
Energy Efficient Duty Allocation Protocols For Wireless Sensor Networks

Jonathan Tate and Iain Bate
Department of Computer Science

University of York
York, United Kingdom, YO10 5DD

Email: { jt | iain.bate}@cs.york.ac.uk

Abstract

Wireless sensor networks require shared medium
access management to prevent collisions, message cor-
ruption and other unhelpful effects. Cellular sensor-
nets require minimal energy consumption to maximise
network lifetime, and management of interaction with
base stations and other cells. We present a proto-
col which dynamically generates a near-optimal duty
schedule within a cell such that communication duty is
shared evenly between participating nodes with exactly
one node on-duty at any given time.

1. Introduction
Sensornets compose many small, low-cost comput-

ing nodes into distributed systems deployed into phys-
ical environments of interest. Nodes have restricted
energy, computation and storage resources and there-
fore limited utility in isolation; co-operation and co-
ordination is necessary to address realistic problems.

Consider a large sensornet consisting of many nodes,
divided into cells containing smaller numbers of nodes
in close geographic proximity [1]. Within a cell each
node has a similar view of the physical environment,
and similar connectivity to nearby base stations or
surrounding cells [2]. It follows that all nodes within
a cell are approximately equivalent with respect to
extracellular entities and environmental context.

Suppose that an external entity broadcasts a mes-
sage received by all members of a cell. Unless the
message is intended for a specific member of that
cell, it is unclear which cell member or set of cell
members should respond. Data packets to be forwarded
to remote destinations need only be rebroadcast once;
if all cell members rebroadcast this wastes energy,
increases contention for the wireless medium, and risks
collisions [3]. If a tasking message requests that a
sample value be read from the physical environment
then all cell members will produce equivalent readings

[4]. Consequently, energy and network capacity may
be wasted in delivering multiple redundant messages.

Any of a number of similarly positioned nodes are
equally valid candidates to handle specific tasks. Some
mechanism is required to avoid wasteful repetition,
and mitigate ambiguous or unpredictable multiple re-
sponses to stimuli, by enforcing mutual exclusion [5].

By deterministically assigning responsibility for re-
sponse, we implicitly identify the nodes which will not
be required to respond. These nodes can switch unused
energy-hungry subsystems into low power modes. The
consequent energy saving extends the useful lifetime
of sensornets composed of nodes with finite energy
resources. Sensornets can run indefinitely if duty cycle
allocation allows nodes to scavenge energy from the
environment at the rate of consumption [6].

The Cyclic Duty Allocation Protocol(CDAP) is an
application- and platform-agnostic lightweight proto-
col to cycle duty between the nodes of a network
cell. Systemepochsare divided into portions of equal
length and allocated fairly among nodes, such that
each node is assigned responsibility for one portion
during each epoch. Exactly one node is deterministi-
cally assigned this responsibility at any arbitrary time,
removing ambiguity as to which node must respond
to stimuli. Applying well-understoodsynchronisation
phenomena observed in nature [7], inter-node coordi-
nation is achieved by cells acting as closed systems
of pulse-coupled oscillators. As cells approach stable
equilibrium states, nodes can identify periods in which
energy-saving states can safely be entered.

The remainder of this paper is structured as follows.
Section 2 considers related work. Section 3 defines
the contributions of this paper. Section 4 specifies
the requirements and design of the protocol. Section
5 considers protocol extensions that improve energy
efficiency. Section 6 compares experimental results to
theoretical expected performance. Finally, section 7
summarises conclusions to be drawn from this work.

2. Related work
In a typical sensornet it is rare for all nodes to

perform useful work at all times. Energy efficiency can
be improved by carefully managing node state, placing
some subset of the network in low-energy inactive
states when not required to actively participate [8].
However, finding the optimal sleep schedule requires
global knowledge of all node tasks and schedules to
be maintained. Sensornets generally have insufficient
resources to support the communication, computation
and storage overheads of these optimal algorithms,
with energy cost exceeding the resultant savings [9].

Low-level approaches minimise energy costs by
identifying periods during which node subsystems are
not fully utilised [10]. If components consume less
energy when running at less than 100% capacity it is
often beneficial to off-load activity from busy periods
to less-busy periods, or to work speculatively in idle
periods to minimise periods running at 100% capacity.

The Random Asynchronous Wakeupprotocol [2]
implements a randomised and distributed algorithm
under which nodes make local decisions on whether
to sleep or remain awake. Within each time frame
each node is awake for a randomly chosen fixed in-
terval. When forwarding packets an integrated routing
protocol selects from a set of equivalent next-hop
locations with probabilistic guarantees that at least
one of these will be awake. However, as there is no
coordination between nodes there is no guarantee that
any forwarding candidates are awake, and if more than
one is awake this redundancy wastes energy.

Similar functionality is provided by theAsyn-
chronous Random Sleepingscheme [11] which is
principally useful where no inter-node coordination is
possible. However, such scenarios might be considered
unusual as sensornets generally execute distributed and
cooperative sensing and processing applications.

The Probing Environment and Adaptive Sleeping
protocol [5] implements an adaptive sleep policy in
which nodes sleep for an exponentially distributed
duration then wake and transmit a probe message. If
any nearby nodes happen to be awake they transmit a
reply message. If any such reply message is received
the node is not required at this time and sleeps again;
otherwise, it remains awake until it fails or runs out
of energy. A significant weakness is that when a node
fails there is zero local network coverage until some
other nearby node wakes with indeterminate delay. If
the failed node has accumulated significant data this
cannot be replaced by that of other nearby nodes.

