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Abstract

Energy efficiency is of critical importance in sensornets
where the working life of wireless motes, and consequently
the entire network, is limited by the finite energy capac-
ity of batteries. Radio network activity typically dom-
inates the energy consumption profile of motes running
distributed applications, and hence represents the obvi-
ous target when attempting to use energy more frugally.
Significant savings can be obtained by carefully tuning
existing energy-ignorant protocols. Current practice in
choosing parameters is generally based on experience, in-
tuition, and trial and error. This approach rarely leads to
the best choice. In this paper a novel method is presented
through which the complex relationships between protocol
parameters, network structure, application workload and
observed network behaviour are understood and tuned.

1 Introduction

Energy efficiency is of critical importance in sensornets
where the working life of wireless motes and conse-
quently the entire network is limited by the finite capacity
of batteries. The network must manage its consumption of
this non-renewable resource, carefully balancing the com-
peting demands of performance and durability. Radio net-
working components are typically the greatest consumers
of energy, and consequently offer the most significant tar-
get for improved energy management efficiency.

Improvements in sensornet hardware will enable greater
performance per unit cost. The sensornet designer may
choose to “spend” this improvement by providing each
mote with greater resources, or by using more motes in
projects, or by reducing the cost of the project. In the lat-
ter two cases, hardware improvements will be useful to the
sensornet designer but will not necessarily allow heavier,
higher-overhead protocols to become viable.

Regardless of hardware improvements, network lifetime
can be extended by using radio communications more effi-
ciently. Most non-trivial protocols have sets of parameters
which can be fine-tuned. One option is to introduce new
energy-aware networking protocols which seek to reduce
energy consumption by managing network traffic more ef-
ficiently. However without suitable parameters the bene-
fits of doing so will not be fully realised. In this paper
we explore how existing well-understood energy-ignorant
protocols can be tuned for maximal energy efficiency. The
protocol, flooding, has been chosen as it is well under-
stood and relatively simple which means the technique
and its benefits can be clearly understood. However, the
tuning method we describe is equally applicable to both
energy-ignorant and energy-aware protocols.

Sensornet motes resources are typically so highly con-
strained that any energy efficiency improvement is wor-
thy of evaluation. Many small savings achieved over the
sensornet lifetime accumulate into large savings. Sensor-
net designers must identify the most significant factors
to avoid being swamped by unnecessary detail. Unfortu-
nately, even identifying the relative importance of factors
and their interactions is rarely trivial. Discovering the best
values to assign to these factors and understanding their
impact on network behaviour is harder still.

Considering one factor at a time is unlikely to give a thor-
ough treatment of the trade-offs and hence any solution
found may differ significantly from the optimal. For in-
stance, suppose we wish to maximise the probability that
a packet reaches a given destination within a given dead-
line. If we increase thegossip probabilityare we helping
timely delivery by ensuring that at least one short path
from source to destination is traversed, or are we hinder-
ing timely delivery by congesting the network? How big
should each node’swaiting packet queue sizebe to avoid
retaining packets that will inevitably expire prior to de-
livery but without throwing away packets which should
still be viable? Does increasing thegossip probabilityup-
set this delicate balance by delivering too many irrelevant
packets, undermining careful tuning of thewaiting packet



queue size?

Where we have multiple controllable factors, each of
which can take many values, combinatorial explosion
renders exhaustive exploration through experimentation
impossible. However, well-established pragmatic ap-
proaches can approximate exhaustive exploration in ac-
ceptable time. In this paper we propose a method based on
full factorial design experiments [3]. For each off factors
we sample the defined range atg evenly-spaced points. A
set of design points is established in which every setting of
every factor is combined with every setting of every other
factor.

Significantly, this rigorous approach takes account of un-
known interactions and relationships between controlled
factors which remain hidden under the traditional ap-
proach of varying only one factor at a time. We identify
the most influential protocol factors, and show that the
most energy-efficient tunings of energy-ignorant proto-
cols still yield sub-optimal energy consumption. Finally,
additional savings achievable by aggressive state manage-
ment are calculated. To the best of our knowledge this
method has not previously been applied to protocol tun-
ing in sensornets.

The structure of the remainder of this paper is as follows.
Section 2 examines related work. Section 3 defines the
questions addressed by this paper. Section 4 describes the
experimental method. Section 5 evaluates the experimen-
tal results. Conclusions are presented in section 6.

2 Related work

Energy awarenessand energy managementare themes
running throughout most aspects of sensornet design and
operation. The energy resources of nodes are typically
small and non-renewable. Energy consumption isthe
most important factor that determines sensor node life-
time[19].

Optimising sensornets for energy efficient is complex.
Raghunathan [19] observes that itinvolves not only re-
ducing the energy consumption of a single sensor node
but also maximising the lifetime of an entire network, re-
quiring dynamic trade-offs betweenenergy consumption,
system performance, andoperational fidelity, yieldingup
to a few orders of magnitudeof improved lifetime.

