

Cost Enforcement and Deadline Monitoring in the Real-Time Specification for Java

Andy Wellings, University of York, U.K. {andy@cs.york.ac.uk}
Greg Bollella, Sun MicroSystems {greg.bollella@sun.com}

Peter Dibble, TimeSys Corporation {peter.dibble@timesys.com}
David Holmes, DLTeCH Pty Ltd {dholmes@dltech.com.au}

Abstract
Modern real-time programming languages and operating
systems provide support for monitoring the amount of
CPU time a thread consumes. However, no system in
widespread use fully integrates this monitoring with the
scheduling facilities. The Real-Time Specification for Java
(RTSJ) provides an integrated approach to scheduling
periodic threads and monitoring their CPU execution time.
It supports a cost enforcement model whereby a periodic
thread is suspended when it consumes more time than it
requested. Version 1.0 of the RTSJ is under specified and
it is difficult to understand the full model. This paper
clarifies the position and defines the conditions under
which a real-time thread is resumed. The model presented
is the one that will be fully defined in version 1.0.1 of the
RTSJ. Unfortunately, version 1.0.1 of the specification will
not have a general model for handling cost enforcement
and deadline monitoring for all schedulable objects. This
paper proposes extensions to the RTSJ that allow the cost
enforcement model and deadline monitoring model to be
consistently applied across all schedulable objects, and for
it to be fully integrated with scheduling.

1 Introduction
Real-time systems must be able to interact with their
environments in a timely and predictable manner. The days
when real-time simply meant fast have long gone. It is no
longer acceptable to build systems and hope that they meet
their timing requirement. Instead, designers must engineer
analysable systems whose timing properties can be
predicted and mathematically proven correct (possibly
from within a probabilistic framework). Advances in
scheduling have brought about this change in practice.

Scheduling is the ordering of thread/process executions
so that the underlying hardware resources (processors,
networks, etc.) and software resources (shared data
objects) are efficiently and predictably used. In general,
scheduling consists of three components [3]
• an algorithm for ordering access to resources
(scheduling policy)
• an algorithm for allocating the resources (scheduling
mechanism)
• a means of predicting the worst-case behaviour of the
system when the policy and mechanism are applied

(schedulability analysis — called feasibility analysis by the
Real-Time Specification for Java (RTSJ) [2]).

Once the worst-case behaviour of the system has been
predicted, it can be compared with the system’s timing
requirements to ensure that all deadlines will be met.

There have been many different scheduling approaches
developed over the last 10-15 years [3], for example, cyclic
scheduling, fixed priority scheduling, earliest deadline
first, value-based, etc. Most current real-time
programming languages and operating systems in
widespread use today support fixed priority scheduling.
Some provide support for monitoring the amount of CPU
time a thread consumes; a few allow the programmer to
undertake actions if the amount of CPU time a thread
consumes exceeds a defined value. However, no system
fully integrates the monitoring with the scheduling
facilities. Consequently, the system cannot ensure that the
analysis that has been performed to guarantee the
application’s deadline will not be undermined by the run-
time execution of the program. The RTSJ is the first main
stream real-time programming language that attempts to
fully integrate its scheduling with the CPU execution time
monitoring facility.

Unfortunately, version 1.0 of the RTSJ is under
specified and it difficult to understand the full cost
enforcement and deadline monitoring model. The initial
aim of this paper is to clarify the position and define the
conditions when a periodic real-time thread is descheduled
due to a cost overrun and describe the mechanisms that
allow the program to respond. The model presented is the
one that will be fully defined in version 1.0.1 of the RTSJ.
However, version 1.0.1 will not have a general model for
handling cost enforcement and deadline monitoring for all
schedulable objects. Such a change is beyond the allowable
changes for a 1.0.1 release. This paper proposes extensions
to the version 1.0.1 (in particular, the Schedulable
interface and the RealtimeThread and
AsyncEventHandler classes) that allow the cost
enforcement model and deadline monitoring model to be
consistently applied across all schedulable object, and for it
to be fully integrated with scheduling. The goal is to begin
the discussions for a future release of the RTSJ with more
substantial changes.

The paper is structured as follows. The remainder of
this section characterizes the properties of a schedulable

object that must be made available to any real-time
scheduler that wants to provide guarantees (either offline
or online). As such, it provides a rationale for the overall
RTSJ model that is summarised in Section 2. Section 3
then focuses on the cost enforcement and deadline-
monitoring model for real-time threads and asynchronous
event handlers, indicating the support provided by version
1.0.1 of the specification. Section 4 proposes extensions to
the model. Section 5, addresses the problem of schedulable
objects with aperiodic release parameters. Section 6
discusses related work. Finally, section 7 presents the
conclusions.

