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Abstract

Sensornet lifespan and utility is limited by the energy
resources of individual motes. Network designers seek to
maximise energy efficiency while maintaining acceptable
Quality of Service. However, the interactions between mul-
tiple tunable protocol parameters and multiple performance
metrics are generally complex and unknown, and combina-
torial explosion renders impossible any exhaustive search
approach. In this paper we describe an engineering method
to address this multi-dimensional optimisation problem. We
apply a Design Of Experiments approach to sample the
entire search space. Statistical models are fitted to exper-
imental results to define relationships between inputs and
outputs, and to obtain near-optimal solutions.

1. Introduction

Wireless sensor networks, or sensornets, compose many
autonomousmotes into ad-hoc networks for distributed
sensing and processing applications. Motes are small, cheap
computers equipped with independent power supplies, wire-
less communication capability, and sensors with which to
passively monitor with their environment. Typical appli-
cations include environmental monitoring or surveillance.
Interaction with the physical environment implies that sen-
sornets have real-time requirements.

Distributed applications generally require the network to
deliver a minimal specified Quality of Service (QoS). The
greater the margin by which the achievable QoS exceeds
the minimal required QoS, the greater the tolerance of the
deployed network to unexpected events and conditions. Most
non-trivial protocols have parameters which can be fine-
tuned to influence network performance [1]. However, it
is generally not trivial to identify the subset of candidate
tunings which achieve the required QoS, nor to identify
which specific tuning offers the optimal QoS.

Sensornet designers must identify the most significant
factors to avoid being swamped by unnecessary detail.
Unfortunately, even identifying the relative importance of
factors and their interactions is rarely trivial. Discovering
the best values to assign to these factors and understanding
their impact on network behaviour tradeoffs is harder still.

Tunable parameters are often defined without clear default
values and may be defined over an infinite range.

Where multiple controllable factors exist, each of which
can take many values, combinatorial explosion renders ex-
haustive exploration impossible. Designers may resort to
inefficient trial-and-improvement techniques or accept sub-
optimal tunings. However, pragmatic approaches can ap-
proximate exhaustive exploration in bounded time. In this
paper we propose a principled search method based on full
factorial design experiments [2].

A common design goal is to maximise sensornet lifetime.
This is usually achieved by maximising the efficiency of
radio communications, as wireless communication compo-
nents are generally the most energy-hungry subsystem of
sensornet motes [3]. In this paper we explore how existing
well understood energy-ignorant protocols can be optimised.
The tuning method we describe is equally applicable to both
energy-ignorant and energy-aware protocols. We demon-
strate its efficacy and versatility by applying it to two fun-
damentally different protocols:TTL-Bounded Gossip(TBG)
[4] and Implicit Geographic Forwarding(IGF) [5].

Undertaking this work presented interesting challenges.
Sensornet protocol tuning is not a simple, idealised problem.
It is a complex real-world problem with multiple inputs,
multiple outputs, and multiple objectives. The non-trivial
interrelationships between these factors were not known
at the outset, so could not be targeted specifically during
experiment design. Two important engineering challenges
addressed by our method are the production of solutions
exhibiting robustness to deployment context, and the uncer-
tainty and noise inherent in any experimental data.

The remainder of the paper is structured as follows.
Section 2 places this paper in the context of related work.
Section 3 outlines the research objectives of this paper. Sec-
tion 4 describes the experimental method in general terms.
Section 5 describes the specific problems to which this
method is applied. Section 6 describes the implementation
and results of a three-phase experimental approach. Finally,
section 7 draws conclusions against our objectives.

2. Related work
Energy awarenessand energy managementare themes

running throughout most aspects of sensornet design and



operation. The energy resources of nodes are typically
small and non-renewable. Energy consumption isthe most
important factor that determines sensor node lifetime[6].

Optimising sensornets for energy efficiency is complex.
Raghunathan [6] observes that itinvolves not only reducing
the energy consumption of a single sensor node but also
maximising the lifetime of an entire network, requiring
dynamic trade-offs betweenenergy consumption, system
performance, andoperational fidelity, yielding up to a few
orders of magnitudeof improved lifetime.

With many controlled factors and measured responses it
is generally difficult to understand the resulting complex
interrelationships. Totaro and Perkins [7] apply asystematic
statistical Design Of Experimentsapproach to evaluate and
model the complex tradeoffs in designing Mobile Ad-Hoc
Networks (MANETs). This work considers the impact of
varying network design with a fixed network application. In
contrast, we consider the impact of varying network proto-
col and application behaviour for a fixed network design,
finding near-optimal solutions that demonstraterobustness
to network design factors.

In classic flooding a node broadcasts a packet to each of
its neighbours which in turn rebroadcast the packet and so
on. Flooding is utilised by most non-geographical routing
protocols [8] and often succeeds where more sophisticated
protocols cannot react quickly to rapidly changing networks
[9]. Counterintuitively complex behaviour is observed [10]
despite the protocol’s simplicity.Broadcast storms[4] are
particularly problematic with significant redundant broad-
casts, contention, collisions, and high energy consumption.

Gossiping extends flooding by implementing probabilistic
rebroadcast but can provide only probabilistic guaranteesof
delivery, displaying bimodal behaviour where either hardly
any nodes receive the packet, or almost all do [11]. Gossip
probabilities in the range [0.6, 0.8] often, but not always,
ensure that most nodes receive most packets. Appropriate
gossip probability selection is generally difficult, and may
need to vary across nodes and time [12].

More sophisticated energy-efficiency protocols can em-
ploy a variety of underlying techniques, in which nodes
maintain online models of network activity and structures.
Other protocols such as Implicit Geographic Forwarding [5]
exploit geographic context in routing decisions. A compre-
hensive survey of sensornet protocols can be found in [1].

