
Efficient Access of Remote Resources in
Embedded Networked Computer Systems

Paul S. Usher and Neil C. Audsley

Real-Time Systems Research Group
Department of Computer Science, University of York, York YO10 5DD, UK

usher@cs.york.ac.uk

Abstract. Fixed networks of limited resource heterogeneous computers
need to allow applications to access remote devices in order to overcome
any local resource deficiencies. Current operating systems would use a
file system, network stack and middleware to implement such access but
the volume of functionality involved can be a barrier to performance.
This paper examines the 2.4 series Linux kernel to show that networked
operating systems lack flexibility and performance in this environment. It
also presents a low level approach that can reduce the overheads incurred
and improve performance when remote devices are accessed.

1 Introduction

This paper is concerned with fixed networks of heterogeneous single processor
embedded and ubiquitous computing devices operating in close proximity and
in networks that are largely static in nature. This means that only one type of
communication medium may ever be used and the physical address of a resource
may often be known in advance. The primary issue is therefore how to structure
the operating system (OS) so that it is able to quickly and efficiently facility
access to any remote devices required by the application in order to overcome
local inadequacies. Such problems can in specific circumstances be addressed
using additional hardware, both SMP and NUMA architectures are evidence of
this approach but such designs are not in the context of this paper.

This paper analyses the 2.4 series of Linux kernel to illustrate the performance
of a typical networked OS. It then shows how a low level approach that embeds
a simple file based protocol directly into an Ethernet frame can make better use
of the hardwares characteristics improving both performance and flexibility.

The remainder of this paper is structured as follows; section 2 examines the
architecture of the Linux kernel in order show why a networked OS is not ideally
suited to this tightly constrained environment. Section 3 supports this with a
performance analysis of a typical GNU Linux based OS. Finally section 4 outlines
how the large packet sizes of IEEE 802.3 and IEEE 802.11 can be combined with
the PSE51 embedded systems profile of IEEE 1003.13 to remove much of the
complexity involved with accessing remote devices [1–3].

2 Background: A Networked OS

A Networked OS such as Linux uses a stack of software for process control and
communication, another for resource access (VFS) and another for remote com-
munication (network stack) [4, 5]. Layers of functionality are then used within
these stacks to aid flexibility and further simplify implementation. Accessing a
remote device using this model requires the client machine to have some func-
tionality (a proxy) connecting the file system and the network stack so that the
application can access a remote device in the same manner as a local device.
Alternatively if a separate interface is used the functionality must implement
the operations via the existing network stack. The server also requires similar
functionality in order to access the device on behalf of the remote application.
Consequently a considerable amount of functionality is involved as the flow of
control passes up and down the file system and network stacks on both the client
and server machines, see Figure 1.

Network

stack

Virtual File

system

Server proxy

System call interface

Hardware
Network

hardware

Application

Client proxy

System call interface

Network

stack

Virtual File

system

Hardware
Network

hardware

Application / kernel boundary

Alternate application / kernel boundary

Communications medium

Fig. 1. Control flow when accessing remote resource access

To address the performance issues of this model the proxy processes can be
moved into the address space of the kernel in order to reduce the amount of copy-
ing and the number of context switches, but this does not reduce the volume of
code involved in navigating the VFS or network stack [4, 5]. The network stack
also does not allow the characteristics of the delivery device to affect the opera-
tion of the layers above it [4, 5]. Consequently local socket based communication
is likely to be adversely affected as the fragmentation and redelivery function-
ality cannot be removed when the delivery mechanism is reliable (memory). It
therefore seems clear that networked OSs are not ideally suited to constrained
environments where flexible and efficient access is required to both local and
remote resources (devices, files or applications).

3 Performance Analysis of a Linux OS

To demonstrate the performance of a typical networked OS this section uses the
Lmbench suite of benchmarks (version 2.04) on an isolated and directly con-
nected 10Mb two node network of otherwise idle Slackware Linux based com-
puters [6]. The specification of the test machines is outlined in Table 1.

Table 1. Test machine specification

Darkstar Cheetah

CPU AMD K6-2 350MHz Intel Pentum II-MMX 266MHz
Memory 128MB 64MB
Hard disk WDC AC28400R WDC AC34000L
Network Card 3Com 3c590 10 BaseT 3Com 3c905C-TX/TX-M
OS Slackware 9.0.0 Slackware 10.1.0
Kernel Version 2.4.22 2.4.29

The bandwidth of a network medium will govern the performance and charac-
teristics of any networked system but its importance escalates as more advanced
functionality is added. The addition of remote device access capabilities to a net-
worked system begins to make it more like a distributed system, as a result the
performance of the network medium becomes critical to the successful operation
of the system as more and more applications become increasingly addicted to
remote resources.