2.1 Scheduling Model
Most modern approaches to scheduling view the system as
consisting of a number of real-time threads. Each thread is
characterized by the following properties [11].
Release profile. Typically after a thread is started, it waits
to be released (or may be released immediately); when
released, it performs some computation and then waits to
be released again (the time at which it waits is often called
its completion time). The release profile defines the
frequency with which the releases occur; they may be time
triggered or event triggered. When time triggered releases
occur on a regular basis, they are called periodic releases.
Event-triggered releases are typically classified into
sporadic (meaning that they are irregular but with a
minimum inter-arrival time) or aperiodic (meaning that no
minimum inter-arrival assumptions can be made) - of
course, event-triggered periodic releases and time-
triggered sporadic and aperiodic release are also possible.
Once a schedulable object has been released, it is eligible
for execution. During its execution, it may be blocked
waiting for a resource (for example, a mutual exclusion
lock). When the resource becomes available, the thread is
again eligible for execution.
Processing cost per release. This is some measure of how
much of the processor’s time is required to execute the
computation associated with the thread’s release (this may
be a worst-case value or an average value depending on the
feasibility analysis being used). It is often referred to as a
CPU budget.
Other hardware resources required per release This is
some measure of the hardware resources needed (other
than the processor). For networks, it is usually the time
needed (or bandwidth required) to send the thread’s
messages across the network. For memory, it is the amount
and type of memory required by the thread.
Software resources required per release. This is a list of
the non-shareable resources that are required for each
release of the thread and the processing cost of using each
resource. Access to non-shareable resources is a critical
factor when performing schedulability analysis. This is
because non-shareable resources are usually non pre-

emptible. Consequently, when a thread tries to acquire a
resource, it may be blocked if that resource is already in
use. This blocking time has to be taken into account in any
analysis. If the list of software resources is not available
then a maximum blocking time must be provided.
Deadline The time that the thread has to complete the
computation associated with each release. Where the
deadline of a thread is greater than its minimum period
between releases (or it has overrun its deadline, and the
application has decided to let it continue), the thread may
be released even though the execution associated with the
previous release has not completed. In this case, when the
thread does complete, it is immediately re-scheduled for
execution (re-released).
Value A metric that indicates the thread’s contribution to
the overall functionality of the application. It may be: a
very coarse indication (such as safety critical, mission
critical, non critical), a numeric value giving a measure for
a successful meeting of a deadline, or a time-valued
function which takes the time at which the thread com-
pletes and returns a measure of the value (for those
systems where there is no fixed deadline).

One of the key characteristics of schedulability
(feasibility) analysis is whether the analysis is performed
off-line or on-line. For safety critical systems, where the
deadlines associated with schedulable objects must always
be met (so-called hard real-time systems), off-line analysis
is essential, as the system must not enter service if there is
a possibility of deadlines being missed. Other systems do
not have such stringent timing requirements or do not have
a predictable worst-case behavior. In these cases, on-line
analysis may be the only option available. These systems
must be able to tolerate threads not being feasible (that is,
failing the schedulability analysis) and offer degraded
services. Furthermore, they must be able to handle
deadlines being missed or situations where the assumed
worst-case loading scenario has been violated.

2 Schedulable Objects and Scheduling in
the RTSJ

The RTSJ provides a framework from within which on-
line feasibility analysis of priority-based systems can be
performed for single processor systems. The specification
also allows the real-time JVM to monitor the processing
resources being used and to release asynchronous event
handlers if this use of resources goes beyond that specified
by the programmer.

The RTSJ incorporates the notion of a schedulable
object rather than considering just threads. A schedulable
object is any object that implements the Schedulable
interface. The current specification supports only two types
of object that implement this interface,
RealtimeThreads and AsyncEventHandlers.

