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Abstract

Sensornets must allocate limited computation and en-
ergy resources efficiently to maximise utility and lifetime.
This task is complicated by the need to coordinate activ-
ity between nodes as sensornets are necessarily real-time
collaborative systems. In this paper we present and evalu-
ate lightweight adaptive protocols based on pulse-coupled
oscillators to synchronise tasks within a unicellular sensor-
net. A near-optimal schedule is constructed and dynami-
cally maintained under non-ideal network conditions.

1 Introduction
Sensornets are bound to the physical environment into

which they are deployed, implying real-time requirements
on the sensornet and the distributed application it supports
[7]. Sensornet application designers must establish when
network nodes are available to send, process or receive mes-
sages. Reliability is important in achieving probabilistic
guarantees of real-time behaviour, as lost messages may im-
ply delays, missed deadlines and wasted energy.

In a general network we might coordinate distributed
behaviour through distributed scheduling and routing pro-
tocols. This is typically difficult to achieve in a sensor-
net. Motes are generally equipped with the bare minimum
resources required to support the distributed application.
Lightweight protocols with probabilistic success measures
are typically favoured over heavier but more reliable alter-
natives [6]. No global clock exists, with distributed schedul-
ing rendered difficult by many independent local clocks
steadily drifting out of synchronisation [12].

Consider a situation in which we have a finite set of
nodes with each node capable of broadcasting in a shared
wireless medium, located such that they form a fully-
connected network cell [1]. These broadcasts can be re-
ceived by any member of the cell which is listening to the
medium, or by any nearby external entities. Communica-
tion may occur with the cell, or with neighbouring cells and
base stations to exchange data and tasking messages.

Localised synchronisation protocols can support dis-
tributed applications that would otherwise fail without a
global clock. We would like to arrange the timing of pe-
riodic events such that the delay between any two consec-
utive events is identical, and the ordering of events within
each system epoch is identical. Under these conditions we
can build protocols, such as the Cyclic Duty Allocation Pro-
tocol [14], upon this primitive which exhibit regular, pre-
dictable and fair allocation of duties. Long-term stability
can be achieved despite imperfect clocks and connectivity.

This paper addresses the following problems which rep-
resent novel contributions. We implement a lightweight
feedback-driven protocol to build and maintain a cyclic duty
schedule based on a variant of the biologically-inspired syn-
chronisation phenomenon [11]. We show that this protocol
works well under ideal network conditions, and propose im-
proved versions that also perform well under adverse net-
work conditions. The protocol rejects timing error from
clock drift and jitter. The protocol is scalable and effective
in mobile networks where nodes join and leave cells unpre-
dictably. The work makes no assumptions about the low-
level communications mechanisms, is stateless with regard
to knowledge shared between motes, and does not require a
global clock or internode synchronisation of local clocks.

This paper is structured as follows. Section 2 places this
work in the context of the relevant literature. Sections 3
to 8 examines the desynchronisation primitive and propose
improved versions, with section 9 examining these experi-
mentally. Section 10 summarises the findings of the work.

2 Related work
Many sensornet tasks and data flows are at least approx-

imately periodic [1], typically as a consequence of periodic
interaction with the physical environment. In this paper
we consider distributed synchronisation protocols applied
in closed finite systems of cooperating sensornet nodes. We
wish to synchronise cyclic duty periods in strict round-robin
order within a larger system period known as an epoch.

A rich and diverse body of literature exists on the



scheduling of periodic tasks in general systems; a compre-
hensive survery can be found in [8]. The periodic nature of
sensornets suggests a cyclic schedule rather than a priority-
driven or deadline-driven approach. A distributed algo-
rithm is necessary without a central controller to enforce
shared schedules. Dynamic algorithms are required where
motes are mobile or unreliable.

Caccamo et al. [1] propose a hybrid scheduling approach
for multicellular sensornets. A Frequency Division Multi-
plex (FDM) strategy allocates different channels to adjacent
cells by map colouring. Within each system-wide epoch
an Earliest Deadline First (EDF) algorithm, distributed and
replicated exactly at each node in a cell, allocates a propor-
tion of equal-length frames to intra- and inter-cellular traf-
fic. Traffic between adjacent cell pairs is managed under
strict geographic cyclic executive.

PalChaudhuri et al. [12] define a protocol for clock syn-
chronisation which is adaptive to the needs of a distributed
application. It supports relative synchronisation where net-
work nodes minimise the relative difference between local
clocks, and external synchronisation. The overhead is rela-
tively high; during each synchronisation iteration each node
requires O(n2) bidirectional data packet exchange with all
neighbours, and execution of a linear regression calculation.
This cost is justified if the application requires nodes to col-
laborate at a specific time, rather than the lesser requirement
that they collaborate at the same time.

Synchronisation and desynchronisation are biologically-
inspired primitives in which a closed finite system of peri-
odic oscillators converge to a steady equilibrium state. Sys-
tem level coordination is an emergent property of indepen-
dent agents implementing simple rules. Under synchroni-
sation all oscillators fire simultaneously in the steady state
[11], whereas under desynchronisation the oscillator firing
times are evenly distributed in time in the steady state [4].

Wang and Aspel [16] observe that these primitives con-
verge rapidly without global clocks, adapting automatically
to changing cell population. Unlike the Phase-Locked Loop
(PLL) and Delay-Locked Loop (DLL) approaches, which
offer similarly predictable and lightweight synchronisation
behaviour, there is no requirement to maintain continuous
contact between peers in the wireless medium.