The Lightweight Deployment-Aware Schedulingal-
gorithm [12] aims to improve network energy ef-
ficiency by switching off redundant nodes without

access to accurate location or directional information.
Observing that nodes require up to 11 active neigh-
bours to provide a 90 percent chance of complete
redundancy, LDAS allows network designers to trade-
off sensing redundancy against energy consumption.
This protocol is most appropriate and efficient in
networks where most nodes are required for physical
sensing rather than for distributed data processing.

An alternative view [13] is that application-aware
traffic scheduling, rather than network coverage, holds
the key to maximising energy efficiency and hence
network lifetime. TheMulti-Sensornetsapproach ap-
plies a genetic algorithm to balance nodes’ energy
consumption in a distributed data fusion application.
Peer nodes coordinate dataflow schedules such that
the time during which they are required to be awake
is minimised, allowing nodes to safely sleep at other
times without disrupting network coverage.

Synchronisation and desynchronisation are
biologically-inspired primitives in which a closed
finite system of periodic oscillators converge to a
steady state. Undersynchronisationall oscillators
fire simultaneously in the steady state [7], whereas
underdesynchronisationthe oscillator firing times are
evenly distributed in time in the steady state [14]. In
a synchronisedsystem a set of two or more periodic
isochronal events are coordinated to begin and end
at the same time. By contrast, in adesynchronised
system these events are organised to maximise the
inter-event period, which is equal for all pairs of
events and their immediate successors. The desired
system-wide coordination is an emergent property of
independent agents implementing simple rules [7].

3. Contributions
We define the following research objectives as the

primary contributions of this paper.
Obj 1: Define a lightweight duty allocation protocol

for unicellular sensornets such that exactly
one node is active at any given time.

Obj 2: Evaluate the duty allocation protocol exper-
imentally and theoretically to assess its effi-
cacy and energy efficiency.

4. Cyclic Duty Allocation Protocol
The desynchronisationprimitive generates a peri-

odic sequence of synchronisation transmissions spaced
evenly in time. We use this as the basis of our protocol.

4.1. Desynchronisation

Assume a network cell consists of a setΣ of nodes
S1 · · ·Sn wheren ≥ 2; if n = 1, there is obviously
no need for inter-node coordination. Each nodeSi acts

independently but shares an identical set of behavioural
rules. The running time of the system is divided into
a set of systemepochsof equal periode such that
∀j : Ej = e. The sequence of system epochsEj is
defined by the natural ordering ofj ∈ N.

Within each system epochEj it is required that
each nodeSi ∈ Σ shall execute a single instance of a
periodic synchronisation eventVi exactly once. These
events are used only by the protocols described in this
paper, and are not related to any events used by the
sensornet application. All eventsVi are periodic with
identical periodpi = e. The occurrence of a specific
event at a specific nodei within a specific system
epochj is labelledVij . It is required that all events
Vij are executed within epochEj .

Each nodeSi ∈ Σ has a local clock used to measure
the local phaseφi which increases from0 to φmax in
time pi = e. Whenφi = φmax at nodeSi in epochEj ,
nodeSi transmits asynchronisation messageand resets
its local phase asφi = 0, corresponding to eventVij .
No global clock is required. Peer nodesT ∈ (Σ \ Si)
receive theVij synchronisation message at their local
phaseψij but do not know the identity ofSi.

Within every epochEj all nodesSi record the local
phase of peer node synchronisation messages, using
this information to modulate their local phase to coor-
dinate behaviour within the cell [7].Desynchronisation
protocols maximise the time between synchronisation
events for all nodes in a given epoch, converging on
an equilibrium statein which synchronisation events
occur spaced evenly in time [14].

Each nodeSi records the local phase of the peer
synchronisation eventsViβ andViγ , occurring imme-
diately before and immediately after the local syn-
chronisation eventVi respectively, and discarding all
others. The corresponding peer nodesSiβ andSiγ are
labelled thephase neighboursof nodeSi. The phase
difference betweenVi andViβ is calculated asφiβ , and
the phase difference betweenVi andViγ is calculated
asφiγ . Note thatφiβ is always negative andφiγ always
positive owing to natural ordering of events.

The phase errorθi = φiβ + φiγ is the phase differ-
ence between the local synchronisation eventVi and
the target midpoint of phase neighbour synchronisation
eventsViβ and Viγ . Each nodeSi alters its local
phase by∆φi = −fαθi upon observingViγ , where
fα ∈ (0, 1] is the feedback proportiongoverning the
balance between responsiveness and stability. Given
an otherwise unchanging network,∀i : ||∆φij || → 0
as j → ∞ in successive epochs [7]. Observe that
∀i : θi = 0 in the desynchronised equilibrium state. If
phase errorθi = 0 then phase change∆φi = 0 also;
no action is required when the system has converged.

4.2. Synchronisation transmissions
Networks in which this primitive is applied can be

modelled as a fully connected graphG = (Σ, E), where
Σ represents the set of network nodes andE represents
the set of possible pairwise communication exchanges.

The eventsVi executed by nodesSi ∈ Σ as
described above are shortpulseswhich are broadcast
by a sender nodeSα and received by all other nodes
Si ∈ (Σ \ Sα). The edgesE of the graphG can
be thought of as representing communication channels
which are often unused, but through which a single bit
of information will periodically be transmitted when a
pulsetransmission occurs.