The availability of necessary quantities of network bandwidth clearly gov-
erns how much work a system can get done, however, it is also important not
to achieve this at the expense of latency. Both figures will ultimately be domi-
nated by the performance characteristics of the network medium and associated
hardware. Although the sheer volume of functionality involved in the file system,
network stack and proxy components of the OS is likely to have a limiting affect
on the performance of an application, even if this only occurs at high levels of
load.

3.1 Bandwidth results

The bandwidth benchmark transmits 3MB’s of data between two processes in
48KB steps and then returns it once the data has been received. This is per-
formed primarily between processes on the same machine since the majority of
inter process communication is local, although processes on different machines
are used if a particular mechanism supports remote communication, see Table
2.

A Pipe is a very simple communication mechanism supporting one way local
communication and it is not surprising that it is the best performer. In contrast
a UNIX socket provides two way local communication and achieves only 60-75%
of a Pipes throughput. TCP sockets differ from their UNIX counterparts by

Table 2. Communication bandwidth (MB/s)

Communications Local Remote
Mechanism Darkstar Cheetah Darkstar Cheetah

Pipe 82.8 143.0 - -
UNIX Sockets 61.9 85.4 - -
TCP Sockets 43.8 68.8 1.05 1.03

supporting remote communication across heterogeneous and unreliable commu-
nications mediums and when they are used in this fashion it is not surprising that
they perform poorly in comparison to either UNIX sockets or pipes. However,
they perform equally poorly for local communication (50% of Pipe performance)
as the upper layers of the IPv4 stack remain unchanged even though the major-
ity of their functionality is not required in the local environment. The effect of
this performance loss should not be underestimated as it may not be possible to
choose in advance an alternate communication mechanism in order to statically
optimize performance. It might therefore be beneficial if the kernel was able to
to optimise performance wherever possible, possibly by passing a UNIX socket
of as a TCP socket.

3.2 Latency results

The latency benchmark uses a 1 byte “hot-potato” token that allows the resulting
TCP or UDP message to fit into the minimum Ethernet frame (46 bytes of
payload). It also tests Sun’s RPC mechanism when used with both TCP and
UDP and this makes it possible to better estimate the overheads incurred by
a proxy process in a networked or distributed environment. Such functionality
acts as the glue that binds the network stack and file system models together
and an estimate of its performance therefore gives a more realistic view of an
applications performance when remote devices are accessed, see Table 3.

Table 3. Communications latencies (µs)

Communications Local Remote
Mechanism Darkstar Cheetah Darkstar Cheetah

Pipe 24.4 13.7 - -
UNIX Sockets 52.2 25.6 - -
UDP Sockets 77.6 55.2 231.7 235.5
TCP Sockets 107.8 88.0 279.1 280.4
Sun RPC over UDP 180.7 150.7 325.3 328.6
Sun RPC over TCP 230.7 204.8 425.9 434.3
TCP connection 416.0 340.0 451.3 476.3

Distributed systems require a suitable balance between bandwidth and la-
tency. It is therefore concerning that TCP sockets incur 4-6 times the latency of

a pipe when used in a local environment, whilst UNIX and UDP sockets incur
2-4 times the latency in the same situation.

When considering the additional overheads involved in accessing remote de-
vices it is important not to forget that a TCP connection must be established
prior to its use and these results suggest that this takes around 340-470µs. This
coupled with the costs of an RPC call over the same mechanism would seem
to rule out the use of TCP for client/server style connections in any networked
environment where the connection is not established for a considerable period
of time.

The overheads for the RPC mechanism are relatively constant regardless of
both the communication mechanism (UDP or TCP) and the location of the
client (local or remote). For UDP based communication this overhead is around
95µs, whilst TCP communication sees this increase slightly to 120-150µs, See
Table 4.

Table 4. RPC overhead (µs)

Communications Local Remote
mechanism Darkstar Cheetah Darkstar Cheetah

Sun RPC over UDP 103.1 95.5 93.6 93.1
Sun RPC over TCP 122.9 116.8 144.6 154.3

4 Reducing Overheads

This section examines whether an OS whose architecture directly targets the
need to access remote devices might reduce overheads, improve performance
and still achieve sufficient flexibility.