A decentralised algorithm is defined by Lucarelli and
Wang [9] in which a sensornet of arbitrary logical topology
applies a variant of the synchronisation-seeking algorithm
defined in [11]; it is not required that the network graph
is fully connected. Each sensornet node acts as a periodic
oscillator but propagates its synchronisation signal only to
nodes that are one hop away in the network topology. Over
time, the entire system converges on a synchronised state.

DESYNC-TDMA is a TDMA algorithm based on desyn-
chronisation to perfectly interleave periodic events to oc-
cur in a round-robin schedule in a fully-connected network

[4]. Each node acts as a periodic oscillator. Synchronisation
signals are exchanged with peers defined by physical con-
nectivity rather than logical network topology. The relative
phase of signals measured within cyclical epochs is used
to dynamically correct perceived error. Rapid convergence
on a stable limit-cycle is guaranteed under ideal conditions,
but disproportionately lengthy restabilisation periods result
from small signal timing perturbations or network errors.

Christensen et al. [2] suggest that similar approaches
can be applied in self-configuring systems of highly mo-
bile robots. The physical topography of the implicit net-
work can change very quickly owing to the high mobility of
nodes. These self-organising strategies are particularly ben-
eficial in highly dynamic and unpredictable situations, such
as Vehicular Ad-Hoc Networks, where less agile approaches
would struggle to maintain coordinated schedules.

3 The desynchronisation primitive
In this section we consider the elements of the desyn-

chronisation primitive [4], and the properties of the con-
verged equilibrium state. We use the standard definitions
of pulse-coupled oscillator systems [11], but rephrase these
from a global system viewpoint to a local node viewpoint as
individual nodes do not have complete system knowledge.

3.1 Building blocks
Assume we have a set Σ of nodes S1 · · ·Sn where n ≥ 2;

if n = 1, there is obviously no need for internode coordina-
tion. Each node Si acts independently but shares an identi-
cal set of behavioural rules. The running time of the system
is divided into a set of system epochs of equal period e such
that ∀j : Ej = e. The sequence of system epochs Ej is
defined by the natural ordering of j ∈ N.

Within each system epoch Ej it is required that each
node Si ∈ Σ shall execute a single instance of a periodic
event Vi exactly once. All events Vi are periodic with iden-
tical period pi = e. The occurrence of a specific event at
a specific node i within a specific system epoch j is la-
belled Vij . It is required that all events Vij are executed
within epoch Ej . These events need not be related to any
functionality of the sensornet application. However, if the
application naturally produces periodic events of this type,
perhaps as part of a distributed sensing function, then these
application events can be reused for synchronisation.

Distributed protocols and applications can use the result-
ing stream of observeable synchronisation events, occurring
every t time units, as the foundation for coordinated activ-
ity. Periodic application events required to occur with fre-
quency f = 1/t can be triggered directly by observed syn-
chronisation events. Application events specified at other
frequencies may use harmonics of the synchronisation fre-
quency f ; other arbitrary relationships can be supported.

Between observed events nodes must use a local clock.
During this period it is possible that the local timer of each



node may drift by varying amounts, until the next observed
event corrects the effects of this drift. However, it is rea-
sonable to assume that commodity timers based on quartz
crystals offer acceptably small and predictable drift between
observed events [13] as typical drift rates are very small [3].
The impact of clock drift is evaluated in section 9.5.

3.2 Equilibrium state properties
For a desynchronised system in a stable state, the order-

ing of events Vi is stable from epoch Ej to Ej+1 and the
elapsed time between any two consecutive events is equal
to e/n. A stable state conformant to these specification
is known as an equilibrium state; as time is continuous, if
there exists at least one equilibrium state there exists an in-
finite number of such states. Fortunately, all equilibrium
states are equivalent and equally acceptable.

Before the system reaches the equilibrium state it is pos-
sible that the inter-event time can change; when the equilib-
rium state is reached, it can not. The specific stable ordering
is unimportant, though it is a deterministic consequence of
the initial state of the system and the set of shared rules, but
the inter-event time t is always t = e/n.

Although we have defined that the period of all events Vi

is equal such that ∀i : pi = e, we do not explicitly define
the offset oi of each periodic event Vi within a stable epoch;
this is a deterministic consequence of running a coordina-
tion protocol based on the desynchronisation primitive as
described below. The order of offsets oi within an epoch
Ej defines the order of events Vij , but any ordering offers
equivalent coordination behaviour within the network cell.

As each epoch Ej is of equal length e, and each event
Vi is periodic, for a given epoch we can define the phase of
each event relative to the epoch start. If tij is the time from
the start of epoch Ej to event Vij then phase ψij = tij/e.
For a stable system the identity of the epoch is not relevant,
so ψi = ti/e. This gives phase measurements defined in
the range ψ ∈ [0, 1). Any value ψ /∈ [0, ψmax) is equiv-
alent to ψ mod ψmax as a consequence of modular arith-
metic inherent in phase calculations. Equivalent behaviour
is observed if all values of ψ are scaled linearly with max-
imum phase ψmax taking some arbitrary real value, so we
will use ψmax in the analysis but use the explicit ψmax = 1
when presenting experimental results.

If we now consider the inter-event time t in terms of
phase, we find that the phase difference between any two
consecutive events Vx and Vy is ∆ψ = (eψmax)/n. To
achieve this equal ∆ψ we must schedule the events Vi

evenly in time throughout an epoch. This schedule must
also ensure a margin of ∆ψ exists between the last event of
the previous epoch and the first event of the given epoch,
and between the last event of the given epoch and the first
event of the following epoch. Within a given epoch the time
before the first event and the time after the last event must
sum to ∆ψ to provide sufficient margin.