A typical implementation would be the smallest
valid packet achievable within a given network stack;
the packetdata is greater than one bit but conveys one
bit of information. The minimal time required for this
stub packet to traverse the network stack of the sender
and the receivers,κ, represents the limit of convergence
of the desynchronisationprimitive.

Assuming cells containn nodes the minimal over-
head per epoch isnκ. For epochs of lengthe the
proportionp of each epoch available for application
data transmission isp = 1− (nκ/e). Note thatp→ 1
ase → ∞; longer epochs imply smaller overhead but
greater stabilisation time as per section 4.1.

Recipients will use the time at which thepulse
is received, rather than information encoded into the
signal itself, as the source data for the coordination
algorithm. Other protocols could encode additional
information within these transmissions at the expense
of higher overhead, but we do not require this.

4.3. Protocol states
A simple Finite State Machine runs at each node.

The states define the communication responsibilities
of a given node at a given time with regard to peer
nodes within the cell and external entities beyond the
cell. As the local phaseφi of nodeSi increases from0
to φmax the protocol state may be changed by detected
synchronisation events, or by state timeouts.
ONDUTY - Node is responsible for communications

duties of the cell, and is responsible for handling
any incoming packets. Node can hear both ap-
plication messages and synchronisation messages.
Radio modules are switched on and ready for
bidirectional exchange with neighbouring entities,
and transmit their own synchronisation message
in the middle of this period.

SCAN - Node is listening for synchronisation mes-
sages but has not yet collected sufficient data to
predict times of phase neighbour peer node syn-
chronisation transmissions. Node can hear syn-

chronisation messages but do not expect applica-
tion messages. Node radio module is switched to
the lowest-power mode that can detect the syn-
chronisation messages, except when transmitting
its own synchronisation message.

SYNC - Node is waiting for synchronisation messages
around the predicted times of phase neighbour
peer node synchronisation transmissions. Node
can hear synchronisation messages but do not
expect application messages. Node radio module
is switched to the lowest-power mode that can
detect the synchronisation messages.

OFFDUTY - Node has no communication responsi-
bilities and is free to switch radio modules off
or into other low-power modes. Nodes can hear
neither application nor synchronisation messages.

stableunstable

SYNC

ONDUTY

OFFDUTY

SCAN

Figure 1. CDAP States

Figure 1 illustrates the CDAP states and state tran-
sitions in UML statechart format. All nodes start in
SCANduring which each nodeSi collects timing data
about phase neighbour synchronisation eventsViβ and
Viγ . This continues for at least timet = 2e to ensure
that all nodes observe at least one occurrence of each
phase neighbour event, hence allowing each node to
produce at least a first approximation estimate of the
next instance of these events. Upon reaching this point
nodes transition from theunstablecomposite state to
the stable composite state, entering the latter in the
SYNCsimple state.

The CDAP protocol builds a distributed schedule
which defines the periodic duty cycles for each node
in each system epoch. We will consider the mechanism
by which this schedule is constructed in section 4.4 but
these details are irrelevant at this point. The duty period
in stateONDUTY is obtained for each node, with that
node’s own synchronisation transmission occurring at
the midpoint of theONDUTY period and the phase
neighbours’ synchronisation transmissions occurring at
times outside theONDUTY period. In the most basic

form of CDAP it follows that by default nodes are in
theSYNCstate listening for synchronisation messages,
transitioning temporarily toONDUTY when the duty
period begins and transitions back toSYNCwhen the
duty period ends.

This provides the desired mutual exclusivity prop-
erty in which there is exactly one node in theONDUTY
state at all times except for a small handover period
between nodes. TheONDUTY state takes precedence
over all others if timing errors lead to conflict at
any node. However, this basic schedule is not energy
efficient. Listening to the wireless medium for synchro-
nisation messages often consumes energy as quickly
as listening for application messages, and always con-
sumes more energy than a low-power standby state.
We would prefer nodes to spend time in theOFFDUTY
state to conserve energy when possible.

We address this issue by observing that phase
neighbours’ synchronisation transmissions are gener-
ally short in comparison to the system epoch, and
occur at reasonably predictable times as the system
converges on the equilibrium state if signal noise and
timing error is moderate. For example, transmission
times are subject to jitter with magnitude that is usually
(but not always) small compared to epoch lengthe.
Imperfect node clocks will drift out of synchronisation
such that relative phase offset of phase neighbour
synchronisation events will inevitably change over time
if the protocol is not continually adaptive.

It is therefore sufficient to limit listening in the
SYNC state to relatively smallsynchronisation win-
dowsduring which there is a reasonable expectation,
though no guarantee, that peer nodes will transmit their
synchronisation messages. The details are irrelevant at
this point but are defined in section 5.2. In stable sys-
tems predictions will usually be reasonably accurate;
prediction failures can be handled as and when they
arise with lower total cost than the basic policy.

Participating nodes can therefore employOFFDUTY
as the default state rather thanSYNC. Nodes tran-
sition from OFFDUTY to SYNC shortly before the
predicted synchronisation transmission from the pre-
ceding phase neighbour, and then back toOFFDUTY
shortly afterwards. Some time passes inOFFDUTY
until the assigned duty period begins, at which point
the node transitions toONDUTYuntil the duty period
ends and the node transitions back toOFFDUTY. A
further transition to and fromSYNC occurs around
the predicted synchronisation transmission from the
succeeding phase neighbour. The node is then able to
remain inOFFDUTY until the next predicted time of
the preceding phase neighbour synchronisation event.
This cyclical pattern of transitions repeats with the

same periodicity as the system epoch,e.
It is mentioned above that synchronisation events

are not guaranteed to occur at the predicted times.
This may be due to failure of the node which was
due to transmit its synchronisation message, signal
noise at the receiver, timing error at the transmitter or
receiver, or an overly optimistic truncation of theSYNC
state time. The protocol determines if sufficient timing
data exists to make predictions in subsequent system
epochs. If yes, the protocol proceeds as before, and is
hence able to reject small or transient errors. If no, the
node transitions from thestablecomposite state to the
unstablecomposite state, and theSCANsimple state in
particular. The protocol then restarts listening for peer
nodes’ synchronisation messages and transmitting its
own synchronisation messages at the scheduled times.