They have the following associated attributes (represented
by classes).
ReleaseParameters — Giving the processing cost for
each release (its CPU budget) and the deadline; if the
object is released periodically or sporadically then
subclasses allow an interval to be given. (For sporadic
release parameters, the RTSJ provides facilities to ensure
that the associated schedulable objects are not released
more often than the minimum inter-arrival time.) Event
handlers can be specified for the situation where the
deadline is missed or the processing resource consumed
becomes greater than the cost specified. Note, there is no
requirement for a real-time JVM to monitor the processing
time consumed by a schedulable object. If it does, then
there is a requirement that a schedulable object be given
no more than cost processing units each release (see
Section 3). Note also, the RTSJ makes no mention of
blocking time in any of the parameters associated with
schedulable objects. The assumption is that a particular
implementation will subclass ReleaseParameters to
bring in this data.
SchedulingParameters — This class is abstract;
however subclasses allow the priority of the object to be
specified along with its importance to the overall
functioning of the application. Although the RTSJ
specifies a minimum range of real-time priorities (28), it
makes no statement on the allowed values of the
importance parameter. Indeed, the default priority
scheduler is not required to use importance in any of its
scheduling decisions.
MemoryParameters — Giving the maximum amount
of memory used by the object in its default memory area,
the maximum amount of memory used in immortal
memory, and a maximum allocation rate of heap memory.
An implementation of the RTSJ is obliged to enforce these
maximums and throw exceptions if they are violated.
ProcessingGroupParameters — Allowing several
schedulable objects to be treated as a group (which has an
associated period, cost and deadline, see Section 5).

The methods in the Schedulable interface can be
divided into three groups.
• Methods that will communicate with the scheduler and
will result in the scheduler either adding or removing the
schedulable object from the list of objects on which it
performs schedulability analysis (called its feasibility set),
or changing the parameters associated with the schedulable
object (but only if the resulting system is feasible).
• Methods that get or set the parameter classes
associated with the schedulable object. If the parameter
object being set is different from the one currently
associated with the schedulable object, the previous value
is lost and the new one will be used in any future
feasibility analysis performed by the scheduler. Note, these
methods do not result in feasibility analysis being

performed and the parameters are changed even if the
resulting system is not feasible.
• Methods that get or set the scheduler. For systems that
support more than one scheduler, these methods allow the
scheduler associated with the schedulable object to be
manipulated.
Changing the parameters of a schedulable object whilst it
is executing can potentially undermine any feasibility
analysis that has been performed, and cause deadlines to be
missed. Consequently, the RTSJ provides methods that
allow changes of parameters to occur only if the new set of
schedulable objects is feasible. Some parameter changes
take place immediately (for example, priority and cost
changes), others do not have an impact on a schedulable
object’s executions until its next release (for example,
changes to deadline or period). In all cases, the
scheduler’s feasibility set is updated. Of course, an
infeasible system may still meet all its deadlines if the
worst-case loading is not experienced (perhaps the worst-
case phasing between the threads does not occur, or
threads do not run to the worst-case execution time).

The only scheduler that the RTSJ fully defines is a
priority scheduler, which can be summarized as follows.
Scheduling policy. The PriorityScheduler
• supports the notion of base and active priority – with
at least 28 unique real-time priorities;
• orders the execution of schedulable objects on a single
processor according to the active priority;
• allows the programmer to assign the base priorities at
run time;
• supports priority inheritance or the priority ceiling
emulation protocol for synchronized objects;
• assigns the active priority of a schedulable object to be
the higher of its base priority and any priority it has
inherited.
Scheduling mechanism. The PriorityScheduler
• supports pre-emptive priority-based dispatching of
schedulable objects;
• does not define where in the run queue (associated
with the priority level) a pre-empted object is placed; the
RTSJ recommends that it be placed at the front of the
queue;
• places a blocked schedulable object that becomes
runnable, or has its base priority changed, at the back of
the run queue associated with its (new) priority;
• does not define whether schedulable objects of the
same priority are scheduled in FIFO, round-robin order or
any other order.
Schedulability analysis. The PriorityScheduler requires
no particular analysis to be supported.

3 Cost Enforcement and Deadline
Monitoring in Version 1.0.1 of RTSJ

As mentioned in Section 2, every schedulable object has a
release profile (periodic, sporadic or aperiodic) and for
each release it is given a CPU budget of “cost” and a
deadline. However, the details of the cost enforcement and
deadline monitoring models are not well defined in
Version 1.0 of the RTSJ. This section clarifies the model.
Section 4 proposes extensions to allow the model to be
consistently applied across all schedulable objects.

In Version 1.0.1, the cost enforcement and deadline
monitoring model applies to periodic real-time threads
whose deadlines are less than their period and to
asynchronous event handlers. In both cases, event handlers
may be released when cost overruns and deadline misses
occur. However, the response of the system when handlers
are not released is different.

3.1 Periodic Real-Time Threads
Each thread can define (but need not do so) deadline-miss
and cost-overrun asynchronous event handlers. An
implementation must support deadline monitoring, and it is
required that any deadline-miss handler be released at the
point its associated real-time thread misses its deadline
(note, however, the real-time thread remains executable).
Cost overrun detection is optional. If cost monitoring is
supported, the RTSJ requires that the priority scheduler
gives a schedulable object a CPU budget of no more than
its cost value on each release. Hence, if a periodic real-
time thread overruns its cost budget, it is automatically
suspended. It will not be resumed until either its next
release occurs (in which case its budget is replenished) or
its associated cost value is increased.