Conversely, under synchronisation we would require that
all periodic events occur simultaneously within each epoch.
Whereas this would also be usable as the foundation for co-
ordinated distributed activity, the duration between observe-
able synchronisation events would be n times longer than
under desynchronisation. This would increase the risk of er-
rors deriving from clock drift and other timing inaccuracies,
but offers no saving in energy consumption or overhead.

3.3 Attaining equilibrium state
Sections 3.1 and 3.2 describe the system from the view-

point of an external observer with access to the entire sys-
tem. Now consider the viewpoint of a participating node Si

which can observe events occurring at other nodes but has
no other information. Each node tracks the passage of time
using its internal clock, corresponding to a local measure of
phase ϕi in the range [0, ϕmax) where ϕmax = ψmax as
given above. Each node Si applies the algorithm indepen-
dently, so we can define this algorithm using only locally-
available data and assume that each participating node exe-
cutes the same algorithm in parallel.

The difference between ψ and ϕ is that ψ gives a system-
wide measure of the passage of time as measured in phase
units, whereas ϕi gives the local measure of the passage of
time as experienced by a single node Si. This is significant
because each node Si does not have omniscient access to
information available to any other node, and does not have
access to any system-wide overview. As protocol designers
we can use system-wide information to measure the effec-
tiveness of a network design, but the nodes upon which the
protocols are implemented have access only to information
learned from their environment.

Consider an arbitrary epoch Ej . When ϕi = ϕmax the
event Vi is triggered at node Si and ϕi is reset to 0. Each
node Si is aware of the time at which its own event Vi ex-
ecutes, and the times at which the instantaneously preced-
ing and following events Viβ and Viγ occur. The node Si

does not know, and does not need to know, the identity of
the other nodes Siβ and Siγ , the phase neighbours of Si,
at which Viβ and Viγ occur respectively. However, Si will
influence and be influenced by its phase neighbours.

Assume a node Si executes event Vi, and observes pre-
ceeding event Viβ and succeeding event Viγ which may
or may not occur in the same epoch Ej . Node Si mea-
sures the duration tiβ between Viβ and Vi, and the du-
ration tiγ between Vi and Viγ , using its internal clock.
We convert these timings into relative phase differences as
ϕiβ = −(tiβ/ϕmax), and ϕiγ = (tiγ/ϕmax). Note that ϕiβ

is negative as the predecessor phase neighbour event Viβ

must occur before Vi, but is nevertheless equivalent to the
positive value (ϕiβ mod ϕmax) ∈ [0, ϕmax).

In the equilibrium state described in section 3.2, all
events Vi will be equidistant between preceeding event Viβ

and succeeding event Viγ . We define phase error for node



Si as θi = ϕiβ + ϕiγ , which is the phase amount by which
the timing of event Vi differs from the desired stable state
value. When a equilibrium state is attained, ∀i : θi = 0.

The phase error for node Si can also be found as θi =
(tiγ − tiβ)/ϕmax by substituting the definitions of ϕiβ and
ϕiγ given above; this alternative notation is equivalent but
may be easier to implement directly where nodes sleep for
periods during which local phase ϕi is not monitored.

As soon as node Si becomes aware of succeeding event
Viγ during each epoch, node Si can execute the phase ad-
justment procedure. Recall that node Si has an internal
clock which it uses to maintain a measure of local phase ϕi.
Node Si evaluates its phase error θi when succeeding event
Viγ is observed. We now use θi to adjust ϕi by the phase
change amount ∆ϕi, which will either enlarge or contract
the duration until the next execution of event Vi. This is
achieved by immediately setting ∀i : ϕinew = ϕiold + ∆ϕi.
Note that this +∆ϕi adjustment must also be applied to any
phase measurements of other events stored within node Si.

We define ∆ϕi = −fαθi where fα ∈ (0, 1] represents
the feedback proportion. Higher fα values give faster con-
vergence but less stability, whereas lower fα values give a
system which takes longer to reach a equilibrium state but
is more stable to the deleterious effects of noise.

This local phase correction directly changes the be-
haviour of node Si and indirectly changes the behaviour of
phase neighbours Siβ and Siγ ; during the following epoch
all events Vi will be closer to their equilibrium-state equi-
librium phase ψi. Given an otherwise unchanging network,
∀i : ||∆ϕij || → 0 as j → ∞ in successive epochs [11]. If
θi = 0 then the phase change ∆ϕi = 0 as well; no special
action needs to be taken. Note that systems implementing
this primitive may be sufficiently converged to support use-
ful application work before reaching full convergence.

Algorithm 1 defines the primitive behaviour executing at
each node Si ∈ Σ under the original version of the primi-
tive. Variables not defined within the algorithm itself take
the standard meanings used elsewhere in this document.

4 Measuring solution quality
Recall from section 3.2 that upon reaching a equilibrium

state the set of events has an even temporal distribution. For
a given node Si we know that when local phase ϕi = 0 the
event Vi is exactly equidistant from both Vβ and Vγ , and we
know that the relative phase difference between Vβ and Vγ

is given by 2(ϕmax/n). It is therefore possible to measure
the observed behaviour against this defined ideal to obtain
estimates of solution quality at any given instant.