Communications mediums such as IEEE 802.3 and 802.11 allow computers
to deliver well over 1KB of data in an error free manner because of the capacity
of the packet and the use of a 32bit CRC [1, 2]. If the majority of interactions
could be made to fit into a single packet additional reliable delivery functionality
may never be needed. In addition the embedded systems profile of IEEE 1003.13
(PSE51 of POSIX.13) indicates that a traditional file system is unnecessary
in such systems. Instead sufficient flexibility is achieved by interfacing devices
directly to the close(), open(), read() and write() functions, thus negating the
need for the majority of functionality associated with a file system [3]. It therefore
seems worthwhile to examine whether the relatively large packet sizes supported
by these mediums can be utilised to directly encapsulate sufficient information
to allow one OS to send file system requests directly to another OS without
the use of either a VFS or the network stack. This reduction in the systems
footprint would also allow it to be utilised in more restricted environments in
addition to reducing the latency of any remote device access. The architecture
of the resulting system is illustrated in Figure 2.

Server proxy

System call interface

Hardware
Network

hardware

Application

Client proxy

System call interface

Hardware
Network

hardware

Application / kernel boundary

Communications medium

Fig. 2. Control flow when accessing remote resource access

4.1 Format of an Ethernet based file protocol

The following fragments of C code outline the format of the Ethernet frames
when the parameters for the file operations are embedded directly into the data
payload. This starts by outlining the format of an Ethernet header, and the
types of messages supported by the protocol.

#include<s t d i n t . h>

/∗ Declare an Ethernet header ∗/
struct ethhdr {

u i n t 8 t dst [6] ;
u i n t 8 t s r c [6] ;
u i n t 16 t type ;

} ;
/∗ Declare a f i l e p r o t o co l i n s t r u c t i o n ∗/
struct f p i n s t {

struct ethhdr header ;
u i n t 16 t opcode ; /∗ I n s t r u c t i on type ∗/
u in t 32 t tag ; /∗ I n s t r u c t i on number ∗/

} ;
/∗ Types o f i n s t r u c t i o n used in the f i l e p r o t o co l ∗/
enum fp opcode {

FP CLOSE,
FP OPEN,
FP READ,
FP REPLY,
FP WRITE

} ;

The “opcode” field uniquely identifies the type of instruction contained in
the Ethernet frame in addition to aligning all of the following data onto a 32bit
boundary in order to maximise performance. The client allocates the following

“tag” field in order to uniquely identify the request and to allow it to match a
reply to the appropriate request. This kind of approach is used with some success
in both 9P and Styx as it allows the server to identify incoming requests that
have been repeatedly made by the client in order to overcome the unreliability
of a networked system. The following code illustrates how the parameters for
the various functions are encoded.

/∗ Declare a c l o s e i n s t r u c t i o n ∗/
struct f p c l o s e {

struct f p i n s t type ;
u i n t 32 t fd ;

} ;
/∗ Declare an open i n s t r u c t i o n ∗/
struct fp open {

struct f p i n s t type ;
u i n t 32 t f l a g s ;
u i n t 32 t mode ;
u i n t 8 t f i l ename [] ;

} ;
/∗ Declare a read i n s t r u c t i o n ∗/
struct f p r ead {

struct f p i n s t type ;
u i n t 32 t fd ;
u i n t 32 t l en ;

} ;
/∗ Declare a wr i t e i n s t r u c t i o n ∗/
struct f p w r i t e {

struct f p i n s t type ;
u i n t 32 t fd ;
u i n t 32 t data len ;
u i n t 8 t data [] ;

} ;

The successful operation of a close(), open(), read() or write() function call
may result in some data being returned to the caller and potentially some error
code. In addition to this the read() needs to return some data to the client. The
following structure could be used to represent this information.

/∗ Declare a r ep l y i n s t r u c t i o n ∗/
struct f p r e p l y {

struct f p i n s t type ;
u i n t 32 t r e s u l t ; /∗ Return va lue ∗/
u in t 32 t e r r o r ; /∗ Error code ∗/
u in t 32 t data len ; /∗ Length o f re turned data ∗/
u i n t 8 t data [] ; /∗ Returned data ∗/

} ;

4.2 Payload utilisation

The file protocol outlined here provides a mechanism for efficiently allowing
an application to access a device connected to a remote computer. Since the
computers are all on the same network and the file protocol does not support
messages bigger than a single frame it is possible to dramatically reduce the size
of the headers required, see Table 5.

Table 5. Per layer comparison of protocol overheads in bytes

OSI Protocol
Layer UDP TCP FP

Network 20 20 6
Transport 8 20 0

Total 28 40 6

The supported file operations require little data so they all fit comfortable
into even the smallest Ethernet packet. This is particularly beneficial since it
allows the maximum amount of data to be carried by those messages that also
support a dynamic data portion. An open request for example supplies a file
name, the length of which is only known at run time. Similarly it is not possible
to know how much data will be written to a file, or how much may be returned
from a read operation. Since all of this data must be contained in a file protocol
message and these cannot span multiple Ethernet frames it is important that
the dynamic portion of these messages is as large as possible so as not to reduce
flexibility, see Table 6.

