
Improving the Efficiency of Remote Resource Usage in

Distributed Real-Time Systems

Paul S. Usher and Neil C. Audsley

Real-Time Systems Research Group

Computer Science Department

University of York

York YO10 5DD

October 14, 2004

Abstract

Typical real-time operating systems (RTOS),
such as RT-Linux support distribution by
adding network capabilities (eg. network pro-
tocol stack) without any architectural change.
This approach maybe appropriate for systems
that have sufficient resources to meet all of an
applications functional and non-functional re-
quirements, but for low-resource systems such
an approach often imposes a significant over-
head – applications wishing to access remote
hardware resources cannot do so without sig-
nificant RTOS involvement at the local and re-
mote nodes.

This paper outlines an approach being taken
towards more efficient remote resource access.
Fundamentally, the approach intends to mini-
mize the software overhead incurred when com-
municating with remote resources by building
RTOS functionality upon a distribution layer.

1 Introduction

Network sensors and mobile phones have shown
that useful devices need not be physically or
computationally large in order to be useful. In
fact the increasing pace of development in these
areas seems to have only fueled further interest
in ubiquitous and pervasive computing. Such
devices may be limited in computational terms,

but they are intended to interconnect in a seam-
less fashion in order to undertake tasks that
would be beyond them individually. To achieve
this they may need to access remote resources.
This is illustrated by considering a low resource
device that is able to provide a limited func-
tion in isolation, but if granted access to remote
computational power or resources it is then able
to deliver improved functionality.

In such an environment it is increasingly ad-
vantageous if there is no distinction between lo-
cal and remote resources, i.e. Remote resources
are accessed and used in the same manner as lo-
cal resources. To illustrate this consider mem-
ory access in multiprocessor (e.g. SMP) or dis-
tributed shared memory systems [CDK01]. In
such systems accessing remote memory uses the
same mechanisms as local memory, noting that
contentions have to be managed. For other re-
sources, the same easy mechanism is not avail-
able. Usually, the access is via a remote net-
work operation via network protocol stacks, im-
posing a heavy overhead. Clearly, this has im-
plications upon a real-time system’s ability to
meet timing requirements.

This paper outlines the problems that are ev-
ident when remote resource access is achieved
via a conventional RTOS and network stack.
Then, the paper outlines an approach that is
currently being taken to reduce this overhead.
The context of the paper is that of general-



purpose real-time operating systems, such as
RT-Linux.

2 Current Model

Access to remote resources in current systems is
generally quite difficult and Figure 1 illustrates
how this is typically achieved. In this illustra-
tion the application transmits a request via the
network stack of its OS to the proxy process,
which is executing the following operations in
a loop:

1. Use a system call to wait until an applica-
tion requests a service.

2. Use a system call to interact with the re-
source on behalf of the application.

3. Wrap the results of the interaction up in a
message.

4. Use a system call to send the message back
to the client application.

What this illustration does not show is that
typically the remote resource would be mapped
into the file system of the applications local OS.
This allows the application to interact with the
resource using normal systems calls, whilst the
operating system generates the request message
before using the network stack to transmit the
message.

The main point of note from this diagram is
that all access to such resources - even those
that are low-level - must be affected via a mes-
sage sent to some form of proxy. It also il-
lustrates that any such access causes a sizable
number of context switches to occur on the re-
mote machine as well as requiring 4 traversals
of the network stack and 2 send operations on
the connection medium.

2.1 Medium performance

At first sight the biggest barrier to improv-
ing the performance of remote resource access
functionality is going to be the communications
medium. However recent studies show that net-
work bandwidth is increasing at a faster rate
than micro-processor performance [Mar02].

Figure 1: Current model of remote resource ac-
cess

Unfortunately the bandwidth of the comput-
ers main memory has not increased with equal
speed and hence it can be a factor that limits
performance. One way to address this prob-
lem is Remote DMA - RDMA -, where network
devices are able to transfer blocks of memory
to another machine without the intervention of
the CPU, thereby reducing the amount of work
the CPU has to carry out [Amm04].

2.2 Network stack performance

In many cases reliable message delivery will be
achieved via TCP/IP. Unfortunately the gap
between TCP/IP performance and processing
speed is increasing, with the throughput of the
TCP protocol seeing around 60-80% of the per-
formance improvement seen by the CPU. Worse
still, higher level applications can see a consid-
erably lower level of improvement with HTML
benchmarks indicating that the latency seen
when loading HTML pages has decreased by
only 30% in real terms [Mar02].

The primary reason for this lack of improve-
ment is that the architectural improvements
made in modern micro-processors favor data or
code that is repeatedly accessed [CS00, Mar02].
Unfortunately the architecture of the network
stack minimizes accesses to the same data - es-
pecially when using zero-copy protocols - which
limits any possible improvements.

It has also been shown that the processing
overheads involved with this architecture are



a significant barrier to performance, with the
cost of checksumming and copying the data oc-
cupying only 22% of the senders time and only
16.7% of the receivers [CS00].

2.3 Context switch performance

TCP/IP is not alone in getting little perfor-
mance gain from modern CPUs as many op-
erating systems have also seen little improve-
ment. There are several possible reasons for
this, but one of the most interesting is that
switching contexts - user to kernel, or vice-versa
- has become increasingly expensive due to the
architecture of the CPU.