Each node can calculate these metrics using locally
available data, perhaps using these to moderate local ap-
plication behaviour. Ideally, all nodes would have the ideal
value of all metrics.
M1: Allocated timeslot length. In the equilibrium state

Algorithm 1 : Original primitive variant A at node Si

Require: Observed predecessor sync phase, ϕiβ = nil
Require: Observed successor sync phase, ϕiγ = nil

1: while monitoring local phase ϕi increasing over time do
2: if sync event ̸= Vi observed then
3: if ϕiγ = nil then
4: ϕiγ ⇐ ϕi

5: if ϕiβ ̸= nil then
6: θi ⇐ ϕiβ + ϕiγ

7: ∆ϕi ⇐ −fαθi

8: ϕi ⇐ (ϕi + ∆ϕi) mod ϕmax

9: ϕiγ ⇐ (ϕiγ + ∆ϕi) mod ϕmax

10: end if
11: else
12: ϕiγ ⇐ ϕi

13: end if
14: end if
15: if ϕi ≥ ϕmax then
16: if ϕiβ = nil then
17: ϕiβ ⇐ ϕiγ

18: end if
19: ϕiγ ⇐ nil
20: ϕi ⇐ 0
21: fire own sync event Vi

22: end if
23: end while

each node is allocated communication duty for an
equal proportion of each epoch. The metric is cal-
culated for each node Si as M1i = tiβ + tiγ and is
measured in seconds. The ideal value is M1 = e/n.

M2: Asymmetry. In the equilibrium state each node broad-
casts its synchronisation pulse exactly equidistant from
those of its phase neighbours with perfect symme-
try. The metric is calculated for each node Si as
M2 = ||tiβ − tiγ || and is measured in seconds. The
ideal value is M2 = 0.

M3: Node population estimate. In the equilibrium state
each node has sufficient information to accurately esti-
mate the cell population, and hence to decide whether
it should participate. The metric is calculated for all
nodes as M3 = [e/(tiβ + tiγ)], and is measured in
nodes. The ideal value is M3 = n.

5 Implementing the primitive
Networks in which this primitive is applied can be mod-

elled as a fully connected graph G = (V, E), where V rep-
resents the set of network nodes and E represents the set of
possible pairwise communication exchanges. We assume
signal propagation, though not packet propagation, is in-
stantaneous in the wireless medium. We cannot assume an
atomic publisher-subscriber model in non-ideal networks.

The events Vij executed by nodes Si ∈ Σ as described
above are short pulses which are broadcast by a sender node
Sα and received by all other nodes Si ∈ (Σ\Sα). The edges



E of the graph G can be thought of as representing com-
munication channels which are often unused, but through
which a single bit of information will periodically be trans-
mitted when a pulse transmission occurs. Recipients will
use the time at which the pulse is received, rather than in-
formation encoded into the signal itself.

Precisely how this pulse is implemented is irrelevant
to the content of this paper, because any implementation
which successfully distributes the single bit messages at the
appropriate times would convey the same source informa-
tion to the algorithm. However, a typical implementation
would be the transmission of the shortest possible header-
only packet achievable under a given network stack. The
minimal time required for this stub packet to traverse the
network stack of the sender and the receivers, κ, represents
the limit of convergence. In an ideal system κ = 0 such
that M1 −M3 approach their ideal values as system time
t→ ∞. In a realistic non-ideal system κ > 0, so we expect
M1 and M2 to converge within ±κ. As M3 is rounded to
the nearest integer we would expect it to converge on the
correct integer if κ is sufficiently small.

6 Tuning
There are three parameters of the desynchronisation

primitive; the number of nodes, n, the system epoch length,
e, and the feedback proportion, fα. Achieving accept-
able network performance requires the setting of appropri-
ate values of n, e and fα. Appropriateness is defined in
application-dependent and -independent factors.

The hardware in the deployment network may affect the
possible range of n. This is particularly important where
nodes are mobile or fragile; applications should continue to
perform correctly when a single node leaves the cell. Appli-
cation requirements may specify a minimum and/or maxi-
mum number of nodes to give a probabilistic guarantee of
coverage of the physical region covered by the sensornet
cell. n can never be higher than the number of nodes de-
ployed into the environment, and can never be lower than 1
for any non-degenerate case, but between these bounds the
appropriate value of n is application dependent. We con-
clude that n is significant but not tunable.

The network designer is largely free to set fα to any de-
fined value to obtain a reasonable tradeoff between respon-
siveness and stability. We examine the effect of different
fα values in section 9.2. Usually fα is set to a high value
to achieve good responsiveness, shortening the time to at-
taining equilibrium state. However, non-ideal network con-
ditions can lead to inaccurate, noisy or missing inter-node
synchronisation data. Unfortunately, the desynchronisation
algorithm will respond as quickly to noise as to accurate
data, harming solution stability. Network designers can re-
duce fα, reducing feedback and increasing systemic damp-
ing, to minimise this effect at the cost of reduced respon-
siveness to real system changes. A better solution is given

by the improved protocol variants defined in section 7.
The behaviour of the primitive is independent of e; vir-

tually any value might be selected provided that e ≥ nκ
to allow all n synchronisation messages to be transmitted
within each epoch. Within each epoch, the proportion of
time consumed by synchronisation is given by nκ/e. Larger
values of e assign a greater proportion p = 1 − (nκ/e) of
each epoch for application usage rather than synchronisa-
tion; p → 1 as e → ∞. As the number of epochs required
for the system to reach the required level of convergence is
independent of e, if e is large then so is the wall time implied
by these epochs. In highly mobile networks it is therefore
useful to keep e relatively small, but sufficiently large for
application-specified tasks to complete. However, synchro-
nisation messages are typically very small; even relatively
small e values are orders of magnitude greater than κ, such
that p is insignificant and convergence is fast.

7 Improved variants of the primitive
In section 6 we observe that tuning the fα parameter to

increase responsiveness to timing signals has the unwanted
side effect of increasing responsiveness to timing errors.
Setting low values of fα damps the response of the desyn-
chronisation primitive, improving resilience to transient er-
rors and network conditions at the expense of responsive-
ness to real network changes. It may be difficult to achieve
an acceptable compromise through this single point of in-
fluence. In this section we propose an alternative approach.