This allows a given node to temporarily drop out
of active service, without adversely affecting the cell’s
other nodes or the distributed schedule, rejoining soon
after. If a node fails completely its disappearance will
be noted in the same way, but as it will no longer trans-
mit synchronisation messages the distributed schedule
will eventually reconverge on a new equilibrium state.

4.4. Allocating duty periods

Thedesynchronisationprimitive described in section
4.1 obtains an equilibrium state in which a sequence of
synchronisation events is evenly distributed throughout
time. We now use these synchronisation events to allo-
cateONDUTYstate periods. We use a method similar
to that employed by theDESYNC-TDMAprotocol [14]
to mediate access to a shared wireless medium.

Recall that ∀i : ||∆φij || → 0 as j → ∞ in
successive epochs. As the system converges on the
desynchronised equilibrium state, at each nodeSi

the phase differencesφiβ and φiγ between the local
synchronisation eventvi and the phase neighbour
synchronisation eventsViβ and Viγ will converge on
−φmaxe/2n and+φmaxe/2n respectively.

It follows that, as the system converges toward
the equilibrium state, each node can predict the time
of its phase neighbours’ synchronisation events with
increasing accuracy. This is important as we must
predict the timing of successor phase neighbour event
Viγ from historical values in order to allocate duty
periods that extend beyond the local synchronisation
eventVi. Otherwise, we must end duty periods at the
occurrence ofVi, preventing allocation of more than
50% of each system epoch to active duty among nodes.

We define the duty period of nodeSi in terms
of phase offsets of phase neighbours’ synchronisation
eventsViβ andViγ , measured from the local synchro-
nisation eventVi at local phaseφi = φmax. The duty

period starts halfway between the occurrence ofViβ

and Vi, and ends halfway between the occurrence of
Vi and Viγ . To reduce the risk of two nodes’ duty
periods overlapping as a consequence of clock error
we can scale down the duty period lengthl to ηl.
Higher values of the scaling constantη ∈ (0, 1] give
longer duty periods and a greater proportion of each
epoch allocated to active duty, but less unallocated
inter-periodic buffer time.

Consider nodeSi. Recall from section 4.1 thatφiβ

is the phase offset ofViβ andφiγ is the phase offset
of Viγ . The p most recent measured values of each
phase offset are retained, anull value being stored
if an expected synchronisation event is not observed.
Predicted values ofφiβ andφiγ are taken as moving
averages over historical values to reject timing noise.

There aresufficientmeasurements to predict timings
of phase neighbours’ synchronisation events if at least
proportionq of thep stored values are non-null and no
more thanr consecutive null values have been stored,
ensuring predictions are based on acceptably complete
and timely observations. Ifinsufficienthistorical values
have been collected, the node must re-enter theSCAN
state to capture more prediction data as per section 4.3.

The duty period starts at phaseφi = −λ||φiβ || and
stops at phaseφi = +λ||φiγ ||. As phaseφ ∈ [0, 1)
we apply modular arithmetic to convert the start phase
value to the equivalentφi = λ||φmax + φiβ ||. We
set the scaling constantλ = (1 + η)/2 to split the
unallocated buffer time defined byη between the
beginning and end of the duty period.

As the system converges on the equilibrium state
defined in section 4.1 the start and stop phase offsets
of duty periods will converge on−λφmaxe/2n and
+λφmaxe/2n respectively. However. we cannot sim-
ply use these convergence limits from the outset as
the protocol must align the local phase of each node
with that of its phase neighbours, and hence indirectly
with all nodes in the cell. The cell populationn is not
necessarily known by any node owing to the vagaries
of initial deployment, node failures, or cell population
changes. Furthermore, before convergence the relative
phase of synchronisation events is in flux.

In section 4.3 we state exactly one node isONDUTY
at any given time, and is implicitly responsible for
sending application packets if an immediate response
to observed stimuli is required. Nodes in other states
which create application packets must wait≤ e/n time
units to regain theONDUTYstate before transmitting.

4.5. Measuring effectiveness

CDAP is a state management protocol but has im-
plications for packet routing. Sensornets are composed

of unreliable nodes deployed into hazardous environ-
ments. It is therefore inappropriate to route application
packets by unique node identifier; some sensornets
do not allocate globally unique identifiers and any
individual node along delivery routes may fail.

A data-centric geographic routing policy is thus ap-
propriate, in which packet routing decisions are based
on node physical location rather than logical network
topology. As packets are routed between physical lo-
cations, and there is no guarantee that any live node is
located at the exact specified destination, it follows that
any node sufficiently near the specified destination is
equally acceptable. CDAP determines which redundant
candidate actually takes responsibility, independently
of the packet content or application type.

The rôle of CDAP is to construct and dynamically
maintain a duty schedule such that exactly one node is
in the ONDUTYstate at any given time. If zero nodes
are in theONDUTYstate then communication between
the cell and external entities will fail. If two or more
nodes are in theONDUTY state then it is undefined
which is responsible for external communications.

