovery
Response.

;
17 if Route Discovery is Successful then
18 Decrease the cost of Retransmission RTcost;
19 end

20 else if CLASS I and TxPower < TxMAX then
21 Increase the Transmission power, Txpower

⎫
⎬

⎭

Trigger Higher
Transmission
Power Response.

;
22 Decrease the Retransmission Cost, RTcost;

23 else
24 Invalidate Route and Send Error for Global Discovery

⎫
⎬

⎭

Trigger
Global Discovery
Response.

;
25 end
26 if Timeout then
27 Reinitialised
28 end

29 end
Algorithm 1: IDRS Algorithm with the combination of MRP and RDA
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