With many controlled factors and measured responses it
is generally difficult to understand the resulting complex
interrelationships. Totaro and Perkins [23] apply asystem-
atic statistical design of experimentsapproach to evaluate
and model the complex tradeoffs in MANET design. This
work considers the impact of varying network design with
a fixed network application. In contrast, our work consid-
ers the impact of varying network protocol and application
behaviour for a fixed network design.

Received signal power in sensor networks with short an-

tenna heights falls rapidly, in inverse proportion tor4 in
distancer, due to partial cancellation from ground ray re-
flection [5]. An interesting consequence of this non-linear
relationship is that network routes containing many short-
distance hops may be more energy-efficient than routes
containing few long-distance hops, albeit at the expense
of requiring more intermediate nodes to be awake to for-
ward traffic [13]. Energy savings must come throughout
the protocol stack, influencing the design and operation
of sensornet applications, networking protocols, network
topologies and network tasking. Sending a single bit of
information 100m may consume more energy than 1000-
3000 CPU instructions [18]. This cost is incurred by the
sender, the receiver, and any intermediate nodes along
multi-hop paths, which may grow as network node count
increases. Energy savings must be driven by energy-aware
design throughout the network stack, rather than relying
on improvements in hardware technology [19].

Radio modules are usually the most power-hungry com-
ponent of sensor nodes [5]. Surprisingly, operating radios
in idle listening mode often provides little power advan-
tage over actively transmitting or receiving, and receiving
can consume more energy than sending [19]. Observing
the full potential benefit requires radio state to be man-
aged harmoniously with network activity. Significant en-
ergy savings can be observed by identifying low-activity
periods and rebalancing the energy-performance tradeoff
[9]. Reducing transmission power can also reduce energy
consumption directly, by consuming less energy per bit
transmitted, and indirectly, by localising network activity
and reducing collisions and contention [13].

In classic flooding a node broadcasts a packet to each of
its neighbours which in turn rebroadcast the packet and
so on. Flooding converges inO(d) rounds in the net-
work diameterd [14] where each node has received the
packet, with some exceptions [8]. Flooding is utilised by
most non-geographical routing protocols [10] and often
succeeds where more sophisticated protocols cannot re-
act quickly to rapidly changing networks [17]. Counter-
intuitively complex behaviour is observed [8] despite the
protocol’s simplicity. Broadcast storms[16] are partic-
ularly problematic with significant redundant broadcasts,
contention, collisions, and high energy consumption.

Gossiping extends flooding by implementing probabilistic
rebroadcast but can provide only probabilistic guarantees
of delivery [14], displaying bimodal behaviour where ei-
ther hardly any nodes receive the packet, or almost all do
[20]. Gossip probabilities in the range [0.6, 0.8] usually,
but not always, ensure most nodes receive most packets
[10]. Appropriate gossip probability selection is gener-
ally difficult, and may need to vary across nodes and time
[15]. Other flooding variants include counter-bounded,
distance-based and location-based types [16]. Energy-
aware gossiping variants exist which turn nodes off at
random [11] exploit the fact that overhearing irrelevant



communications is a major source of energy consump-
tion [21]. The physical topology of the sensornet strongly
influences energy consumption [24], as exploited by the
Smart Gossipvariant [15].

More sophisticated energy-efficiency protocols can em-
ploy a variety of underlying techniques, in which nodes
maintain online models of network activity and energy
metrics. These approaches may attempt to find low-cost
routes using links of fixed cost, rather than attacking the
link cost itself.Minimum transmitted energyprotocols se-
lect least-cost routes using the average energy consumed
in transmitting packets between node pairs as the link
cost [4]. Maximum lifetime energy routingprotocols ex-
tendminimum transmitted energyprotocols by introduc-
ing remaining node energy to the link cost function [4].
Maximum lifetime data gatheringprotocols implement
energy load-balancing across nodes [12].Energy-Aware
QoS Routing Protocolfinds least-cost paths conforming
to given end-to-end latency requirements [2].

3 Research problem

3.1 Desired research outcomes

Given a set of typical and broadly comparable sensor-
net configurations, and a typical energy-ignorant network
routing protocol, we define the following objectives.

Obj 1: Identify which controllable factors are most sig-
nificant in each solution quality metric.

Obj 2: Identify the best set of values to assign to con-
trolled factors, yielding the best performance for
each solution quality metric.

Obj 3: Identify the set of periods, and hence proportion of
time overall, during which further energy savings
are possible by jointly managing network traffic
and mote radio state.

3.2 Protocol selection

A rich and diverse set of routing protocols have been pro-
posed in the literature and implemented in industry. It is
impractical to assess each extant protocol as there are too
many. Instead, this paper elects to consider a single pro-
tocol considered representative of a class of similar pro-
tocols. Lightweight protocols remain relevant to the ex-
treme resource constraints of small, low-cost motes and
have the additional benefit that their complexity will not
obfuscate the results of the methods proposed. For simi-
lar reasons the protocol chosen should be stateless, mak-
ing no assumptions about the nature of the application, to
avoid any form of bias in the findings.