The RealtimeThread class has the following
methods to support the overall model:

• waitForNextPeriod – when called by a periodic
real-time thread (and in the absence of any deadline miss),
the thread is blocked until its next release, when the
method returns true;

• deschedulePeriodic – when called, the real-
time thread is descheduled when it finishes its current
release (i.e. calls waitForNextPeriod);

• schedulePeriodic – when called, if the real-time
thread is currently descheduled in waitForNext-
Period, it is re-scheduled when its next release occur (if
not already descheduled, schedulePeriodic cancels
any outstanding deschedulePeriodic requests).

If the programmer has set up an appropriate deadline-
miss handler, the RTSJ assumes that the handler will take
some corrective action on a deadline miss and then (if
appropriate) reschedule the real-time thread by calling the
schedulePeriodic method. If no call to the

schedulePeriodic method has been made in between
the deadline miss and the call to waitForNextPeriod,
the method automatically deschedules the real-time thread
(a call to waitForNextPeriod signals the end of the
current release). It remains descheduled until a call to
schedulePeriodic is made. In this situation, the
waitForNextPeriod method returns at the next
release time following the call to schedulePeriodic.
All releases in between are lost. A descheduled thread, by
definition, cannot miss any further deadlines.

If the programmer has not set up the appropriate
handler, the waitForNextPeriod method assumes that
the real-time thread itself will undertake some corrective
action and then call waitForNextPeriod again.
Hence, the method returns false immediately indicating
that the current release is still active and the real-time
thread should respond to the deadline-miss condition.

The behavior of a real-time thread with periodic release
parameters can be defined in terms of four private
variables added to the real-time thread state, which are not
accessible to the programmer (here it is assumed that no
changes to the release parameters occurs):

• boolean lastReturn ⎯ the last value returned
by waitForNextPeriod,

• integer missCount ⎯ the number of deadlines
that have been missed and that have not been
communicated to the application (by releasing a deadline-
miss handler)

• boolean descheduled ⎯ when true, results in
the thread being descheduled at the end of its current
release (it will not receive any further release events and
no deadlines can be missed)

• integer pendingReleases ⎯ indicates the
number of outstanding release events (periods) that haven’t
been acted upon.
The semantics of these values are detailed below. The
approach is to consider each significant event in the
execution of an RTSJ program that manipulates them.
1. On each deadline miss: if the associated real-time

thread has a deadline-miss handler, the value of
descheduled is set to true, the deadline miss
handler is released and the missCount is set to
zero1. If the real-time thread does not have a deadline-
miss handler, one is added to its missCount value.

1 Any outstanding deadline misses not acted upon by the
program will be passed to the asynchronous event handler
(AEH) at this time (via the AEH’s fireCount – see
section 3.2), hence missCount is set to zero.

2. On each cost overrun: the execution of the real-time
thread is suspended (its new state is blocked-for-cost-
replenishment) - any overrun handler is released.

3. At the start of each period: If the thread is waiting
for its next release (that is, it is blocked-for-reschedule
in waitForNextPeriod) and it is descheduled, no
action is taken. Otherwise, the thread’s
pendingReleases value is incremented. If the
thread is waiting for its next release, it is notified. If
the thread is not eligible for execution because it is
blocked-for-cost-replenishment, its cost budget is
replenished and it is made eligible for execution.

4. When the thread’s schedulePeriodic method is
invoked: the value of descheduled is set to false.
If the thread is blocked-for-reschedule in
waitForNextPeriod, the value of
pendingReleases is set to zero and the thread is
notified.

5. When the thread’s deschedulePeriodic
method is invoked: the value of descheduled is
set to true.

6. When the thread’s cost parameter changes: if the
change causes the thread’s cost budget to be depleted
and the thread is currently eligible for execution, a
cost overrun is triggered for the thread (see 2. above),
otherwise if the change causes the cost budget not to
be depleted and the thread is currently blocked for cost
replenishment, the thread is made eligible for
execution.

7. When the waitForNextPeriod method is
called: there are two possible behaviors depending on
the state of missCount and descheduled:

• If missCount is greater than zero: the
missCount value is decremented. If the
lastReturn value is false, pending-
Releases is decremented and false is returned.
If the lastReturn value is true, it is set to false
and false is returned.

• Otherwise, the method waits while the
descheduled value is true or
pendingReleases is zero, then pending-
Releases is decremented and the
lastReturn value to set to true and the method
returns true.