These context switches occur in Figure 1
whenever a message crosses one of the bound-
aries. As you can see there can be a significant
number of them when using this model. To ad-
dress this problem some systems utilize proxies
that are resident in the kernel, thereby reduc-
ing such overheads. The affect of this kind of
change is hard to quantify, but it is worth bear-
ing in mind that the relative performance of any
context switch has worsened quite dramatically
in the last decade.

In the early 1990’s this performance was in-
creasing by 50-80% of the throughput increase
seen by the CPU. Unfortunately by the end
of the decade this figure has fallen to 12-28%
[Ous90, Mar02]. Such operations are still faster
in absolute terms, but relatively speaking oper-
ating system calls are now more expensive.

2.4 Software architecture

Current operating systems where designed un-
der the assumption that local machines have
sufficient resources to satisfy all of an applica-
tions requirements. As a consequence the net-
work stack through which any remote access
must occur, was only ever intended to be used
for accessing other applications. Consequently
the system lacks the necessary functionality to
efficiently access resources in a manner that is
independent of the current location.

Systems such as LINUX do of course allow
remote access to a file system via local file sys-
tems which acts as a proxy [BC02]. But how

many operating systems allow remote access to
the device containing such a file system, and
how many of those allow the local driver to be
bypassed so that physical access to the device
can be achieved. In addition some things such
as memory and CPU time are not considered
to be resources and hence no remote access to
them is permitted.

3 Towards Efficient Remote

Resource Access

To address the issues raised in the previous sec-
tions, an approach is being investigated that
builds RTOS functionality upon a distribution
layer which provides efficient access to remote
resources. A two-fold approach is being taken,
whereby the overheads of the network stack and
virtual file system are reduced as much as pos-
sible. These issues are discussed further in the
following sections.

3.1 Reducing Virtual File System

Overhead

In Figure 1 the Virtual File System (VFS) pro-
vides the mechanisms by which an application
can name and access a resource (local or re-
mote). The VFS is inherently layered, with
functionality broken down into smaller compo-
nents. To do this it traps information within
the component so that interaction is only possi-
ble via the published interfaces. Unfortunately
this hiding of information can also be a barrier
to performance, since some of the information
that is trapped in a layer could be used by up-
per layers to make optimizations.

Currently, work is progressing to reduce the
VFS overhead by allowing access from a remote
node directly to the device drivers. This is illus-
trated in Figure 2, where remote access to re-
sources at a low level is achieved without involv-
ing the complete VFS functionality (as shown
in Figure 1).



3.2 Reducing Network Stack

Overhead

TCP/IP communication between applications
on the same machine is limited by the over-
heads of the protocol itself rather than the per-
formance of the CPU or the systems memory
[Mar02]. Initial tests indicate that local com-
munication via TCP/IP sockets achieve only
11% of the throughput seen be AF UNIX sock-
ets, whilst AF UNIX sockets incur only 47% of
the overheads seen by their TCP/IP counter-
parts.

To improve on this level of performance it
is proposed to allow negotiation between the
layers so that additional information can be
pushed to the upper layers, thereby permit-
ting alternate actions in order to improve per-
formance. This flow of additional information
would therefore have a tendency to make the
layered architecture flatter by removing unnec-
essary parts of a protocol in particular situa-
tions. Flatter communication hierarchies are
likely to incur less runtime overheads, but they
could also be harder to produce. In addition
to which they may be less flexible, but since
the optimization was performed on a per client
basis rather than globally no flexibility is sac-
rificed.

These flexible communication protocols
should allow operating systems to negotiate
a low level network communications protocol
that allows applications to more efficiently ac-
cess remote resources by removing much of the
overhead of TCP/IP style stacks.

In such a system remote access to a resource
might look something like that shown in Figure
2. This illustrates that the receiving operating
system has been able to optimize its network
communication so that it can access the re-
source on behalf of the client without requiring
all of the processing of the TCP/IP stack. This
kind of flexibility potentially provides promis-
ing performance benefits for communication be-
tween clients, especially with regards to the re-
duction of communication latency and protocol
processing overheads.

Figure 2: New model of remote resource access

References

[Amm04] Understanding remote direct mem-
ory access (RDMA). Technical re-
port, Ammasso Inc, 2004.

[BC02] Daniel P. Bovet and Marco Ce-
sati. Understanding the LINUX

KERNEL. O’Reilly & Associates,
Inc., second edition, 2002.

[CDK01] George Coulouris, Jean Dollimore,
and Tim Kindberg. Distributed Sys-

tems Concpets and Design. Addison-
Wesley Longman Publishing Co.,
Inc., third edition, 2001.

[CS00] Guo Chuanxiong and Zheng
Shaoren. Analysis and evalua-
tion of the TCP/IP protocol stack of
linux. In International Conference

on Communication Technology,
volume 1, pages 444–453, 2000.

[Mar02] Evangelos P. Markatos. Speeding
up TCP/IP: Faster processors are
not enough. In International Perfor-

mance Computing and Communica-

tion Conference. IEEE, 2002.

[Ous90] John K. Ousterhout. Why aren’t op-
erating systems getting faster as fast
as hardware? In USENIX Summer

Conference, pages 247–256, 1990.


	Introduction
	Current Model
	Medium performance
	Network stack performance
	Context switch performance
	Software architecture

	Towards Efficient Remote Resource Access
	Reducing Virtual File System Overhead
	Reducing Network Stack Overhead