3. Research objectives
We define the following objectives that form the principal

contributions of this paper:

Objective 1: Define a reusable methodology for addressing
the protocol tuning problem

Objective 2: Identify the significant factor-response rela-
tionships for the protocol tuning problem

Objective 3: Obtain near-optimal compromise solutions to
the protocol tuning problem

4. Experimental method
In this section we define the experimental method through

which the parameter landscape is explored. We also consider
the experimental cost and analysis of results.

4.1. Three-phase experiment design

Full factorial design [2], [13] is used to systematically
explore the entire parameter landscape. This approach gives
broad but shallow coverage of all possible combinations of
all acceptable ranges of controlled factors. We address the
combinatorial explosion explored in section 4.3 by applying
a three-phase method designed to avoid wasting resources
and analytical effort on matters which will not significantly
influence the outcome, allowing more detailed statistical
models to be derived for a given cost.

Phase 1 determines the point at which simulations are
sufficiently stable to be sampled as representative of long-
term stable behaviour. Phase 2 samples the problem space
at low resolution, identifying insignificant factors whichcan
be dropped to make high resolution modelling tractable.
Phase 3 samples the problem space at high resolution for
significant factors only, yielding a partial mapping from
possible protocol tunings to consequent network behaviour.

Statistical models are fitted to experimental results ob-
tained in Phase 3 to summarise the complex interrela-
tionships between controlled factors and each measured
response. This derived model is useful for predicting likely
network performance for any arbitrary set of input values.
The derived model can also be applied in the opposite direc-
tion by defining sections of the multi-response hypersurface
corresponding to the desired network performance, and
working backwards to the input values. The simultaneous
equations of the fitted model are solved to yield a set
of inequalities defining usable ranges of input controlled
factors. We implement both usage patterns in section 6.

4.2. Fitting statistical models to data

Assume we definep controlled factors, and sample each
at q evenly-spaced points. This sampling definesqp design
points, distributed evenly throughout the protocol configu-
ration space. The factorial design experiments implemented
in section 6 map each sampling point to a set of metrics.
These pairs of sample points and simulation-derived metrics
represent exact solutions to specific known points in the gen-
eralised model of the relationship between controlled factors
and output metrics. However, these are not directly usable if
we wish to know the relationship between controlled factors
and measured responses, or vice-versa, for other points in
the factor-response phase space.

To consider points in the parameter space other than
those measured directly we use interpolation techniques. A
statistical model is fitted to sampled points and correspond-
ing measurements to derive a set of equations describing
a hypersurface in the phase space [14]. An appropriate



statistical model must be selected which approximates the
surface shape which would be observed under an infinite
number of sample points. We then work with the fitted
surface rather than specific individual experimental results.

Sampling the parameter space at more points yields a
fitted model which is a better approximation of the real
relationship by providing more data for the model fitting
algorithm. For a finite set of sample points there exists the
risk that an interesting feature of the solution landscape falls
between sample points, and hence is not present in the fitted
model. Interpolation allows every candidate parameter setto
be considered simultaneously, including those not measured
directly, but there is a risk that the optimal solution lies
between directly measured points and is not revealed in the
fitted model.

For each output metric under consideration, a separate
statistical model of the form given in Equation 1 can be
fitted to the result set in MATLAB.β0 is a constant,
Xi is the ith controlled factor value,βi is the coefficient
for controlled factor Xi, βij is the coefficient for the
interaction between controlled factorsXi and Xj , and ε

is the normally-distributed noise term. The responseMi

is influenced linearly by each factor and each pairing of
potentially interacting factors. Our analysis shows this model
to be a good fit for the experimental results considered in
this paper.

Mα = β0 +

n
∑

i=1

βiXi +

n
∑

i=1

n
∑

j=i+1

βijXiXj + ε (1)

For each output metricM1-Mm a separate linear inter-
action model is produced by Equation 1 in which a set of
n axes represents controlled factorsX1-Xn and a further
axis in which the height of the hypersurface varies with the
values of the output metricMα. As the axes corresponding
to controlled factorsX1-Xn are common to all metricsM1-
Mm it is possible to combine them all to yield a more
complex surface representing the interrelationships between
all controlled factors and all metrics.

Finding sets of values for controlled factors corresponding
to solutions with appropriate characteristics is equivalent to
identifying regions of the axes representing controlled fac-
torsX1-Xn with appropriate fitted surface height in the axes
corresponding to output metricsM1-Mm. Similarly, finding
optimal or worst-case sets of controlled factors is equivalent
to finding minima and maxima in the fitted surface. This
is implemented by solving sets of simultaneous inequalities
when identifying regions with suitable characteristics, or
by solving sets of simultaneous equations when addressing
optimal or worst-case characteristics.

Experiment designers can also consider other models,
such as higher order linear models, selecting that which
offers the best fit to the dataset. For example, the quadratic
model shown in Equation 2 includes all terms of Equation

1 with additional terms for squares of controlled factors.
Additional terms can be added to consider ever higher de-
grees of controlled factors and their interactions. Experiment
designers might also consider generalised linear models in
which theMα term of Equations 1 and 2 are replaced by
f(Mα), where a better fit might be achieved by applying a
transformation to the measured response. For example, we
could consider taking the natural logarithm of the response
by definingf(Mα) = lnMα.