Recall from section 3 that each node Si can disregard all
observed synchronisation events other than the phase neigh-
bours of its synchronisation event Vi, and that the sources of
these phase neighbour events do not change between system
epochs. Normally node Si will use exactly one instance of
the predecessor event Viβ and the successor event Viγ in cal-
culating ∆ϕi. These single instances are most recent obser-
vations, which will occur at ϕiβ = ϕmax(e/2n) mod ϕmax

and ϕiβ = −ϕmax(e/2n) mod ϕmax respectively in the
equilibrium state from the local viewpoint of node Si.

Rather than use the most recently observed values of ϕiβ

and ϕiγ , we propose that each node maintains a moving av-
erage over the most recent m complete epochs, stored in
two queue buffers of size m at each node. Each queue is
initially populated with nil values which do not contribute
to the moving average. During each epoch the new value is
pushed on the head of the appropriate queue, and the old-
est value is popped off the end of the queue. If no phase
neighbour events are observed in a given epoch, a nil value
is pushed on the queue instead of a measurement. This is
required for well-defined behaviour in the degenerate case
where node movement temporarily implies n = 1.

For a queue containing ν non-nil values, the fill ratio π =
ν/m increases in [0, 1] as ν → m. The minimum fill ratio
πmin required to calculate meaningful moving averages is



specified by the application designer; larger values imply
a greater delay until noise rejection behaviours are active,
but have more data with which to work and hence are less
susceptible to the influence of outliers.

When the node Si is required to amend its local phase,
as per section 3.3, the relative phases ϕiβ and ϕiγ of phase
neighbour events are calculated as the arithmetic mean of
the associated buffer of recent historical values if π ≥ πmin;
otherwise, we revert to the original strategy of using the
most recent observations directly. The underlying primi-
tive remains fundamentally unaltered in this improved algo-
rithm and hence retains its convergence properties, but op-
erates on higher-quality source data. The network designer
must still set an appropriate value of fα.

To improve responsiveness we use variants of the plain
moving average that give greater weighting to more recent
values, but can still operate effectively when the value for
the current system epoch is undefined as a result of a lost
pulse. Assume we label the non-null historical data values
in each buffer as x1, . . . , xm where xm is the most recent.
We employ an exponentially weighted moving average in
which the weighting w of historical data point xy is given
as wy = yz where z ∈ R is the scaling exponent. If z = 1
then we have the plain moving average. If z > 1 then newer
data are more significant, whereas if z < 1 then older data
are more significant. Usually z > 1 will be selected to give
higher priority to newer data.

Algorithm 2 defines the primitive behaviour executing at
each node Si ∈ Σ for the improved primitive variantsB and
C. Function Π returns the fill ratio of a given buffer. Func-
tion avg returns the average of the filtered values stored in a
given buffer, where the type of average is appropriate to the
selected primitive variant. Other variables and functions not
defined within the algorithm itself take the standard mean-
ings used elsewhere in this document.

8 Cost analysis
The plain version of the desynchronisation primitive de-

fined in section 3 requires only two items of data to be
stored. As the local phase ϕi increases from 0 to ψmax for
some given node Si any number of pulse events might be
observed, but only the first and last are retained. The first
corresponds to the successor pulse event Viγ , and the last
corresponds to the predecessor pulse event Viβ , that sur-
round the local pulse event Vi. We require storage space for
exactly two such timing data, as each value will be over-
written with new data during each epoch. Therefore, the
storage overhead is O(1) in node population, n. The algo-
rithmic complexity is also O(1) in n because the algorithm
requires a small fixed number of steps to be executed during
each epoch; there are no loops or other recursive constructs.
This low overhead is highly desirable in sensornet systems
which have few resources to allocate.

Algorithm 2 : Primitive variants B − C at node Si

Require: Most recent observed sync phase, ϕα = nil
Require: Predecessor sync phase queue buffer, Qiβ = ∅
Require: Successor sync phase queue buffer, Qiγ = ∅
Require: Peer sync event counter, c = 0

1: while monitoring local phase ϕi increasing over time do
2: if sync event ̸= Vi observed then
3: c ⇐ c + 1
4: ϕα ⇐ ϕi

5: if c = 1 then
6: Qiγ ⇐ Qiγ ∪ {ϕα}
7: if Π(Qiβ) > πmin ∧ Π(Qiγ) > πmin then
8: ϕiβ ⇐ −(ϕmax − avg(Qiβ))
9: ϕiγ ⇐ avg(Qiγ)

10: θi ⇐ ϕiβ + ϕiγ

11: ∆ϕi ⇐ −fαθi

12: ϕi ⇐ (ϕi + ∆ϕi) mod ϕmax

13: ϕα ⇐ (ϕα + ∆ϕi) mod ϕmax

14: for all qiβ ∈ Qiβ do
15: qiβ ⇐ (qiβ + ∆ϕi) mod ϕmax

16: end for
17: for all qiγ ∈ Qiγ do
18: qiγ ⇐ (qiγ + ∆ϕi) mod ϕmax

19: end for
20: end if
21: end if
22: end if
23: if ϕi ≥ ϕmax then
24: Qiβ ⇐ Qiβ ∪ {ϕα}
25: if c = 0 then
26: ϕα = nil
27: Qiγ ⇐ Qiγ ∪ {nil}
28: end if
29: ϕi ⇐ 0
30: c ⇐ 0
31: fire own sync event Vi

32: end if
33: end while

Now consider the moving average variants defined in
section 7. Storage and computation overheads remain O(1)
in node count as the algorithm continues to consider only
the two phase neighbour nodes, irrespective of any number
of other participating nodes which might be present. How-
ever, we must now consider the number of event observation
timing values, m, which contribute to the moving average
on each execution of the algorithm. Note that this applies
only to the calculation of the effective phase of events Viβ

and Viγ ; the phase adjustment algorithm is unaffected.
There exist algorithms to calculate simple moving av-

erages that are O(1) in storage and computation overhead,
and if these are employed it is obvious that the moving av-
erage offers significantly improved performance with min-
imal increased overhead. However, a general moving aver-
age algorithm may be worse than O(1) but no worse than



O(m) in storage and computation and overhead, the latter
being observed if the algorithm must consider all m con-
tributing data on each execution.