Table 6. Maximum size of dynamic data portion in bytes

Ethernet Message
payload open reply write

46 32 28 32
1500 1486 1482 1486

The file name passed to open() can therefore be between 31 and 1485 bytes
in length, since the last byte must be null in order to terminate the string.
Whilst a single Ethernet frame is able to incorporate in excess of 1400 bytes
for both the read and write operations. Transferring more data than this would
necessitate breaking the larger operation up into multiple smaller requests, in
addition to some support from the protocol for atomic actions so that either the
whole request succeeds or it fails.

4.3 Operation of the server proxy

The results obtained from the testing of the Linux kernel made it quite clear that
there are significant overheads involved with the packaging and un-packaging of
data prior to it being sent to the server. The approach adopted here reduces
these by limiting the amount of additional data that the protocol needs as well
as only supporting a very small set of operations. This minimalist approach
allows the operation of the server to be simplified. Handling of each type of
incoming message (reply is outgoing) is offloaded to a function that is dedicated
to the purpose. Dispatching is then a simple matter of checking that the opcode
field is valid before using it as an index into an array of function pointers. Of the
operations undertaken by the server the most expensive is read since it requires
the allocation of sufficient memory to hold the data that is read from the file
prior to it being sent back to the client.

The initial implementation of the protocol communicates with the remote
machine via a packet socket that has been bound to a specific network connection
(typically eth0). This allows both low level access to raw Ethernet packets and
simplifies the implementation process, as well as allowing its performance to be
analysed on the same two node Slackware Linux based system as has been used
for the UDP/TCP analysis. Further development work is underway to integrate
this functionality at a lower level within the kernel in order to further reduce
any overheads. As a result the performance of both the client and particularly
the server is likely to improve in the future.

4.4 Performance Analysis of Initial Implementation

The performance of this initial implementation has been measured through the
use a benchmarking application that runs on one of the Slackware Linux ma-
chines whilst accessing files on the other via the file protocol implementation.
The latencies are therefore those typically experienced by the application, see
Table 7.

Table 7. Remote file operation performance

Latency (µs)

close() 236
open() 242
read() 1535

write() 1695

The use of minimum sized Ethernet frames in both directions ensures that
close() and open() perform better than read() and write(), which (in this case)
utilise a full packet in one direction in order to maximise the amount of data
transferred (see Table 6). The parameters supplied to these operations can have a

significant affect on their performance, open() in particular requires an additional
440µs when the truncate flag is used.

Given that this is an initial implementation these performance figures com-
pare quite favourable with the 325-440µs required to transmit a single byte of
data via Sun’s RPC mechanism on UDP or TCP, especially as this figure does
not account for any overheads incurred when the server process accesses the local
files on behalf of the remote application.

5 Conclusions

It has been shown that access to remote devices requires some form of proxy and
that current designs incur significant overhead both in terms of establishing a
reliable connection, and in marshaling the data. It therefore seems unlikely that
such software designs will achieve acceptable performance in embedded systems
without the support of additional hardware resources. Although small network
stacks are undoubtedly available it is dubious whether they provide any practical
benefit in this context since the primary barrier seems to be performance rather
than size. In addition it has been shown that a traditional networked OS provides
unnecessary functionality in some areas and insufficient support in others. It has
also been shown that there may be a potential size and performance benefit if the
architecture of the OS makes better use of the resources it has available to it. To
demonstrate this fact we have provided a simple Ethernet based file protocol that
facilitates efficient access to remote devices with sufficient flexibility to satisfy
the file based functionality required of a POSIX.13 PSE51 compliant system.

References

1. IEEE: IEEE 802.3-2002: Carrier Sense Multiple Access with Collision Detection
(CSMA/CD) access method and physical layer specifications. (2002)

2. IEEE: IEEE 802.11-1999: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications. (1999)

3. IEEE: 1003.13-1998 IEEE Standard for Information Technology — Standardized
Application Environment Profile (AEP) — POSIX R© Realtime Application Support.
(1998)

4. Bovet, D.P., Cesati, M.: Understanding the Linux Kernel. Second edn. O’Reilly &
Associates, Inc. (2002)

5. Rubini, A., Corbet, J.: Linux Device Drivers. Second edn. O’Reilly & Associates,
Inc. (2001)

6. McVoy, L.W., Staelin, C.: lmbench: Portable tools for performance analysis. In:
USENIX Annual Technical Conference. (1996) 279–294