TTL-bounded gossiping was selected to represent energy-
ignorant, geography-ignorant, stateless protocols [16].
This class of protocols is important because of their sim-
plicity. More complex protocols of higher sophistication
often incorporate simple protocols during early discov-

ery phases or to maintain information. If implemented
carelessly these simple protocols can be highly wasteful,
and hence offer an excellent opportunity for saving en-
ergy. For example, unbounded flooded messages can eas-
ily cover the entire network [10] which is wasteful if the
source and destination are physically close.

Note that in selecting TTL-bounded gossiping for our ex-
periments we make no claims as to the merit of this proto-
col for any given sensornet application. More specifically,
we do not claim that an optimally-configured gossiping
protocol will offer superior performance to more recent
and more sophisticated alternative protocols.

3.3 Network design

The TTL-bounded gossiping protocol is considered within
the context of an aggregated sensing application running
on resource-constrained wireless nodes. It is noted though
that the routing performed by the protocol has, and uses,
no knowledge about the nature of the application nor
specific information from the application during opera-
tion. That is, the protocol is essentially stateless and un-
intelligent in its operation. Most traffic consists of pack-
ets travelling short routes upward within the aggregation
tree structure. To ensure fair comparison between pro-
tocol controlled factor configurations we must account for
the influence of network design. We characterise networks
by a set of network design factors in section 4.1. We im-
plement blocking of these factors by defining a set of net-
works sharing identical design factors other than differ-
ing in physical node position. The specific network de-
sign factors described here and in sections 4.1 and 5.1 are
not significant, and are selected merely for expedience in
demonstrating the method.

A proportion of nodes are randomly selected as cluster-
head nodes, periodically exchanging aggregated results
with other clusterhead nodes. The remaining nodes pe-
riodically send observations to their geographically near-
est clusterhead node. Other than this role allocation, each
node is identical. Nodes are modelled on the MICA2 mote
with similar performance, radio, and energy properties.
Nodes are static and distributed randomly within a cube
vacuum devoid of obstructions. Radio signal propagation
is modelled by the Friis free space model with exponent
2.0 [7]. All antennas have unity gain and are considered
isotropic sources.

All networks are simulated inyass(Yet Another Sensornet
Simulator) [1]. However, the approach presented could
be implemented with equivalent results in any sensornet
in which protocol factors can be controlled, and solution
quality metrics measured.

3.4 Protocol controlled factors

To explore the range of possible protocol configurations it
was necessary to define a set of controlled factors against



which the measured response could be observed. Each
controlled factor represents some property which is inde-
pendent of the network configuration, but which may be
tuned by the network designer to achieve a desired be-
haviour or to implement some resource usage tradeoff.

1. Gossip probability. The probability that upon receiv-
ing a packet a given node will attempt to retransmit
that packet. Unitless, defined in the range [0,1].

2. Seen-packet buffer size. The number of packets re-
ceived or transmitted by a node of which knowledge
is retained in a FIFO buffer. Nodes do not retransmit
a previously-transmitted packet if the latter is held in
this cache. Measured inpackets.

3. Waiting-packet buffer size. The number of packets
queued for transmission or retransmission in a FIFO
buffer. Newer packets displace older packets when
full. Measured inpackets.

4. Initial backoff. When attempting to begin transmit-
ting a packet the sending node will sense the wireless
medium. If the medium is clear transmission begins
immediately, otherwise an exponential backoff strat-
egy is applied in which thenth term is thenth power
of this base value. Measured inseconds.

5. Packet lifetime. The maximum permitted time for
a packet in transit within a network between source
and destination. If the lifetime is exceeded before
reaching the destination, the packet is dropped. Mea-
sured inseconds.

6. Intercluster TTL. The total number of node-node
hops permitted for packets travelling between ag-
gregation clusters. If this TTL is exceeded prior to
reaching the destination, the packet is dropped. Intra-
cluster routes from data sources to clusterhead nodes
always have a TTL of 1 and are unaffected by this
factor. Measured inhops.

Other networking protocols may be influenced by a dif-
ferent set of factors, which may or may not intersect the
above set. However, any networking protocol for which
there exists a set of quantitatively-defined factors can be
explored using this process.

3.5 Solution quality metrics

The quality of a given set of controlled factor values was
determined by measuring a set of metrics against a sim-
ulated network. Three aspects of solution quality were
considered and measured;performance, reliability, and
efficiency. A fourth quality aspect,robustnessto variation
between networks, was not measured directly but instead
addressed indirectly during analysis (see section 4.1).