Mα = β0 +

n
∑

i=1

βiXi +

n
∑

i=1

n
∑

j=i+1

βijXiXj +

n
∑

k=1

βkX2
k + ε

(2)

4.3. Cost analysis

Exhaustive exploration of the protocol configuration space
is typically infeasible, and often impossible, due to combi-
natorial explosion. This is a consequence of both the number
of controlled factors and the number of values which each
factor can take, the latter being infinite for continuously
variable factors. Our method, based on full factorial design
[2], samples the protocol configuration space at a finite set of
points to render tractable the evaluation effort. Increasing the
number of experimental configurations increases the quality
of fitted statistical models, and hence solution quality, but
increases experiment cost. A balance must be found which
obtains solutions of acceptable quality within acceptable
wall time and experimental overhead.

Consider the algorithmic complexity of this approach.
Assume we definep controlled factors and sample each at
q evenly-spaced points, givingqp design points distributed
evenly throughout the parameter space. If we evaluate each
design point for each ofr networks then we definerqp test
configurations. We simulate each test configurations times
to prevent any single simulation instance exerting undue
influence, requiringrsqp test cases in total.

The test suite size grows inp, q, r and s, but in a
qualitatively different manner. Linear growth inr and s is
observed as the set of design points is repeated for each
of r networks, and the set of test configurations is repeated
s times without modification. Polynomial and exponential
growth in q andp respectively are observed because the de-
sign matrix defining the design points set can be represented
as unit cells within a hypercube. Increasingq increases the
length of the hypercube sides, whereas increasingp increases
the dimensionality of the hypercube. Test suite cost grows
asO(n) in r ands, O(nc) in q, andO(cn) in p.

Although the cost is NP-hard inp, our experimental
method addresses this potential problem. Firstly, for a given
network protocol there are a finite number of controllable
factors, only a subset of which are likely to be of interest
or permit alteration by the network designer. This places a
small, finite upper bound onp for a given protocol. Secondly,



Phase 2 of our experiments implements ascreeningapproach
which further reducesp by identifying insignificant factors
which can safely be disregarded. It is therefore possible in
Phase 3 to increaseq after reducingp and still have all
experiments complete in acceptable wall time.

The polynomial growth ing is also managed in the
experiment design. Recall from section 4.2 that we fit linear
interaction models to measured values. A linear relationship
in one factor can be uniquely defined by just two factor-
response pairs. Extending this to a linear relationship inp

factors requires two values of each controlled factor to be
represented in the set of design points [2]. We therefore
require only thatq ≥ 2, with low and high values of each
factor representing the range for which the model is required
to predict metric values. Higher values ofq obtain better
fitted models but with decreasing gains for each additional
sampling point, so small values ofq work well [2] and
minimise simulation cost. Higher-order linear models of
orderd would requireq ≥ d.

As all simulations imply similar computational overheads
we assume each simulation completes in approximately
constant wall time,t. All simulations are mutually inde-
pendent and can therefore be executed in parallel, reducing
total runtime to that of a single simulation if sufficient
processing hosts are available. Assume a multiprocessing
environment in whichx ∈ N independent simulations can
execute in parallel. In factorial design test suites there are
no dependencies between simulations so any number can
execute in parallel, all at costt. The total wall time cost is
C = rsqp

x
t. Note thatC ∝ 1

x
, reaching a minimum ofC = t

wherex = rsqp.

4.4. Simulation environment

It is impractical to perform the experiments described in
this paper using real networks due to high overheads of lo-
gistics, cost and time. Additionally, it is generally impossible
to guarantee a consistent and unchanging environment for
the total runtime of the tens of thousands of experiments.
This would severely undermine the validity of comparison
between results obtained from multiple experiments, which
is critical to the analytical methods we propose.

To address these concerns all experiments were conducted
by simulation. An appropriate simulation tool must be
selected because solution quality is dependent on simulation
accuracy. The design and validation ofYASS, the simulator
used in the experiments described in this paper, is considered
in [15]. YASSis a multithreaded sensornet optimised for
efficiency and for this duty pattern. Multiple independent
simulation instances can be executed in parallel to take
advantage of low-cost commodity hardware.

The resulting efficiency was such that simulated time
passed faster than wall time; results were obtained more
quickly than real-world experiments could provide results,
even if unlimited resources were available. However, the ap-

proach presented here could be implemented with equivalent
results in any sensornet simulator in which protocol factors
can be controlled and solution quality metrics measured,
or even in real networks if suitable testbeds could be
constructed.

5. Experimental configuration
In this section we define an experimental sensornet con-

figuration for which we will address the protocol tuning
problem in section 6.

5.1. Network design

The techniques outlined in this paper are independent of
the specific protocols and network designs explored in the
following experiments. However, these experiments explore
only a finite portion of the unbounded design space of all
networks and all protocols. It is likely that the trends we
identify in network performance responses as a function
of protocol tuning parameters will remain applicable in
other similar networking contexts. Nevertheless, we limitthe
scope of our claims to the portion of design space defined in
this section, within which we have confidence in our findings
as they are demonstrated to have statistical significance.

A set of three typical sensornets,Ξ = {ξ1, ξ2, ξ3},
was defined and reused for all experiments. Each sensornet
consisted of 500 static motes of identical capability modelled
on the Crossbow MICA2 mote. Motes were distributed
randomly within a square of side length 21Km yielding
a geographic distribution of uniform planar density. This
size was selected so that average degree of connectivity was
approximately 40, which is typical of sensor networks [5].

All internodal communication was defined to occur
through anisotropic radio broadcast in an obstacle-free vac-
uum. Signal propagation and attenuation was modelled using
the Friis free space model with exponent of 2.0. The simu-
lated motes ran a simulated distributed sensing application in
which every node periodically produces a small data packet.
The destination of each packet is randomly selected from all
motes in the network to prevent bias from implicit structure.