We observe that each execution of the algorithm at each
node is guaranteed to terminate in O(1) time. However, the
algorithm is executed once at each node during each epoch,
so in this sense the algorithm never terminates. This latter
condition is essential if the algorithm is to remain respon-
sive to changing network conditions; it is obvious that no
algorithm could respond after terminating.

For systems expected to be deployed into highly pre-
dictable and rarely changing environments, non-terminating
algorithms may not be the most efficient choice. However,
sensornets are typically deployed in highly unpredictable
and changeable environments, and mobile ad-hoc networks
are characterised by continual change; the algorithms de-
scribed in this paper are an appropriate choice. For moder-
ately changing environments, these primitives can be ex-
ecuted until equilibrium is reached, then cyclically sus-
pended for significant periods then executing for short pe-
riods. During suspended periods the extant event schedule
can be reused without incurring overhead, with schedule re-
pair and recalibration occurring during execution periods.

9 Experimental results
We model the Crossbow MICA2 mote in our experi-

ments. We set κ = 1 × 10−3s as the time required for
a synchronisation pulse transmission-reception pair to com-
plete, and hence take this as the threshold deviation from the
ideal value of metricsM1 andM2 within which we consider
a system converged. As metricM3 is inherently rounded we
require the measured value to exactly match the ideal value.
Each metric is measured at all nodes Si ∈ Σ. We count the
elapsed time in system epochs from network initialisation to
the point at which the mean, minimum and maximum val-
ues measured across the participating nodes all fall within
the defined threshold.

Unless stated otherwise we use a fixed cell population
n = 10 nodes because this is an energy-efficient cluster
size for typical 1000-node sensornets [15]. We label the
plain desynchronisation algorithm as A, the basic moving
average variant as B, and the exponentially weighted mov-
ing average variant as C. We select epoch length e = 10s
so that epochs are large compared to k and long enough for
realistic tasks to complete between synchronisation events
in time e/n. We select feedback fα = 0.9 yielding similar
fast convergence under all variants A−C (see section 9.2).

For variantsB andC we set buffer sizem = 10 to ensure
that sufficient captured synchronisation data contributes to
moving averages to reject the effect of outliers and timing
error, but does not contain unacceptably stale historical data
which may no longer be representative of current network
conditions. We set fill ratio πmin = 0.5 assuming that syn-
chronisation timing data extracted from fewer than half of

the system epochs may be unrepresentative, although the
protocol would continue to function under this condition.
For variant C we specify scaling exponent z = 2 such that
newer data exert more influence than older data.

We do not claim that these parameteric values are opti-
mal. Selecting the most appropriate values for a given spe-
cific network is an optimisation problem which is beyond
the scope of this paper. However, these values are typical
and illustrative, and we show that useful behaviour is ob-
served over broad ranges of the defined parameters.

To model other hardware platforms substitute a differ-
ent κ, and to model other networks different values of n,
e and fα can be used; the results are qualitatively equiva-
lent but quantitatively different. Note that metrics M1 and
M2 approach their κ convergence limits asymptotically; it
is possible to achieve a looser but acceptable degree of con-
vergence in significantly shorter time. Network designers
must tradeoff solution quality against algorithm efficiency
when specifying network requirements.

Section 9.1 models coordinated and uncoordinated net-
work deployment scenarios. Section 9.2 models networks
of differing cell size and responsiveness requirements. Sec-
tion 9.3 models situations in which mobile nodes enter or
leave the physical region covered by a network cell, suspend
or wake in response to duty cycle management protocols,
or leave the network owing to hardware failure. Section 9.4
models networks where malfunctioning hardware, environ-
mental obstacles or deliberate sabotage disrupts inter-node
communications. Section 9.5 models networks where mal-
functioning hardware, poor application design or extreme
ambient temperature induces local timing errors.

9.1 Cell initial configuration
We define initial configuration as the set of initial node

phases relative to the start of the first system epoch. In
random initial configurations these starting phases are ran-
domly distributed in the interval [0, ψmax). In ideal case
initial configurations these starting phases are evenly dis-
tributed in time, identical to the desynchronised equilibrium
state. In worst case initial configurations all starting phases
are equal, identical to the synchronised equilibrium state.

We begin by illustrating convergence of metrics from a
random initial configuration. Figure 1 shows the mean val-
ues of metrics M1−M3 across all nodes, with all measured
values normalised to the range [0, 1]. Metrics were sampled
at the end of each of the first 100 system epochs under the
original algorithm variant A. Similar plots are obtained for
variants B and C but are omitted owing to lack of space.

All metricsM1−M3 can be approximated by sequences
of the form f(j) = 1/j + c in epoch j where c is some
constant. We observe that M1 very quickly approaches its
limiting value. As epoch j increases the value M1j alter-
nates between higher and lower than the limit M1∞ with
the difference ||M1j −M1∞|| quickly becoming small. M3



also approaches its limiting value M3∞ quickly, though not
as quickly as M1, with relatively large perturbations from
the idealised hyperbolic form explained by the quantisation
of individual measurements to integral values (see section
4). M2 converges more slowly than M1 or M3 but declines
smoothly and monotonically toward the limit M2∞.
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Figure 1. Normalised metrics for variant A

Table 1 presents the time required for metrics M1 −M3

to converge. Consider the behaviour when the system starts
in the best-case configuration, equivalent to an equilibrium
state of the algorithm. We see that the system maintains this
ideal configuration for all metrics M1 −M3. This simply,
but importantly, indicates that the algorithm will not take the
system from an equilibrium state to a non-equilibrium state.
We need not consider the best-case configuration further.