For each aspect identified as being significant to a greater
notion of quality, a set of metrics was defined against
which to measure the extent to which a given protocol
configuration satisfies this notion of quality when imple-
mented within a simulated network. This set of metrics
was reduced to the minimal set deemed sufficient to cap-

ture the characteristics of interest to minimise redundancy
and experimental overhead [3].

Performance metrics

1. Latency per hop. Mean time for a packet to travel 1
node-node hop. Measured inhop−1s.

2. Latency per metre. Mean time for a packet to travel
1 metre. Measured inm−1s.

Reliability metrics

3. Packet delivery failure ratio. Proportion of packets
created by source nodes that fail to reach their in-
tended destination. Unitless.

Efficiency metrics

4. Energy per packet per hop. Mean energy for 1
packet to travel 1 node-node hop. Measured in
Jpacket−1hop−1.

5. Energy per packet per metre. Mean energy for 1
packet to travel 1 metre. Measured inJpacket−1m−1.

6. Optimal energy per packet per hop. Mean energy
for 1 packet to travel 1 node-node hop, assum-
ing optimal radio state management. Measured in
Jpacket−1hop−1.

7. Optimal energy per packet per metre. Mean energy
for 1 packet to travel 1 metre, assuming optimal radio
state management. Measured inJpacket−1m−1.

For each metric the lowest defined value is zero, and lesser
values represent more favourable solutions. Zero repre-
sents optimal solution quality in a given metric, though
this value is unlikely to be observed in practice. Where
metrics are definedper hopor per metre, this is to nor-
malise results in the size of the network. This is essen-
tial in order that results be comparable between networks
of different node count, node distribution in the network
space, or physical size. Where metrics are definedper
packet, this is to normalise results in the volume of traffic
handled by the network to enable fair comparison between
relatively busy or quiet networks, a property which is not
a controlled factor but for which we must account.

If we assume that maximal performance is attainable
when all components operate in their highest-performance
state, then we can find the upper bound of energy required
to attain maximal network performance by assuming that
all components operate at all times in their highest energy
consumption state. However, if at any point an energy-
consuming component could be operated in a lower en-
ergy consumption state without harming performance, the
lower bound on energy required to attain maximal perfor-
mance must be lower than the upper bound. Where com-
ponent utilisation is lower than 100% in a given execution
of the simulated network application, there must necessar-
ily be periods when a component is operated at a higher
energy consumption level than is necessary. In this pa-
per we obtain this upper bound experimentally for a given



activity trace for a given simulated network.

Suppose a perfect component state management policy
existed, maintaining all components in minimal energyoff
states at all times, except when higher-energyonstates are
required to perform useful work. The energy consumed by
a network whose components were managed by this per-
fect policy would be the lower bound on energy required
to attain maximal performance. We simplify by assum-
ing that the mote radio is the only significant energy con-
sumer for which significant savings are feasible by man-
aging state without degrading application performance.

Real component state management policies cannot predict
future requirements with 100% accuracy so will yield en-
ergy consumption somewhere between these upper and
lower bounds, with better policies attaining values close
to the lower bound. In this paper we obtain this lower
bound by analysing the activity trace for a given simu-
lated network, and derive the activity trace which would
be observed under a perfect component state management
policy. Future work will build upon this paper to ex-
plore this important problem. Assuming that the most
energy-efficient networking protocol configurations are
employed, aggressive component state management poli-
cies can act yielding behaviour approaching that required
to achieve this theoretical lower bound.

Suppose further that an imperfect state management pol-
icy switches a component into anoff state where the maxi-
mal performance trace would require this component in an
on state. Energy consumption would be reduced further,
but performance would now be sub-maximal. State man-
agement policies may further reduce energy consumption,
below the lower bound discussed above, but this will nec-
essarily entail a tradeoff between energy consumption and
performance; there is no longer an opportunity for“some-
thing for nothing” by exploiting redundancy. We do not
consider tradeoffs of this type in this paper.

4 Experimental method

4.1 Obtaining time-to-convergence for network de-
sign configurations

When each simulation begins the network is in a pristine
state with no packets queued for delivery and no packets
in transit. Clearly this condition changes quickly as the
simulation begins, but the issue remains of determining
at which point the metrics can be sampled. If the value
of a given metric varies unpredictably over time then it is
meaningless to select a single point at which metric sam-
pling occurs. If, however, the value of this given metric
converges on a single value then we must determine at
what time the metric is sufficiently converged to be con-
sidered steady within some margin for experimental noise.
We cannot discard the possibility that convergence takes
longer in some network designs, so network design and
time-to-convergence are considered together.

Metrics are sampled periodically but are influenced by to-
tal simulated period from the start to the sampling point.
Metrics therefore converge on the actual value, sample ac-
curacy increasing monotonically in simulated time, until
sampled values fall within experimental error margin at
which point no further improvement is possible.