CDAP can be extended to support delivery between
uniquely identified nodes, or to support more complex
coverage models in which multiple redundant nodes
must be active at all times within cells, but we do not
include details here owing to lack of space.

We define the following metrics:P0, P1 andP2. The
sensornet executes the protocol as runtimet increases
in the interval[0,∞]. Each metricP0 − P2 measures
the proportion of time during a measurement period
[tstart, tstop] which a given number of nodes are in
the ONDUTY state.
P0: Proportion of time in which zero nodes are in

the ONDUTY state. Unitless. Defined in the
range[0, 1]. The ideal value ofP0 = 0.

P1: Proportion of time in which one node is in
the ONDUTY state. Unitless. Defined in the
range[0, 1]. The ideal value ofP1 = 1.

P2: Proportion of time in which two or more
nodes are in theONDUTY state. We do not
record the exact number of such nodes, only
that there are≥ 2. Unitless. Defined in the
range[0, 1]. The ideal value ofP2 = 0.

CDAP is a dynamic protocol and hence requires
some time to stabilise, attaining the equilibrium state
at time teq as described in section 4.1. The system
will remain within this steady state until the network
changes, for example where a node joins or leaves the
network cell. If tstart ≥ teq then all measurements
are taken in the equilibrium state, and the values of
P0 − P2 will approximate the theoretical optimal val-
ues given below. The longer the measurement period

p = tstop − tstart, the better the approximation as the
influence of measurement granularity diminishes.

If, however, tstart < teq, the measured values
of P0 − P2 will be influenced by the stabilisation
period of sub-optimal behaviour prior to the sys-
tem reaching equilibrium state atteq. Although this
accurately reflects network performance during the
measurement period, it does not necessarily reflect
the long-term stable performance as the influence of
this pre-equilibrium period becomes insignificant as
t → ∞. Both measurement scenarios are correct and
useful but must be interpreted appropriately; the former
describes the long-term stable behaviour, and the latter
describes the short-term behaviour during initialisation.

5. Energy efficiency
CDAP switches off radio modules when nodes are

not on duty. Other components such as CPU, memory
or sensors may optionally be powered down if this is
compatible with application requirements.Synchroni-
sation windowssuppress this during peer synchronisa-
tion transmissions to ensure correct CDAP behaviour.

5.1. Radio module states
We define an abstract model of sensornet radio mod-

els in terms of a finite set of permitted states. We assess
the energy efficiency of a sensornet based on a specific
hardware platform by binding a specific power value
to each defined radio module state, and measuring the
time spent in each state over the runtime of a sensornet.
From these measurements we can trivially calculate the
energy consumed in each radio module state, and hence
the average energy consumption rate for a participating
sensornet node. We assume antenna gain and transmit
power is fixed for all transceivers.
STANDBY - Low power mode in which nodes can

neither transmit nor receive.
LISTENLOW - Low power mode in which nodes can

detect nearby transmissions but not receive data.
LISTEN - Node is listening to wireless medium but

not currently receiving data.
RECEIVE - Node is listening to wireless medium and

currently receiving data.
TRANSMIT - Node is transmitting into the wireless

medium.
Transitions between permitted states is controlled

by the CDAP protocol. The lowest power state which
supports required functionality is selected.

Nodes in OFFDUTY keep radio modules in
STANDBY. Nodes in SCAN keep radio modules in
LISTENLOW, switching temporarily toTRANSMITto
transmit synchronisation messages. Nodes inSYNC
keep radio modules inLISTENLOW. Nodes inON-
DUTY keep radio modules inLISTEN, switching

temporarily toRECEIVEwhen receiving application
messages or toTRANSMITwhen transmitting synchro-
nisation or application messages.

If a given hardware platform does not explicitly
support an abstract model state we substitute the
lowest cost supported state that provides the same
functionality. For example, some hardware platforms
supportLISTENLOWin which nodes cannot exchange
data but can detect transmissions, which is sufficient
for synchronisation. IfLISTENLOW is not available
then LISTEN is substituted, switching temporarily to
RECEIVEwhen receiving synchronisation messages.

In LISTENLOWnodes cannot inspect packet con-
tents to differentiate between application packets and
unexpected synchronisation packets. The decision can
be made using timing data. In section 4.2 we specify
that synchronisation packets are as short as possible;
longer transmission times imply application packets.

5.2. Window management

We cannot predict the actual times of synchroni-
sation events with certainty. We can, however, give
probabilistic guarantees that they will occur within
defined finite periods. We exploit this fact by limiting
costly wireless activity to these periods. In this section
we describe mechanisms by which the length of the
synchronisation windows is gradually reduced as the
system converges on the desynchronised equilibrium
state toward a final state in which the synchronisation
window length reaches a specified minimum.

Within the duration of the system epoch each node
has two synchronisation windows; one pertaining to the
predecessor phase neighbour synchronisation event,
and the other pertaining to the successor. Note that
although both window lengths are likely to reduce
simultaneously there is no guarantee that this will
happen. For example, a given node might transmit its
synchronisation event with abnormally high jitter, or
might be poorly positioned in the wireless medium
landscape and hence frequently fail to be heard by its
phase neighbours. We therefore track the predecessor
and successor synchronisation windows separately.

It is permitted for these synchronisation windows to
overlap; this overlap has no effect as both simply place
a node into theSYNCstate to listen for synchronisation
transmissions of which all occurrences are equivalent.