Now consider theM1 metric. We see thatM1 reaches its
converged value very quickly for all algorithm variants and
all initial configurations. We conclude that all variants are
highly capable in this regard under ideal network conditions
and need not consider this metric further.

For all variants A−C, we see that all metrics M1 −M3

will converge in finite time starting from a randomised or
worst-case initial configuration. In all experiments, reach-
ing the convergence limit required more epochs from a
worst-case initial configuration. This is unsurprising as the
worst-case configuration is further from the best-case con-
figuration than almost every randomised configuration, ex-
cepting randomised configurations that are also worst-case.

The number of epochs required to reach the conver-
gence limit M3∞ is nearly the same for each algorithm
variant A − C. This is a consequence of the calculation
of M3 rounding intermediate values to the nearest integral
value, an effect which will dominate small variation in pre-
rounded intermediate values as these converge.

Now consider the M2 metric, which in all cases is the
slowest to reach the convergence limit and therefore defines
the point at which cells reach an equilibrium state. Start-
ing with a randomised initial state we observe the epochs
required for convergence is of the same order of magni-

tude for each algorithm variant, but convergence is reached
somewhat faster under variantA thanB or C; a smaller dif-
ference exists between values for variants B and C. This
is explained by hysteresis effects; variant B calculates new
values using historical data and variant A does not, so the
output of variant B lags behind that of A. Variant C is
somewhere betweenA andB both in the influence of histor-
ical data and the corresponding measured responsiveness.

We conclude that all algorithm variants A−C are effec-
tive under ideal network conditions.

Initial Algorithm Epochs to convergence
state variant M1 M2 M3 MAX

A 3 25 11 25
Random B 3 38 21 38

C 3 37 21 37
A 1 1 1 1

Best B 1 1 1 1
C 1 1 1 1
A 3 35 21 35

Worst B 3 56 24 56
C 3 54 24 54

Table 1. Convergence times for metrics

9.2 Cell composition
In this section we measure the epochs required for all

metrics M1 −M3 to converge to an equilibrium state. Fig-
ure 2 illustrates the relationship between fα and the number
of system epochs, y, which must elapse before the system
reaches an equilibrium state under algorithm variantsA and
B; the trace for variant C is very similar to that of B and is
omitted for clarity. Each value of fα was evaluated with an
identical worst-case initial configuration

Traces A and B are similar, though not identical, for
fα ∈ (0, fcritical) where fcritical ≈ 0.91. Up to this point,
both A and B describe approximately hyperbolic traces
such that the relationship between fα and epoch of equilib-
rium state can be approximated by the form f(j) = 1/j+ c
in epoch j where c is some constant. A difference in be-
haviour is noted for fα > fcritical; trace B continues its
original hyperbolic path, whereas trace A grows quickly
with fα ∈ [fcritical, 1]. Two distinct effects must be con-
sidered to understand this relationship.

In each epoch each node Si amends its local phase by
∆ϕi = −fαθi where θi is the perceived phase difference
between the local synchronisation event at ϕi = ψmax and
the midpoint of the phase neighbour events. The greater the
value of fα, the greater the proportion of perceived differ-
ence that is fed back into the system, pushing the system
toward the equilibrium state more quickly. This explains
the shape of trace B for fα ∈ [0, 1], and the shape of trace
A for fα ∈ [0, fcritical].



Now consider trace A for fα ∈ [fcritical, 1]. θi is con-
tinuously variable but κ, the time for a pairwise exchange
of synchronisation event, is constant. Converting κ from
time units to phase units, the magnitude ||∆ϕi|| becomes
small compared to the magnitude ||κϕmax||. As the magni-
tude ||κϕmax|| defines the uncertainty of the phase neigh-
bour event midpoint measurement, it follows that the mag-
nitude of the measurement error becomes significant com-
pared to the magnitude ||∆ϕi||. This causes convergence to
slow as the limit is approached. Each iteration of the pro-
cedure must attempt to correct for previous measurement
errors within the new phase difference measurement.

If fα is small, the proportion of this measurement error
fed back into the system is also small, so its effect is in-
significant. As fα grows so does the proportion of measure-
ment error feedback. Under variant B the measurement er-
ror is found in all stored samples. Although the error values
are not explicitly available, as they derive from consecutive
system epochs they are likely to be of similar magnitude,
and they are as likely to be positive as to be negative. Tak-
ing the average of the samples will approximately cancel the
measurement errors, so the effect of these errors does not
become dominant. Under variant A there is no such cancel-
lation effect, hence the effect of these errors becomes dom-
inant. Defining convergence limits of significantly larger
magnitude than κ would hide this phenomenon without ac-
tually addressing the underlying issue.
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Figure 3 illustrates the relationship between n and the
number of system epochs, y, which must elapse before the
system reaches an equilibrium state under algorithm variant
A. Similar plots are observed for variants B and C but are
omitted for brevity. As the cell n increases the general trend
is that y increases too. It is notable that this increase is
not monotonic, and does not conform readily to any well-
known relationship. Despite the guarantee that the system
will converge [11] it is difficult to predict the time required.
This is a consequence of algorithm variants A−C defining
feedback-driven systems, in which the relationship between
input and output is deterministic yet difficult to predict [5].
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Larger networks may be divided into multiple cells. Sep-
arate instances of the primitive operating in adjacent cells
may interact if the communication range of some nodes ex-
tends beyond their own cell, if nodes cannot determine the
cell from which a given transmission originates. If not man-
aged, these interactions could cause disruption, similar to
the phantom pulse effect examined in section 9.4.