Assume the value of some convergent metric at timet is
given bymt . mt approaches its converged valuem ast →
∞. At some timec the valuemc becomes sufficiently close
to m such that for allt > c the valuemt is within ±n%
of mc. We define metrics asconvergedat time c. Any
further variation, including that deriving from noise and
unblocked nuisance factors, is within±n% experimental
error margin. We setn = 5 such that measured metrics
used in later analysis have±5% measurement error.

Assuming that all metrics are sufficiently convergent
within some timec, then we need only run simulations
for this samec. Running simulations for longer thanc
merely consumes resources without improving the quality
of experimental results. However, it is reasonable to as-
sume that some metrics may converge more quickly than
other, as they measure orthogonal aspects of sensornet
behaviour. In determining required simulation time we
find the slowest-converging pairing of network design and
quality metric, add a further safety margin, and round to
the next highest integral number of seconds.

We ran a series of experiments in which a fixed set of pro-
tocol controlled factors was tested in a variety of network
designs with different configurations of network design
factors. Here we indirectly address therobustnesssolu-
tion quality aspect; if experimental results show similar
behaviour in every dissimilar simulated network, then it
is reasonable to assume that TTL-bounded gossiping has
some degree of robustness to environmental conditions
and network design. It follows that any subsequent find-
ings cannot be explained solely as artefacts of a given net-
work design.

For each network design factor considered here we as-
signedhigh and low values where appropriate. Evaluat-
ing each possible combination in a factorial design exper-
iment ensures all network design factor interactions are
accounted for. During simulation the metric values were
sampled periodically, and analysed to determine at which
point further variation is within experimental error. We
repeated each design point with three networks. Each net-
work was randomly-generated but reused for each design
point.

1. Node count. Number of nodes in the network, se-
lected from{50, 250} nodes.

2. Node density. Average number of neighbouring
nodes with which pairwise communications are pos-
sible, selected from{5, 25} nodes.

3. Traffic periodicity. Rate of source node packet pro-
duction, selected from{0.5, 5} packet s−1.



4. Clusterhead ratio. Proportion of nodes which have
theclusterheadrole, selected from{5, 100}%.

5. Node type. Selected from{MICA2, MICAz}.

Having established convergence time for each quality
metric in each network design considered in the factorial
design experiment, we definet as the slowest quality met-
ric convergence time observed as described above. We
considert to be valid for any network characterised by
a set of network design factor values falling within the
boundaries defined above. All following experiments use
network designs sharing a single configuration of network
design factors, differing only in the physical location of
nodes within the network space. This geographical node
distribution is random and uniform.

4.2 Obtaining ranges over which controlled factors
induce differentiated outcomes

It is necessary to define the ranges within which controlled
factors are to be considered, such that any statistical mod-
els fitted to the results encompass the behaviour of the
interestingregions of the landscape, that is those ranges
which induce variation in measured response and include
the values giving the best possible metric values.

We employed a trial-and-improvement approach, working
one factor at a time. A fixed network design was simu-
lated with all but one controlled factor fixed, starting with
estimates of reasonable upper and lower bounds. We then
iteratively moved the upper and lower bounds, recalculat-
ing the effects through simulation, until we arrived at a
set of controlled factor ranges with the desired properties.
Note that this process is not intended to discover optimal
values for controlled values and does not take account of
factor interactions. It is merely to define plausible ranges
within which interesting values fall, to be explored more
thoroughly in later experiments.

4.3 Screening for significant factors

It is reasonable to assume that some controlled factors
may be more significant than others. To discover the rel-
ative influence of the controlled factors defined in sec-
tion 3.4 we implemented a factorial design experiment.
For each of the six controlled factor we defined three
assignable values spread evenly throughout the intervals
defined in section 4.2, totalling 36 design points. Each
design point was assessed through simulation running for
the period determined in section 4.1. Blocking of nuisance
factors was implemented by randomly generating three
sample networks, each displaying the same fixed char-
acteristics within the boundaries defined in section 4.1,
and simulating each design point with each network. This
gives a total of 36×3= 2187 data points for model fitting.

Screening experiment results were assessed by fitting lin-
ear interaction models for each quality metric. Analysis
of variance allowed the most significant factors to be de-

termined statistically. Fitted model relevance was deter-
mined examining residual distributions, and comparing
observed and predicted values. Relatively insignificant
factors were discarded, retaining only the three most sig-
nificant.

4.4 Deriving fitted models from experimental results

Having discarded insignificant factors, we now focus our
resources on those significant factors remaining. We re-
peat the experiments of section 4.3 but using six assigned
values for each controlled factor and six network designs.
Using more assigned values provides greater detail and
increases the probability that an assigned value lies near
any minima or maxima. Using more network designs pro-
vides greater blocking of nuisance factors. Each discarded
controlled factor not considered in this stage of the ex-
periment is assigned the midvalue of the range defined in
section 4.2. Six values for each of three controlled fac-
tors gives 63 design points. With six network designs, this
gives 63×6 = 1296 data points for model fitting.