Although the protocols considered in this paper can
achieve nearly 100% packet delivery under ideal condi-
tions, we tuned the network load sufficiently that any
protocol would be unlikely to achieve 100% delivery due
to contention, but not so heavily as to load the network
substantially beyond its capacity. Little insight is to be
gained by experiments addressing unrealistically favourable
or disfavourable workloads.

Each node in the network can act as a packet source, a
packet destination, or a packet relay. When a source node
creates a packet it is queued for broadcast to the wireless
medium. If the packet is eventually broadcast it may be
received by one or more other nodes within communication
range able to successfully extract the packet data from
background noise. Packet headers specify one or more



destinations, defining the only nodes at which a given packet
can be consumed. In our experiments we specify exactly one
destination per packet. Packet headers also specifyTime To
Live (TTL) in terms of node-to-node hops and lifespan to
prevent stale packets circulating indefinitely.

Each packet recipient node independently determines how
to handle the incoming packet. Three main classes of action
are possible; the packet may be consumed, queued for re-
broadcast, or dropped. The details of the criteria upon which
the node makes this decision, and the state information upon
which this decision is based, is dependent on the traffic
distribution protocol selected by the sensornet designer.
Nevertheless, for all protocols the range of available actions
is generally limited to these three possibilities.

5.2. Protocol selection

A rich and diverse set of routing protocols have been
proposed in the literature and implemented in industry. It
is impractical to assess each extant protocol as there are too
many. Instead, this paper elects to consider two representa-
tive protocols. Lightweight protocols remain relevant to the
extreme resource constraints of small, low-cost motes and
have the additional benefit that their complexity will not
obfuscate the results of the methods proposed. For similar
reasons the protocol chosen should be stateless, making no
assumptions about the nature of the application, to avoid any
form of bias in the findings.

In this paper we consider two protocols designed for
MANETs, both of which implement a low-state lazy bind-
ing approach. TheTTL-Bounded Gossipprotocol [4] is
described in section 5.4 and theImplicit Geographic For-
warding(IGF) protocol [5] is described in section 5.5. These
protocols were chosen for their simplicity. More complex
protocols often incorporate simple protocols during early
discovery phases or to maintain information. If implemented
carelessly these simple protocols can be highly wasteful,
and hence offer an excellent opportunity for saving energy.
For example, unbounded flooded messages can easily cover
the entire network [8] which is wasteful if the source and
destination are physically close.

Note that in selecting these protocols we make no claims
as to their merit for any given sensornet application. More
specifically, we do not claim that when optimally configured
they necessarily offer superior performance to other recent
and more complex alternative protocols. However, we see no
reason that the methods described in this paper could not be
applied to these other protocols.

5.3. Protocol-independent controlled factors

In this paper we consider two traffic distribution protocols,
TTL-Bounded Gossipand Implicit Geographic Forwarding.
Each of these protocols has parameters which are defined
independently of any given network configuration, but can be
tuned by a network designer to achieve a desired behaviour

or to implement some resource usage tradeoff. Some tunable
parameters are specific to a given protocol, but others are
common to several protocols.

In this section we define controlled factorsX1−X5 which
are common to bothTTL-Bounded Gossipand Implicit
Geographic Forwarding, and may interact with other shared
parameters and protocol-specific parameters. We define our
experiments to explore as much of the parameter space as is
possible. For each parameterX1 − X5 we limit our search
to a subset of the defined range within which a measurable
difference in response is known to exist [16].

X1: Seen-packet buffer sizeThe number of pack-
ets received or transmitted by a node of which
knowledge is retained. Nodes do not retransmit a
previously-transmitted packet if the latter is held
in this cache. New packets displace a randomly-
selected cached packet if the buffer is full. Mea-
sured inpackets. Defined in the range[0,∞) for
integral values only. Search range is[1, 10].

X2: Waiting-packet buffer sizeThe number of packets
which can be simultaneously enqueued for trans-
mission or retransmission. Packets are consumed
from the queue head and added to the queue tail.
If the queue is full when a new packet is added,
a randomly-selected enqueued packet is dropped.
Measured inpackets. Defined in the range[1,∞)
for integral values only. Search range is[1, 10].

X3: Initial backoff Before beginning transmission of
a packet the sending node will sense the wireless
medium. If the medium is clear transmission be-
gins immediately, otherwise an exponential backoff
strategy is applied in which thenth term is thenth
power of this base value. Measured inseconds. De-
fined in the range(0,∞). Search range is[0.1, 1].

X4: Packet lifetime The maximum permitted time
for a packet to remain in transit. If the lifetime
is exceeded before reaching the destination, the
packet is dropped. Measured inseconds. Defined
in the range(0,∞). Search range is[0.1, 10].

X5: TTL The total number of node-node hops permit-
ted for packets traversing the network. If this TTL
is exceeded prior to reaching the destination, the
packet is dropped. Measured inhops. Defined in
the range[1,∞) for integral values only. Search
range is[1, 10].

Other networking protocols may be influenced by a differ-
ent set of factors, which may or may not intersect the above
set. However, any networking protocol for which there exists
a set of quantitatively-defined factors can be explored using
this process.

5.4. TTL-Bounded Gossip protocol
An adapted form [16] of theTTL-bounded gossiping

protocol [4] is the first protocol under consideration. This



protocol is ignorant of energy, network topology, and the
host application, ensuring no bias in the results produced.
Flooding and gossiping protocols of this form are commonly
used within more complex protocols [4] to establish delivery
routes or maintain awareness of network status, widening the
scope of our results to all such protocols.