The actual time of a synchronisation event may
be earlier or later than the predicted time with equal
likelihood as a result of the desynchronisation primitive
described in section 4.1. We also assume that transmis-
sion time jitter and timing errors from imperfect clocks
is equally likely to be positive as negative. We therefore
define the synchronisation window of lengthµ phase

units as centred on the predicted synchronisation event
time, extending symmetrically byµ/2 phase units in
either direction.

If the synchronisation pulse requires timeκ (see
section 4.2) then we restrictµ to the interval[2κ, φmax]
to prevent the window length becoming smaller than
the transmission lengthκ with a reasonable safety
margin, and to prevent the window length becoming
longer than the system epoch lengthe. Whenµ reaches
the2κ threshold, and remains there during subsequent
epochs, we measure the steady state energy profile.

We provide estimates of the proportion of time nodes
spend in CDAP states defined in section 4.3. For a
system converged on the equilibrium state we know
that the proportion of time spent inSCAN is 0, and
the proportion of time spent inONDUTY= 1/n so we
need not consider these further, but will compare ex-
perimental measurements in section 6. The proportion
of time spent inSYNCis given asTsync and the propor-
tion of time spent inOFFDUTY is given asToffduty.
Tscan = µ/φmax andToffduty = 1 − (µ/φmax).

5.2.1. Policy A: Null policy. Under thenull policy
nodes never enter theOFFDUTY state. The synchro-
nisation window length is alwaysµ = φmax such that
the radio module is always in theSYNCstate, except
for assigned duty periods in which nodes temporarily
assume theONDUTY state. We use this policy as a
baseline against which to compare the other policies as
the resulting energy consumption is the upper bound-
ary of all possible CDAP policies.

5.2.2. Policy B: Hyperbolic Decline policy.A counter
is maintained of the number of consecutive successful
synchronisation event predictions,σ. Initially, σ = 0.
Every time a synchronisation event is detected within
the appropriate synchronisation windowσ is incre-
mented; if the no event is detected in the window
then the counter is reset asσ = 0. The window
length is taken asµ = φmax until at leastσ = χ
consecutive successful predictions occur, after which
µ = max

(

φmax/(σ + 1), 2κ
)

. This allows the policy
to rapidly shrink the synchronisation window but not
until the system begins to stabilise. Increasingχ de-
lays window shrinking for longer, reducing premature
shrinking but also reducing potential energy savings.

5.2.3. Policy C: Moving Average Error policy. A
buffer Ξ records theξ most recentphase prediction
error magnitudes, which are the unsigned magnitude
of the difference between the predicted and measured
phase for a phase neighbour synchronisation event. If
the predicted event was not observed, anull value is
recorded. Taking the average of the non-null members
of Ξ provides a moving average prediction error,ǫ. If

no non-null members ofΞ exist we takeǫ = φmax. A
valueν ∈ [1, 2] is typical.

We setµ = max(νǫ, 2κ) during each system epoch.
This defines the window size in terms of actual ob-
served prediction errors; in essence the network nodes
learn the local timing uncertainty and adapt dynami-
cally. ν ≥ 1 is a scaling constant which determines the
extent to which the next phase error can be bigger than
recent historical phase errors and still allow nodes to
reliably detect synchronisation events.

5.3. Measuring efficiency

We define the metricsQ as the rate at which a
node consumes energy. The sensornet executes the
protocol as runtimet increases in the interval[0,∞].
Q measures the mean energy consumed per node per
unit time during a measurement period[tstart, tstop].
Unlike P0 − P2 (see section 4.5) these measurements
apply to individual nodes rather than populations, so
we measureQ for each node and take the mean to
normalise metrics in cell population sizen.

Q: Rate of energy consumption of a node. Mea-
sured inWatts. Defined in the range(0,∞).
The ideal value ofQ = 0.

As per metricsP1 − P3 defined in section 4.5 we
observe that the measured values will differ if the
measurement period considers the entire runtime of
the network or is restricted to the equilibrium state.
The former measures the system in transition from
the initial state to the stable state, whereas the latter
measures the long-term behaviour of the stable system.
Both options are valid but non-equivalent, and both are
measured in the experiments described in section 6.

6. Experimental results
We implemented CDAP in a modelled sensornet. We

assess whether the empirical measurements match the
theoretical predictions of sections 4 and 5.

6.1. Experimental configuration

We consider a set of homogeneous sensornets which
are identical in all respects except for hardware plat-
form. We use energy profile data for the MICA2 and
MICAz motes extracted from manufacturer product
data sheets [15] and two independent sets of exper-
imentally measured energy profile data for the MICA2
mote [16], [17]. We label these energy profilesE1−E4.

We assume that no application data packets traverse
the network during the test period. The behaviour in-
duced by CDAP is fully independent of any distributed
or localised application running on the sensornet in-
frastructure. It is therefore unnecessary to model any
sensornet application as it would have no impact on

CDAP, and furthermore it is unhelpful to do so as this
results in confounding of the CDAP and application
influences on system energy profile.

A cell population ofn = 10 is selected because this
is an energy-efficient cluster size for typical 1000-node
sensornets [18]. All experiment nodes are located in
the same cell. All experiments begin with initial node
phases in the same randomised distribution.