4.5 Complexity of experiment design

Exhaustive exploration of the protocol configuration space
defined in section 3.4 is impossible due to combinatorial
explosion. This is a consequence of both the number of
controlled factors and the number of values which each
factor can take, the latter being infinite for continuously
variable factors. Our method, based on full factorial de-
sign [3], samples the protocol configuration space at a fi-
nite set of points to render tractable the evaluation effort.

Consider the algorithmic complexity of this approach. As-
sume we definef controlled factors, and sample each at
g evenly-spaced points. This sampling definesgf design
points, distributed evenly throughout the protocol config-
uration space. If we evaluate each design point for each of
h networks then we definehgf test cases.

The test suite size grows inf , g andh, but in a qualita-
tively different manner for each. Linear growth inh is
observed, as the set of design points is simply repeated
for each network. Polynomial and exponential growth in
g and f respectively are observed because the design ma-
trix defining the design points set can be represented as
unit cells within a hypercube. Increasingg increases the
length of the hypercube sides, whereas increasingf in-
creases the dimensionality of the hypercube. Therefore,
the test suite size isO(n) in h, O(nc) in g, andO(cn) in f .

Although the experimental method is NP-hard in the num-
ber of controlled factors,f , this is not necessarily prob-
lematic in practice. Firstly, in the definition of a protocol
there are a finite number of controllable factors, of which
only a subset are likely to be of interest to the experi-
menter. For example, in section 3.4 we define 6 factors
for TTL-bounded gossiping and thereby setting an up-
per bound of 6 forf in our experiments. Secondly, the



screening phase of our experiments, defined in section 5.3,
further reducesf by weeding-out insignificant controlled
factors.

The polynomial growth ing is also managed in the exper-
iment design. Recall from sections 4.3 and 4.4 that we
fit linear interaction models to measured values. A linear
relationship in one factor can be uniquely defined by just
two factor-response pairs [6]. Extending this to a linear
relationship inf factors requires two values of each con-
trolled factor to be represented in the set of design points
[3]. We therefore require only thatg ≥ 2, with low and
high values of each factor representing the range for which
the model is required to predict metric values. Higher val-
ues ofg obtain better fitted models but with decreasing
gains for each additional sampling point, so small values
of g work well [3] and minimise simulation cost. Higher-
order linear models of orderd would requireg≥ d.

5 Results and evaluation

5.1 Time-to-convergence for network design configu-
rations

Some combinations of network design and quality met-
ric converged in less than 2 seconds, whereas the slowest
took just under 7 seconds. We add a 25% safety margin to
this longest convergence time and round up to the nearest
integral number of seconds, and find that we require each
simulation to run for 10 simulated seconds before sam-
pling quality metrics. No combinations of network design
and quality metric failed to converge, and thus we con-
sider it appropriate and safe to curtail simulation after this
finite simulated period, settingt to 10s.

We set network design characteristics to values falling
within the ranges defined in section 4.1 for which this
value of t was shown to be valid. Selected values were
node countof 250nodes, node densityof 12nodes, traffic
periodicity of 1.0 packet s−1, clusterhead ratioof 10%,
andnode typeof MICA2.

5.2 Controlled factor ranges

Ranges for controlled factors defined in section 3.4 were
derived by trial-and-improvement experiments as per sec-
tion 4.2, with default values employed for discarded unin-
fluential factors.

1. Gossip probability. Experimental range is [0.2, 1],
default 0.6.

2. Seen-packet buffer size. Experimental range is [1, 10]
packets, default 5packets.

3. Waiting-packet buffer size. Experimental range is [1,
10] packets, default 5packets.

4. Initial backoff. Experimental range is [0.1, 1]sec-
onds, default 0.5seconds.

5. Packet lifetime. Experimental range is [0.1, 5]sec-
onds, default 2.5seconds.

6. Intercluster TTL. Experimental range is [2, 10]hops,
default 6hops.

5.3 Screening for significant factors

We defined the design points and sample network designs
for the factorial design experiment as described in section
4, using preliminary findings described in sections 5.1 and
5.2. Each combination of design point and network de-
sign was simulated. For each solution quality metric a
linear interaction model was fitted to the raw data points
in MATLAB, yielding coefficients for an equation of the
form indicated by Equation (1):

Y = β0 +
n

∑
i=1

βixi +
n

∑
i=1

n

∑
j=i+1

βi j xix j + ε (1)

whereβ0 is a constant,xi is theith controlled factor value,
βi is the coefficient for thei controlled factor,βi j is the
coefficient for the interaction betweenxi andx j , andε is
the noise term. The response is influenced linearly by each
factor and each pairing of potentially interacting factors.
The noise termε distribution is approximately normal so
our chosen model is not found inappropriate [22].