The protocol makes no demands of a node wishing to
broadcast a packet, either for packets newly created by the
application or when forwarding packets. When a packet is
broadcast, each recipient makes an independent probabilistic
decision whether to rebroadcast the packet to its neighbours,
if it is not to be dropped or consumed. The packet thus
radiates outward from the source node, hopefully arriving at
least once at each intended destination.

In addition to the protocol-independent controlled factors
defined above in section 5.3 an additional controlled factor
must be specified.

X6: Gossip rebroadcast probability The probability
that upon receiving a packet, which is not to be
consumed or dropped at the recipient, a given node
will enqueue the packet for later retransmission to
its neighbours. Unitless. Defined in the range[0, 1].
Search range is[0, 1].

5.5. Implicit Geographic Forwarding protocol
An adapted form of theImplicit Geographic Forwarding

(IGF) [5], in which the backtracking support is removed
for simplicity, is the second protocol under consideration.
This protocol is ignorant of energy, network topology,
and the host application, ensuring no bias in the results
produced. Unlike flooding-derived protocols, IGF imple-
ments a three-phase handshaking sequence to moderate data
packet broadcast. Consider a packetp with sourceA and
destinationD, currently at nodeS. Node S broadcasts
a short Request-To-Send(RTS) received by neighbouring
nodesNi ∈ Nneighbours. Each RTS recipientNi considers
its geographic position relative toS and D, and if the
angle∠DSNi < θ (whereθ is a controlled factorX7) Ni

broadcasts a shortClear-To-Send(CTS).∠DSNi is trivially
0◦ if Ni = D. If S receives one or more CTS replies, it
selects the nodeNi offering the smallest∠DSNi and selects
this as the next recipient. Packetp is then broadcast with this
choice added to its header. All neighboursNi ∈ Nneighbours

except the selectedNi can safely ignorep. When the selected
Ni receivesp it sends a short Acknowledgement (ACK) to
S, completing this stage of the process. The process repeats,
with the previousNi becoming the newS, until the packet
arrives atD or a nodeNi for which there are no suitable
forwarding candidate neighbours.

In addition to the protocol-independent controlled factors
defined above in section 5.3 two additional controlled factors
must be specified.

X7: CTS threshold angle When nodeNi receives a
CTS message fromS, it will not send an RTS

unless ∠DSNi < X7. This factor is intended
to prevent many low-quality or poorly located
forwarding candidates sending RTS messages, and
prevents packets being forwarded in the opposite
direction to the destination ifX7 < 90. Measured
in degrees. Defined in the range[0, 180]. Search
range is[5, 85].

X8: State timeout base Complete IGF cycles im-
ply several wait/timeout periods. To minimise the
search space we define all as multiples of a single
parameterX8, such thatCTS WAIT = X8,
DATA WAIT = 2X8, and ACK WAIT =
X8. Measured inseconds. Defined in the range
(0,∞). Search range is[0, 1].

5.6. Network response metrics
The quality of a given set of controlled factor values was

determined by measuring a set of metrics against a simulated
network. For a given candidate solution, specified by a set of
input controlled factor values for a given network protocol,
we define the quality of this candidate solution in terms of
a set of network response metrics derived in [16]. Three
aspects of solution quality were measured;performance,
reliability, andefficiency. Measurement of these metrics was
performed through simulation as described in section 4.4.

For each metricM1 − M5 lower values imply more
favourable behaviour. Zero represents optimal solution qual-
ity in a given metric, though this value is unlikely to be
observed in practice. Where metrics are definedper hop
or per metre, this is to normalise results in the size of the
network. This is essential in order that results be comparable
between networks of different node count, node distribution
in the network space, or physical size. Where metrics are
definedper packet, this is to normalise results in the volume
of traffic handled by the network to enable fair comparison
between relatively busy or quiet networks, a property which
is not a controlled factor but for which we must account.
Performance metrics:

Network performance is defined in terms ofnormalised
latency, which is the average time taken for a packet to
traverse unit distance within the network. This is important
because in most real-world applications it is not sufficient
for a network to guarantee that a packet will eventually be
delivered. In real-time applications, such as a typical sen-
sornet application, it is important that packets are delivered
within a given deadline. Knowledge of the average latency
per unit distance allows the network designer to calculate
the physical speed at which data traverses the network.

M1: Latency per hop Mean time for a packet to travel
1 node-node hop. Measured inhop−1s. Defined in
the range(0,∞).

M2: Latency per metre Mean time for a packet to
travel 1 metre. Measured inm−1s. Defined in the
range(0,∞).



Reliability metrics:
Network reliability is defined in terms ofpacket delivery.

Ideally, every packet generated by the simulated sensing
application and queued for delivery at the source node would
eventually reach the destination node within the delivery
deadline. The source node and destination nodes are not
interested in how this is achieved, or the route taken through
the network; these are details that are delegated to the
network middleware.

M3: Packet delivery failure ratio Proportion of pack-
ets created at source nodes by the simulated ap-
plication which the network attempted to deliver,
but were lost before reaching their intended desti-
nation. Unitless. Defined in the range[0, 1].

Efficiency metrics:
Network efficiency is defined by the averageenergy

consumed to move data packets within the network. It
is generally impossible to define the energy consumed in
delivering a specific packet, so an average is obtained
for all delivered packets. Unsuccessful delivery attempts
also consume energy until all potential delivery branches
terminate prior to reaching the destination. For a given
network and a given network loading from the distributed
application, lowering the energy required to move each
packet through unit distance will increase the usable lifetime
of the sensornet.

M4: Energy per packet per hop Mean energy for 1
packet to travel 1 node-node hop. Measured in
Jpacket−1hop−1. Defined in the range(0,∞).