We setκ = 0.01s as this an order of magnitude
greater than the shortest complete packets for the
selected mote platforms and as such offers a substantial
safety margin. The exact value of the system epoch size
e is irrelevant as we measure the passage of time in
complete epochs so we sete = 10s as this is orders
of magnitude greater thanκ. For the desynchronisation
moving average parameters we set buffer sizep = 10,
required non-null proportionq = 0.5, and maximum
consecutive nullsr = 5. There are no policy-specific
parameters for policy A experiments. We selectχ = 5
for policy B experiments. We select window scaling
factor ν = 1.5 for policy C experiments.

In the experiments we measure the number of sys-
tem epochs,j, required for each policy to reduce
synchronisation window size toµ = 2κ. We set duty
period scaling factorη = 1 to evaluate worst-case duty
period overlap. We measure the metricsP0−P2 andQ
for two periods; the first being the time from network
start-up to CDAP during convergence, and the second
being a longer duration after convergence.

6.2. State timing

Figure 2 shows synchronisation window shrinking
against time under policiesA − C. The response for
successor and predecessor synchronisation events are
very similar, but for clarity we display only the former.
We see that PoliciesB andC significantly outperform
policyA in minimising synchronisation window length
and converge toµ = 2κ, but perform identically
until the algorithms are permitted to begin window
shrinking. This happens at epochj = χ for policy
B, and at epochj = p for policy C.

Policy A is trivially converged at epoch 0, policy
B reaches convergence at epoch 94, and policyC
reaches convergence at epoch 23. Whereas policyB
induces a smoother and more predictable window size
decline, policyC generally offers a smaller window
size after the respective algorithms are allowed to
begin. This highlights the advantage conferred by
policy C learning network characteristics as opposed
to policy B assumingnetwork characteristics, where
these assumptions must be pessimistic to prevent un-
acceptable synchronisation prediction misses. More
significantly, each prediction miss requires policyB

to restart atµ = φmax whereas policyC can tolerate
some prediction misses before resettingµ = φmax.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100 110

W
in

do
w

 s
iz

e
as

 p
ro

po
rt

io
n

of
 e

po
ch

Epoch

Window size versus system epoch

Policy A Policy B Policy C

Figure 2. Window size

Note that PoliciesB and C confer significant ef-
ficiency improvements prior to convergence; this is
simply the point at which the window size hits the pre-
defined minimum threshold, preventing the algorithms
from reducing window size further. If this threshold
was not enforced the policies would shrink the syn-
chronisation window length to zero asj → ∞. This is
ideal in a theoretical system in which synchronisation
transmissions are instantaneous, but infeasible for real
systems in whichκ 6= 0.

P
ol

ic
y

C
on

vg
d.

SCAN SYNC ONDUTY OFFDUTY
A - 0.0000 0.9000 0.1001 0.0000

B
N 0.0378 0.0590 0.1056 0.7976
Y 0.0000 0.0200 0.0999 0.8800

C
N 0.3462 0.1536 0.1244 0.3757
Y 0.0000 0.0203 0.0999 0.8796

Table 1. Proportion of time in protocol states

Table 1 illustrates the proportion of time spent in
each CDAP state (see section 4.3). We see that under
all policiesA−C the measured proportions match the
theoretically predicted proportions. The proportion of
each epoch spent by nodes inONDUTYis 0.1, which is
the expected value of1/n. When each policy has con-
verged the time spent inSCANis 0, demonstrating that
the reduced synchronisation window size is compatible
with accurate synchronisation event observation.

For policy A the proportion spent inSYNCis 0.9
and the time spent inOFFDUTY is 0 as predicted.
In contrast, under policiesB andC the proportion in
SYNCis 0.02, the minimum window size threshold2κ,
with the remaining 0.88 inOFFDUTY.

Prior to convergence, policiesB and C display
behaviour that is better than that ofA but not as good

as the converged behaviour. We conclude that Policies
A − C all assign duty periods of appropriate length,
but PoliciesB andC can achieve this while assigning
the majority of time to a low energy state.

6.3. Cell coverage
Table 2 illustrates the proportion of time in which 0,

1, or ≥2 nodes are in theONDUTY state (see section
4.3). We see that under all policiesA − C, P0 and
P2 are very close to zero andP1 is very close to 1 in
the converged state, and hence are very close to the
ideal values. Each policyA− C is highly effective at
maintaining mutual exclusion with exactly one node
undertaking cell-wide duties at any given time.

P
ol

ic
y

C
on

vg
d.

P0 P1 P2

A - 0.0001 0.9948 0.0051

B
N 0.0001 0.9890 0.0109
Y 0.0001 0.9948 0.0051

C
N 0.0100 0.9223 0.0677
Y 0.0001 0.9945 0.0040

Table 2. Proportion of time for cell coverage

For policyC we see slightly poorer behaviour prior
to reaching convergence. We attribute this to the rela-
tively short convergence period of the window shrink-
ing algorithm coinciding with the settling period of the
underlying network; when convergence is attained the
values ofP0 − P2 are excellent.

6.4. Energy efficiency
Table 3 states values ofQ, the mean energy con-

sumption rate at each node (see section 5.3, for policies
A − C. Taking policy A, the least energy efficient
option, as a baseline for comparison, we observe that
policiesB andC offer lower energy consumption. This
is true before and after CDAP reaches convergence,
with bothB andC offering similar energy efficiency.

P
ol

ic
y

C
on

vg
d.