Each interaction model was subjected to analysis of vari-
ance (ANOVA) [22] tests in MATLAB to determine which
factors and interactions were most responsible for re-
sponse variability. The same three controlled factors,gos-
sip probability, seen-packet cache size, and packet life-
time, were found most significant for each quality met-
ric. This is not unexpected, as these factors restrict net-
work saturation which would otherwise adversely impact
all metrics. Thep-values for theF-statistics are relatively
high and are generally well above 0.05 though below 0.25,
suggesting a relatively weak though still significant influ-
ence [22]. However, at this stage we are interested only
in the relative importance of the controlled factors to de-
cide which to discard for the next stage. Interestingly, the
most significant factors are independent of resource pro-
vision. This is important in highly resource-constrained
sensornets. For example, little benefit would be observed
by equipping motes with more memory to enable larger
packet buffers.

Numerous nonzero pairwise interactions also gavep-
values forF-statistics in this range. Protocol tuning ef-
forts must take account of these interactions, which would
otherwise remain hidden under the simplistic approach of
considering each factor in isolation. All significant pair-
wise interactions involved at least one, and usually two,
of the controlled factors deemed significant when not part
of an interaction term. This reinforces the significance of
these factors to the measured responses.

5.4 Deriving fitted models from experimental results

We defined the design points and sample network designs
for the factorial design experiment as described in section
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Figure 1: Normal probability plot for the latency per hop
metric
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Figure 2: Normal probability plot for the packet delivery
failure ratio metric

4, using the preliminary findings described in sections 5.1,
5.2 and 5.3. Using fewer controlled factors but greater
detail in those remaining influential factors removes irrel-
evant and confusing detail, while allowing experimental
resources to be deployed more efficiently.

We fitted a linear interaction model to the datapoints in
a process similar to that described in section 5.3 for each
quality metric. We find that in each case the noise term
ε distribution is approximately normal suggesting that our
choice of model is not inappropriate, for example as illus-
trated in Figures 2 and 1. Deviation from the normal dis-
tribution is most pronounced at the extremes, and is small
for most residuals. We conclude the interaction model is
a reasonable approximation for any more detailed model
which may better address these extreme values, and re-
moving the less significant controlled factors does not re-
duce the relevance of this model to this dataset.

Each interaction model was subjected toanalysis of vari-
ancetests to determine factors and interactions most re-
sponsible for response variability. Summarised findings
of p-values for theF-statistic are presented in Table 1.
x1 representsgossip probability, x2 representsseen-packet
cache size, andx3 representspacket lifetime. Interactions
between factors are represented by multiplication. Most

95% confidence intervals for factors and interactions in-
clude zero suggesting that observed results were possible,
though not necessarily likely, without these factors and in-
teractions [22]. Interestingly, interactions do not appear as
significant in this more-detailed dataset.

The p-value for thex3 metric in thelatency per hopfac-
tor is given by MATLAB as being exactly zero to within
machine precision. The measured response range was
small; although the result may be statistically significant,
the factor exerts very little actual influence on network be-
haviour. No controlled factors are greatly influential in
latency per hop, whereaslatency per metreappears influ-
enced byseen-packet cache sizeandpacket lifetimeat the
25% and 10% levels respectively. As both latency met-
rics measure broadly the same effect, we concludeperfor-
mancemetrics are unpredictably and weakly influenced
by controlled factors [22], such that experimental noise
explains most variability.

The situation forreliability andefficiencymetrics is some-
what different. Thegossip probabilityandpacket lifetime
factors are more significant than in the screening exper-
iment, whereas theseen-packet cache sizefactor is less
significant and can be discarded. We conclude that the ear-
lier apparent significance ofseen-packet cache sizewas an
artefact of lesser experimental detail of the screening ex-
periments.Gossip probabilityandpacket lifetimeare to-
gether sufficient to explain most variation in thereliability
and efficiencymetrics not resulting from non-controlled
factors and experimental noise.

Problem indicator factorswere added to the linear interac-
tion model to determine the importance of network design
on measured responses [3]. Regression analysis gave non-
zero coefficients for problem indicator factors, with most
95% confidence intervals excluding zero. Models fitted
for a given network are good at predicting absolute quality
metrics within that network, but may be poor at predict-
ing absolute quality metrics in other networks. However,
models fitted for a given network can predict trends across
similar networks. A model derived from networkN1 may
not predict absolute quality metrics accurately for network
N2 under protocol configurationC1, but will nevertheless
be valid in deciding whether protocol configurationC1 or
C2 is better in networkN2.

Figures 3 and 4 illustrate the interaction model fitted for
latency per hop energy per packet per metremetrics re-
spectively, plotted againstgossip probabilityand packet
lifetime. These plots encapsulate the simulated behaviour
deemed significant to the derived interaction model.