M5: Energy per packet per metre Mean energy
for 1 packet to travel 1 metre. Measured in
Jpacket−1m−1. Defined in the range(0,∞).

5.7. Measuring solution quality
The metricsM1 to M5 defined above are all mutually

independent and may be targeted as individual objectives
by sensornet designers. However, real sensornet designs are
likely to require an acceptable compromise between multiple
competing objectives. It is therefore necessary to define a
mechanism by which the relative quality of two or more
candidate solutions can be compared to determine which
offers the best compromise.

Assume we haven controlled factorsX1-Xn andm met-
rics M1-Mm. A candidate solutionSα = {Xα1, . . . , Xαn}
maps to a set of metricsTα = {Mα1, . . . , Mαm}. The
mapping of S 7→ T is not known a priori but instead
is evaluated experimentally as described in section 4 for
specific values ofS. A perfect solutionSperfect would yield
a set of metricsTperfect such that∀Mi ∈ Tperfect•Mi = 0.
AlthoughSperfect does not necessarily exist, we define the
quality measureE in Equation 3 of any given candidate
solutionSα based on the Euclidean distance from the point
in solution phase space defined byTα to the point defined
by Tperfect.

E = 2

√

√

√

√

m
∑

i=1

wi(siMi)
2 (3)

Some network performance attributes may be of greater
importance than others to a sensornet designer. We therefore
define the weightingwi for metric Mi such that a larger
weighting value indicates a greater importance attached to
the associated network behaviour attributes.

Each of the metricsM1-Mm may be defined over a
different range, so it is inappropriate to compare the absolute
measured values directly. We define a scaling factorsi for
metricMi such that all possible values ofsiMi are found in
the range[0, 1], noting that the the ideal value of any given
metric is also the lowest possible value, 0. We therefore
observe that the maximum Euclidian distance,EMAX for a
given set of weightings is given by Equation 4 representing
the worst candidate solution. All experimental values ofE

can be compared againstEMAX .
It is only meaningful to compare twoE values if all

scaling valuessi are equal for eachE. If for a given metric
Mi is defined over a finite range then the value ofsi is well-
defined and does not vary between network configurations
under consideration. However, if a given metricMi is
defined over an infinite range then there does not exist a
single well-defined value ofsi. Instead, we definesi in the
context of a given set of experimental results by setting
si = 1

MAX(Mi)
whereMAX(Mi) is the largest value of

metric Mi observed during all experiments.

EMAX = 2

√

√

√

√

m
∑

i=1

wi (4)

In the experimental work that follows we set allwi = 1 to
give equal weighting to all metrics, and set allsi using the
second definition above as some metrics defined in section
5.6 are defined over an infinite range. It follows that all
values ofE are defined in the range[0,

√
m] for m metrics

where 0 implies the theoretically perfect solution and
√

m

implies the worst solution derivable from observed values.

6. Three-phase experiment implementation
In this section we apply the experimental method defined

in section 4 to the protocol tuning problem described in
section 5. We label theTTL-Bounded Gossipprotocol asA
and theImplicit Geographic Forwardingprotocol asB.

6.1. Phase 1: Variance analysis

We can reduce the cost of the most expensive component,
the execution of network simulations, by reducing the period
within which the network simulation executes. However,
if this period is too small we risk unacceptable levels of
experimental error leading to meaningless results. We miti-
gate this risk by analysing the variance of network metrics



M1 M2 M3 M4 M5

A 19 43 58 49 46
B 27 78 63 51 61

Table 1. Phase 1: τCi values for metrics M1 − M5

with respect to simulated time, calculating the minimum
simulated period required for an acceptable and defined level
of experimental error.

Metrics are sampled periodically but are influenced by
total simulated period from the start to the sampling point.
Assuming that the network eventually reaches a steady state,
measured metrics converge on the actual value with sample
accuracy increasing with simulated time, until sampled val-
ues fall within experimental error margin at which point no
further improvement is possible. We measured this point for
each metric by experiment. It is possible that a metric might
appear to converge, but then later diverge. We mitigate this
risk by running simulations for at least double the period
from the start to the apparent convergence point.

Assume the value of some convergent metricMα at
simulated timeτ is given by Mα(τ). Mα(τ) approaches
its limiting value Mα(∞) as τ → ∞. At some simulated
time τα the valueMα(τα) becomes sufficiently close to
Mα(∞) such that for allτ > τα the valueMα(τ) is
within ±η% of Mα(∞). We define metricMα asconverged
at this simulated timeτα. Any further variation, including
that deriving from noise and unblocked nuisance factors,
is within ±η% experimental error margin. We setη = 5
such that measured metrics used in later analysis have±5%
measurement error.

ConsiderM = {M1, M2, M3, M4, M5}, the set of met-
rics defined in section 5.6. Table 1 presentsτα measured
experimentally for metricsMα ∈ M with each value
rounded as⌈τα⌉. For protocol A, TTL-Bounded Gossip,
∀Mα ∈ M • τα < 60s. We therefore select simulation
length τsim1 = 120s for P1 to allow a safety margin for
any anomalous solution instability. For protocolB, Implicit
Geographic Forwarding, ∀Mα ∈ M •τCi < 120s. We select
simulation lengthτsim2 = 240s for P1 to allow a safety
margin for any anomalous solution instability.

6.2. Phase 2: Factor significance screening

In Phase 2 we identify which of the protocol controlled
factors are the best predictors of the network performance
metrics. This requires a small number of points in the
parameter space to be sampled in the axis corresponding to
each controlled factor, and a set of simulation experiments
to be run to measure network performance under each com-
bination. Then-way ANOVA method is applied to assess
which controlled factors are significant to the experimental
outcomes [14]. Any factors which are deemed statistically
insignificant are dropped at this stage.