E1 E2 E3 E4

A - 0.0540 0.0831 0.0441 0.0470

B
N 0.0301 0.0360 0.0168 0.0193
Y 0.0187 0.0252 0.0125 0.0148

C
N 0.0427 0.0609 0.0317 0.0345
Y 0.0194 0.0275 0.0135 0.0159

Table 3. Mean energy consumption rates (Watts)

Under energy modelE1 there are improvements of
65% and 64% under policiesB and C respectively.
UnderE2 the improvements are 70% and 67%, under
E3 the improvements are 72% and 69%, and finally
underE4 the improvements are 69% and 66%. Al-
though energy modelsE1 −E4 differ in composition,

we see a recurring qualitative outcome. PoliciesB and
C offer significant improvement in energy efficiency
over the baseline policyA, with policy B offering
a slight advantage over policyC. Network designers
must, however, balance this against the better reliability
and shorter convergence time of policyC.

7. Conclusions
In section 3 a set of desired research objectives was

defined, against which we now state our findings.
Obj 1: Define a lightweight duty allocation protocol

for unicellular sensornets such that exactly one
node is active at any given time.

The Cyclic Duty Allocation Protocol(CDAP) was
defined in section 4 and extended to perform dynamic
state management of mote subsystems in section 5.
The protocol manages a unicellular sensornet such that
exactly one mote is available for communication duties
at any given time, and that the corresponding energy
cost is shared equally by all participating motes.
Obj 2: Evaluate the duty allocation protocol experi-

mentally and theoretically to assess its efficacy
and energy efficiency.

Theoretical estimates of protocol performance and
energy efficiency are defined in sections 4 and 5,
against which empirical measurements are compared
in section 6. It is shown that the protocol achieves its
aims, constructing a near-optimal duty schedule with
significantly improved energy efficiency.

Future work will consider potential interactions with
application traffic flows to give further protection
against clashes with synchronisation packets. Addi-
tional energy efficiency improvements are possible
if the assumption that every cell must always have
exactly one active node can be relaxed safely.

References

[1] M. Caccamo, L. Zhang, L. Sha, and G. Buttazzo, “An
implicit prioritized access protocol for wireless sensor
networks,” in Proc. Real-Time Systems Symposium,
2002, pp. 39–48.

[2] V. Paruchuri, S. Basavaraju, A. Durresi, R. Kannan, and
S. Iyengar, “Random asynchronous wakeup protocol for
sensor networks,” inProc. International Conference on
Broadband Networks, 2004, pp. 710–717.

[3] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast
storm problem in a mobile ad hoc network,” inProc.
IEEE International Conference on Mobile Computing
and Networking, 1999, pp. 151–162.

[4] Y. Gao, K. Wu, and F. Li, “Analysis on the redundancy
of wireless sensor networks,” inProc. International
Conference on Wireless Sensor Networks and Appli-
cations, 2003, pp. 108–114.

[5] F. Ye, G. Zhong, S. Lu, and L. Zhang, “PEAS: A
robust energy conserving protocol for long-lived sensor
networks,” inProc. IEEE International Conference on
Network Protocols, 2002, pp. 200–201.

[6] X. Jiang, J. Polastre, and D. Culler, “Perpetual environ-
mentally powered sensor networks,” inProc. Informa-
tion Processing in Sensor Networks, 2005, pp. 65–70.

[7] R. Mirollo and S. Strogatz, “Synchronization of pulse-
coupled biological oscillators,”SIAM Journal Of Ap-
plied Mathematics, vol. 50, no. 6, pp. 1645–1662,
December 1990.

[8] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar,
“Next century challenges: Scalable coordination in sen-
sor networks,” inProc. International Conference on
Mobile Computing and Networking, 1999, pp. 263–270.

[9] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “In-
strumenting the world with wireless sensor networks,”
in Proc. International Conference on Acoustics, Speech,
and Signal Processing, 2001, pp. 2033–2036.

[10] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and
J. Wilkes, “Idleness is not sloth,” inProc. USENIX 1995
Technical Conference, 1995, pp. 17–17.

[11] C. Hua and T. Yum, “Asynchronous random sleeping
for sensor networks,”ACM Transactions on Sensor
Networks, vol. 3, no. 3, 2007.

[12] K. Wu, Y. Gao, F. Li, and Y. Xiao, “Lightweight
deployment-aware scheduling for wireless sensor net-
works,” Mobile Networks and Applications, vol. 10,
no. 6, pp. 837–852, 2005.

[13] Y. Pan and X. Lu, “Energy-efficient lifetime maximiza-
tion and sleeping scheduling supporting data fusion and
QoS in Multi-Sensornet,”Signal Processing, vol. 87,
no. 12, pp. 2949 – 2964, 2007.

[14] J. Degesys, I. Rose, A. Patel, and R. Nag-
pal, “DESYNC: self-organizing desynchronization and
TDMA on wireless sensor networks,” inProc. Informa-
tion Processing in Sensor Networks, 2007, pp. 11–20.

[15] Crossbow Technology Inc. product data sheets,
http://www.xbow.com/Products/, accessed 09/01/2008.

[16] V. Shnayder, M. Hempstead, B. Chen, G. Allen, and
M. Welsh, “Simulating the power consumption of large-
scale sensor network applications,” inProc. Interna-
tional Conference on Embedded Networked Sensor
Systems, 2004, pp. 188–200.

[17] H. Davis and R. Miller, “Power management for
MICA2 motes,” inProc. Southern Appalachian Sympo-
sium on Programming Languages and Systems, October
2005.

[18] D. Wang, “An energy-efficient clusterhead assignment
scheme for hierarchical wireless sensor networks,”In-
ternational Journal of Wireless Information Networks,
vol. 15, no. 2, pp. 61–71, June 2008.