This experiment stage was repeated with the same 63 de-
sign points, but using six new networks differing only in
node spatial arrangement. Linear interaction models were
produced from the resulting data points. Comparing mod-
els fitted to the new and original training data sets finds
great similarity in coefficients and constant terms, and



Metric x1 x2 x3 x1×x2 x1×x3 x2×x3

Latency per hop 0.5560 0.7310 0.0000 0.3715 0.7191 0.8622
Latency per metre 0.8162 0.2304 0.1043 0.5469 0.9869 0.7740

Packet delivery failure ratio 0.0818 0.4590 0.1063 0.8840 0.7152 0.8767
Energy per packet per hop 0.0549 0.4644 0.1558 0.9332 0.6480 0.8852

Energy per packet per metre 0.0961 0.5347 0.1786 0.9636 0.7600 0.8679
Energy per packet per hop (optimal policy) 0.0581 0.4698 0.1428 0.9403 0.6672 0.8871

Energy per packet per metre (optimal policy) 0.1033 0.5356 0.1643 0.9678 0.7811 0.8673

Table 1:p-values for theF-statistic for the interaction model fitted to the 3-factor variant
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analysis of variancefinds similar levels of significance for
factors and interactions. From this similarity we conclude
that the linear interaction models should remain relevant
when applied to other similar networks that do not form
part of the original training set.

5.5 Potential energy savings through coordinated ra-
dio state management

We compare theefficiencymetrics for energy consumption
under the two extremes of state management policy. Our
metrics provide measures of energy consumed per packet
in travelling either 1hop or 1 metre, under the two ex-
tremes of radio state management policy; a null policy in
which the radio is never asleep, and an ideal policy with
perfect information where the radio is switched off at all
times except when useful work is performed. For each of
theper-hopandper-metremeasures, ifp is theenergy per
packetunder the null policy, andq is theenergy per packet

PSEP Min Max Mean St. Dev.
rh 0.4402 0.4548 0.4475 0.0022
rm 0.4402 0.4548 0.4475 0.0022

Table 2: Summarised results forrh andrm

under the ideal policy, we define the measure of potential

energy saving,r =
p−q

p
. Here,r represents the propor-

tion of observed energy consumption under the null pol-
icy which could be saved by applying the perfect policy;
rh is the potential savingper-hop, andrm is the potential
savingper-metre. Higherr values indicate protocol con-
figurations with greater potential for energy savings.

We calculatedrh andrm for each combination of design
point and network design considered in section 5.4, sum-
marising the results in Table 2 where PSEP refers to Po-
tential Saved Energy Proportion. We observe thatrh and
rm are identical for any given configuration as the TTL-
bounded gossiping protocol is geography-ignorant, and
consequently optimal radio state at any given time is not
dependent on network distances measured inhopsor me-
tres. r values occupy a very small range, with very little
variation between values obtained across the set of net-
work configurations. We conclude thatr values are largely
independent of TTL-bounded gossip controlled factors in
networks of the type considered in this paper.

We conclude that any controlled factor configuration tak-
ing values from the ranges obtained in 5.2 will yield po-
tential energy savingsrh and rm within the ranges illus-
trated in Table 2 when applied to networks of the type
described in section 4.1.

6 Conclusions

In this paper an experimental method has been presented
for providing near-optimal configurations for routing pro-
tocols in wireless sensor networks. The method provides
a more thorough consideration of the problem’s trade-offs
than so-calledone factor at a timeapproaches without
the computational explosion associated with a full design
space exploration. We also believe the a similar method
can be applied to other complex problems that may benefit
from parameter tuning. We now re-visit the set of desired
research outcomes defined in section 3, against which we
now state our findings.

Obj 1: Identify which controllable factors are most signif-



icant in each solution quality metric.

The method established thatgossip probabilityandpacket
lifetime are the most important of the controlled factors
considered in this paper, with relatively modest but sta-
tistically significant influence. The work also showed the
method is also valid for the identification and prediction
of trends, and determining an ordering of protocol factor
configurations, but is not valid for accurate prediction of
absolute metric values due to the stochastic nature of sen-
sornets.

Obj 2: Identify the best set of values to assign to con-
trolled factors, yielding the best performance for
each solution quality metric.

For each quality metric a three-factor linear interaction
model was obtained by regression analysis on simulation
experiment results, from which the best set of parameter
values can be deduced. Although tuning techniques find
best configurations of a given networking protocol in a
given network, sensornet designers must ensure that the
model coefficients are relevant to the network under con-
sideration.

Obj 3: Identify the set of periods, and hence proportion of
time overall, during which further energy savings
are possible by jointly managing network traffic
and mote radio state.

Results suggest a perfect routing policy (with perfect state
management and clairvoyance of network loads) could
achieve energy savings of around 45% compared to the
tuned gossiping protocol. Realistic non-perfect state man-
agement policies should realise energy savings between
these bounds.

Future work will apply this method to other lightweight
sensornet protocols to derive similar models and then use
this information in the design of aggressive energy man-
agement policies.
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