These interactions can be exploited for beneficial effect.
Extensions based on entrainment have been implemented
which progressively synchronise equivalent transmissions
in adjacent cells. This enables intercellular co-operation,
mitigates the risk of clashing behaviour, and enables effi-
cient handover of mobile nodes between cells. However, a
detailed description is beyond the scope of this paper.

9.3 Cell population change
In this section we consider algorithm performance for

cells starting in a stable best-case where a node is either
added or removed from the cell population. We then mea-
sure the time required to reach a new equilibrium state
where all metrics M1 −M3 are converged. We plot met-
ric M2 against epoch as this is the slowest to converge.
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Figure 4. Adding node to stable system

Figure 4 shows a node being added to a stable 5-node
system. Variant A requires 21 epochs to re-establish the



equilibrium state, variant B requires 58 epochs, and vari-
ant C requires 57 epochs. Figure 5 shows a node being
removed from a stable 5-node system. Variant A requires
16 epochs to re-establish the equilibrium state, variant B
requires 47 epochs, and variant C requires 46 epochs. The
node removal experiments re-establish the equilibrium state
more quickly because the new stable system is smaller than
the new stable system in the node addition experiments.
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Figure 5. Removing node from stable system

In all cases the equilibrium state is re-established in fi-
nite time. Note that decreasing e reduces this time linearly.
As the algorithm is capable of restabilising the cell sched-
ule when a single node is added or removed, it is capable
of dealing with multiple additions or removals as these can
be decomposed into an equivalent temporally ordered se-
quence of single additions and removals. This is particu-
larly helpful in networks of highly mobile nodes, in which
cell membership is expected to change frequently.

9.4 Radio error resilience
In this section we consider algorithm performance for

cells starting in a stable best-case where network conditions
are non-ideal. It is possible that a synchronisation pulse
transmission Vij may fail to be heard at one or more of the
intended recipients; we call each instance a lost pulse. Re-
ception will either succeed or fail independently and atom-
ically at each potential recipient. We measure performance
where reception of an arbitrary pulse at an arbitrary node
fails stochastically with probability p ∈ [0, 1].

In figure 6 we set p = 0.05. For each variant A − C
exactly the same synchronisation pulse transmitter-receiver
pairs were lost. We see that variants B − C significantly
outperform the original variant A significantly, with much
smaller deviation in metric M2 from the ideal value of
M2 = 0. Although neither variant B nor C cope perfectly
with pulse loss, and there is little to pick between them, they
offer substantially improved performance and stability.

Synchronisation pulses have minimal length and content;
a phantom pulse is feasible where radio noise or corrupted
packets are interpreted as a synchronisation pulse. We mea-

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  10  20  30  40  50

A
sy

m
m

et
ry

 (
s)

Epoch

Metric M2 versus epoch with lost pulses

Variant A
Variant B
Variant C
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sure performance where nodes observe phantom pulses dis-
tributed randomly in time with rate r given in s−1.
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Figure 7. Phantom pulses

In figure 7 we set r = 0.1 s−1. For each variant A −
C exactly the same phantom pulses were heard by nodes.
Again, we observe that variants B − C offer significantly
better stability and performance than variant A.

9.5 Clock error resilience
In this section we consider algorithm performance for

cells starting in a stable best-case where timings are not ac-
curate. Jitter in synchronisation pulse transmission times
may result from non-ideal task scheduling algorithms or
preemption by higher priority tasks at the sender node. Al-
though many definitions are possible [8] we define the jit-
ter ι of a given synchronisation pulse as the difference be-
tween the intended and actual transmission times, where ι
is distributed normally as ι ∼ N(µι, σ

2
η). Transmission jit-

ter affects both phase neighbours of the transmitter node,
whereas individual radio error affect only a single receiver.

In figure 8 we set µι = 0s, as early transmission is as
likely as late transmission, and ση = 0.1s. For each vari-
ant A − C pulse transmission times are subject to exactly
the same jitter. We observe that variants B − C show sig-
nificantly better stability and performance than variant A.



Under variants B − C the uncorrected error component is
of the same order of magnitude as jitter standard deviation.
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Figure 8. Jitter

Clock drift is observed if local node clocks are imperfect.
As one second passes in the physical world the clock may
measure more or less than one second passing, governed by
a scaling factor η > 0. Perfect clocks have η = 1; manufac-
turing imperfections and variation between calibration and
operational temperature tend to give η ̸= 1 [10]. We assume
each node clock has constant η [13], distributed normally
as η ∼ N(µη, σ

2
η). We set µη = 1 to model clocks equally

likely to run fast as to run slow. We set ση = 1 × 10−3,
modelling drift rates with standard deviation several orders
of magnitude greater than the 1× 10−6 seconds per second
drift typical of commodity quartz crystal timers [3]. Figure
9 shows variantsA−C perform acceptably in rejecting drift
effects, with uncorrected error of the same order of magni-
tude as the drift. For variants B − C we see some initial
stabilisation as drift-laden measurements fill the buffers.
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10 Conclusions
The desynchronisation primitive is lightweight and ef-

fective in coordinating activity within unicellular sensor-
nets. However, the original version is prone to instability
arising under common non-ideal timing and network condi-
tions. We defined improved primitives yielding significant

and measurable improvements in stability without sacrific-
ing performance. Algorithmic and storage overheads are of
the same order, O(1), in cell population n as the original.
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