M1 M2 M3 M4 M5

X1 0.0565 0.5262 0.2753 0.8355 0.5196
X2 0.7422 0.3218 0.4093 0.8370 0.9509
X3 0.3925 0.2663 0.6711 0.7004 0.6048
X4 0.0000 0.3789 0.0000 0.6036 0.3521
X5 0.6881 0.0000 0.0000 0.0000 0.0000
X6 0.0056 0.0315 0.0000 0.1947 0.3795

X1 × X2 0.8716 0.5711 0.1924 0.4157 0.9098
X1 × X3 0.8779 0.4139 0.9825 0.4967 0.3630
X1 × X4 0.0189 0.1029 0.7474 0.7598 0.4974
X1 × X5 0.9491 0.7164 0.4740 0.9856 0.5221
X1 × X6 0.9787 0.6021 0.7412 0.1371 0.5291
X2 × X3 0.2412 0.6825 0.9027 0.9031 0.9039
X2 × X4 0.4802 0.7602 0.5331 0.1796 0.1470
X2 × X5 0.3899 0.2331 0.3729 0.9500 0.9823
X2 × X6 0.7407 0.9634 0.0166 0.4551 0.3499
X3 × X4 0.4156 0.4089 0.0737 0.4733 0.5438
X3 × X5 0.7441 0.5886 0.7504 0.8016 0.6377
X3 × X6 0.8538 0.4826 0.8753 0.5632 0.6450
X4 × X6 0.5187 0.5028 0.0000 0.7627 0.8542
X4 × X5 0.1707 0.8840 0.0000 0.7280 0.3555
X5 × X6 0.0014 0.1860 0.0000 0.3845 0.5717

Table 2. Phase 2: R2 values for controlled factors
X1-X6 and their interactions for metrics M1-M5 for the

TTL-Bounded Gossip protocol

M1 M2 M3 M4 M5

X2 0.0000 0.9115 0.0097 0.4277 0.5216
X3 0.7991 0.2797 0.9275 0.9520 0.9890
X4 0.0000 0.0000 0.0000 0.0000 0.0000
X5 0.2715 0.2275 0.7656 0.8296 0.7311
X7 0.0000 0.0000 0.0000 0.0000 0.0000
X8 0.0000 0.0000 0.0000 0.0000 0.0000

X2 × X3 0.9996 0.9892 0.7497 0.9969 0.9936
X2 × X4 0.0254 0.9622 0.4034 0.6460 0.7493
X2 × X5 0.8217 0.6784 0.8072 0.0623 0.0516
X2 × X7 0.7903 0.2650 0.0997 0.9839 0.9658
X2 × X8 0.0392 0.6358 0.0907 0.7985 0.8451
X3 × X4 0.9386 0.2415 0.9718 0.9952 0.9996
X3 × X5 0.8137 0.7883 0.8711 0.4870 0.4245
X3 × X7 0.5805 0.3202 0.4790 0.9800 0.9800
X3 × X8 0.9058 0.8431 0.8309 0.9626 0.9022
X4 × X5 0.7270 0.1178 0.9223 0.9520 0.8842
X4 × X7 0.0000 0.0000 0.0000 0.0000 0.0000
X4 × X8 0.0000 0.0009 0.0000 0.0000 0.0000
X5 × X8 0.8240 0.7159 0.7740 0.9712 0.9335
X5 × X7 0.3849 0.0218 0.9782 0.8474 0.5175
X7 × X8 0.0000 0.0000 0.0000 0.0000 0.0000

Table 3. Phase 2: R2 values for controlled factors
X2-X5 and X7 − X8 and their interactions for metrics

M1-M5 for the Implicit Geographic Forwarding protocol

Controlled factors{X1 − X6} were considered at this
stage for protocolA. The test suite size was calculated using
the formula given in section 4.3 withp = 6, q = 3, r = 3
ands = 3. This gives a test suite size of3×3×36 = 6561,
hence 6561 points in the factor-response phase space are
available for model fitting. Table 2 presents theR2 values
(the F-value of theρ-statistic) for each controlled factor,
and first-order pairwise interaction between factors. Factors
{X4, X5, X6} are significant in isolation with 95% confi-



dence (R2 < 0.05) for at least two of the metricsM1-M5,
and at least one of{X4, X5, X6} is evident in almost all
interaction pairs deemed significant with 95% confidence.
Factors{X1, X2, X3} are not significant in isolation for any
metric, or as a member of an interaction pair which does not
include any of{X4, X5, X6}. Notably, the protocol-specific
factor X6 is statistically significant indicating that attempts
to tune this protocol are appropriate.

Controlled factors{X2 −X5, X7 −X8} were considered
at this stage for protocolB. The test suite size was calcu-
lated using the formula given in section 4.3 withp = 6,
q = 3, r = 3 and s = 3. This gives a test suite size
of 3 × 3 × 36 = 6561, hence 6561 points in the factor-
response phase space are available for model fitting. Table
3 presents theR2 values (the F-value of theρ-statistic) for
each controlled factor, and first-order pairwise interaction
between factors. Factors{X4, X7, X8} are significant in
isolation with 99% confidence (R2 < 0.01) for all metrics
M1 −M5. The controlled factorX2 is significant with 99%
confidence (R2 < 0.01) for metric M1 and significant with
90% confidence (R2 < 0.1) for metric M3. At least one of
{X2, X4, X7, X8} is evident in all interaction pairs deemed
significant with at least 95% confidence (R2 < 0.05).

6.3. Phase 3: High resolution modelling

In Phase 3 we sample the parameter space along the
corresponding axis in a greater number of points for each
statistically significant controlled factor. Again, a set of
simulation experiments was performed to measure network
performance under each configuration. Phase 2 identifies
controllable factors not significant to the outcome for which
we can justifiably select any value falling within the ranges
explored experimentally. We select the midpoint value of the
boundaries defined in section 5 for each controllable factor
deemed insignificant by section 6.2.

Factors{X4, X5, X6} were considered at this stage for
protocol A. The test suite size was calculated using the
formula given in section 4.3 withp = 3, q = 10, r = 3 and
s = 3. This gives a test suite size of3 × 3 × 103 = 9000,
hence 9000 points in the factor-response phase space are
available for model fitting. Factors{X2, X4, X7, X8} were
considered at this stage for protocolB. The test suite size
was calculated using the formula given in section 4.3 with
p = 4, q = 7, r = 3 and s = 3. This gives a test suite
size of 3 × 3 × 74 = 21609, hence 21609 points in the
factor-response phase space are available for model fitting.

Linear interaction models of the form given by Equation
1 were fitted to the sampled points for protocolsA andB,
yielding sets of model coefficientsCA andCB in controlled
factorsX1−X8. Solving these simultaneous equations yields
the best-known input protocol tuning values corresponding
to A andB are labelledIA andIB respectively, given to 4
decimal places in table 4.

We conduct 100 repeats of each network designξi ∈ Ξ

using parameter setsIA andIB as defined in table 4, taking
the arithmetic mean of metricsM1-M5 to obtain results
setsOA and OB as given in Table 5 to 4 decimal places.
Relative quality ofOA andOB is measured by theE value
defined in the interval[0,

√
5] as described in section 5.7.

We normaliseE to the range[0, 1] in the rightmost column
for convenience.f(OB , OA) givesOB as proportion ofOA

for comparison of relative solution quality.

At this stage it is worth highlighting that there is no
default or initial tuning against which to compare any other
given tuning. A wide range of values were observed for
each of the metricsM1-M5 during the experiments from
which the values given in table 5 were derived, covering
the entire spectrum of behaviour from highly effective to
highly deficient. It is against these observed extremes that
we compare all other observed values as they provide the
only meaningful baseline for comparison.

The best tunings of protocolsA and B display signifi-
cantly different behaviour.A outperformsB by an order of
magnitude in metricsM1 andM2. This is unsurprising asA
is stateless and implements its actions as soon as possible,
whereasB is based on a state machine with minimum-
time guards on some transitions defined in terms of factor
X8. As the performance of network components increases it
might be expected that this performance margin will increase
unlessX8 is decreased appropriately.

However,B outperformsA in the remaining metricsM3−
M5. In each case the performance of both protocols is within
the same order of magnitude, but is nevertheless significantly
different. As we weighted all metrics equally in section 5.7
this is sufficient forEB < EA by a significant margin, such
that B is found to perform considerably better thanA in
this experiment. Had we weighted metrics differently this
condition would not necessarily hold. For example, placing
more emphasis on metricsM1 andM2 would favourA over
B, eventually reaching the conditionEA < EB.

Consider the classes of metrics defined in section 5.6. If
performanceis the most important issue in a given network
then A is a better choice, as the best compromise tuning
of B cannot outperform the best compromise tuning ofA

in metricsM1 − M2. If reliability or efficiencyis the most
important issue in a given network thenB is a better choice,
as the best compromise tuning ofA cannot outperform the
best compromise tuning ofB in metricsM3 − M5.

We conclude that the selection of protocol, and the tuning
of that protocol, is dependent on the required performance
characteristics of a given network. The method we describe
in this paper allows the designer to efficiently and fairly
compare a selection of candidate protocols, defining the
relative priority of each measurable network response metric
by setting appropriate weightings in the solution quality
metricE, such that the most appropriate tuning of the most
appropriate protocol can be obtained.



X1 X2 X3 X4 X5 X6 X7 X8

IA 5.5000 5.5000 0.5500 4.9506 7.5390 0.9999 - -
IB 5.5000 2.4202 0.5500 8.9954 5.500 - 41.0607 0.2701

Table 4. Best-known protocol tunings: controlled factors

M1 M2 M3 M4 M5 E E ÷
√

5
OA 1.4624 × 10−2 7.2833 × 10−6 3.5242 × 10−1 2.2086 × 10−4 9.6196 × 10−8 0.35613 0.15927
OB 1.2388 × 10−1 5.9283 × 10−5 2.3837 × 10−1 7.5106 × 10−5 3.6026 × 10−8 0.25881 0.11574

f(OB, OA) 0.1180 0.1229 1.4785 2.9406 2.6702 1.3761
Best protocol A A B B B B

Table 5. Best-known protocol tunings: measured responses

7. Conclusions
In section 3 a set of desired research objectives was

defined, against which we now state our findings.
Objective 1: Define a reusable methodology for addressing

the protocol tuning problem
Section 4 defines a three-phaseDesign Of Experiments
methodology based on theFactorial Designparadigm. Sec-
tion 5 defines the format in which controlled factors and
measured responses must be specified.
Objective 2: Identify the significant factor-response rela-

tionships for the protocol tuning problem
Section 6 identifies statistically significant controlled factors
for the two dissimilar protocols considered in this paper, and
summarises the trends governing the relationships between
controlled factors and measured responses.
Objective 3: Obtain near-optimal compromise solutions to

the protocol tuning problem
Section 6 shows that the experimental method discussed in
this paper finds near-optimal solutions to the protocol tuning
problem for both protocols considered in this paper and
states the values of controlled factors under these tunings.
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