A return of false from the waitForNextPeriod
method indicates that the current release has missed its
deadline. A second return of false indicates that not only
did the current release miss its deadline, but also the next
release has already occurred and the deadline for that
release has been missed.

3.2 Asynchronous Event Handlers
The RTSJ views asynchronous events as data-less
occurrences that are either fired by the program or
associated with the triggering of interrupts (or signals or
other asynchronous events) in the environment. One or
more handlers can be associated with a single event, and a
single handler can be associated with one or more events.
The association between handlers and events is dynamic.
Each handler has a count (called fireCount) of the
number of outstanding occurrences. When an event occurs,
the count is atomically incremented. The attached handlers
are then released for execution. Recall from section 2, a
schedulable object can be released even though it has not
completed the execution associated with its previous
releases. The fire count caters for this situation, allowing
the implementation to start the execution associated with
the new release immediately the old releases have finished.

The release of each asynchronous event handler (AEH)
has an associated deadline and cost budget. As with real-
time threads, other event handlers can be released if
deadline misses or cost overruns occurs. Cost overruns
result in the errant AEH being automatically suspended
until either its cost parameter is increased, or it is released
again.

To support optimizations of event handlers, the RTSJ
allows an AEH to manipulate its fireCount value.
These methods do not have an impact on either the current
deadline or the current cost budget

4 Generalising the RTSJ Model
Version 1.0.1 of the RTSJ provides a much more detailed
explanation of its cost enforcement and deadline
monitoring model. However there are two weaknesses in
the approach that require more significant changes to the
specification. These changes go beyond the removal of
ambiguity and errors that are normally associated with a
minor re-release of the specification. These weaknesses
are:
• the support for sporadic and aperiodic real-time
threads is not adequate to allow multiple releases and the
detection of a deadline miss or a cost overrun; furthermore,
sporadic and aperiodic threads cannot be descheduled ;
• the support for asynchronous events does not allow a
handler to recover from a deadline miss other than by
releasing another asynchronous event handler ⎯ this is
not consistent with the model provided for periodic real-
time threads; furthermore, asynchronous event handlers
cannot be descheduled.
This section considers how the facilities supported by
version 1.0.1 of the RTSJ can be generalized to provide
consistent support for all schedulable objects and whose
deadlines can be less than, equal to, or greater than the
time between releases. It should be stressed that this

proposal is not sanctioned or supported by any Java JSR.
The goal is to help stimulate discussion in the community
on the functionality of future RTSJ releases.

In order to generalize the facilities provided by the
RTSJ and provide a consistent set of mechanisms for all
schedulable objects it is necessary to augment:

• the Schedulable interface with facilities to allow a
schedulable object to be included/excluded from the set of
schedulable objects currently being considered for
execution;

• the RealtimeThread class with a general release
mechanism;

• the AsyncEventHandler class with a mechanism
to handle deadline misses when no deadline miss handler
has been specified.

4.1 An Extended Schedulable Interface

Currently the RTSJ provides a mechanism that allows a
periodic real-time thread to be removed from the current
group of objects that are eligible for scheduling
(deschedulePeriodic). The “suspension” is not like
the normal asynchronous suspend operation that has been
deprecated in standard Java. It is a much safer real-time
equivalent, as the “suspension” occurs at the end of the
current release. The corresponding “resume” mechanism is
provided by schedulePeriodic. This paper proposes
that these mechanisms should be generalized and made
available to all schedulable objects and, consequently,
should be provided in the Schedulable interface:

• deschedule – when called, the schedulable object
is descheduled (made not eligible for release) when it
finishes its current release;

• schedule – when called, if the schedulable object is
currently descheduled, it becomes eligible for release; it
next executes when its next release occurs.
All releases that occur when a schedulable object is
descheduled are lost and, by definition, no deadlines are
missed.

4.2 An Extended RealtimeThread Class

As well as providing methods to implement deschedule
and schedule (the new methods in the Schedulable
interface), the RealtimeThread class should provide:

• waitForNextRelease – when called by a real-
time thread, in the absence of any deadline-miss condition,
the thread is blocked until its next release occurs;

• release – when called, this indicates that the real-
time thread should be released.
With this proposal, the current waitForNextPeriod
method would be synonymous with

waitForNextRelease; deschedulePeriodic
synonymous with deschedule and schedule-
Periodic synonymous with schedule. The scheduler
will usually be responsible for releasing a real-time thread
with periodic release parameters. However, the application
can force a release by calling the release method
explicitly. Such a facility might be useful during mode
changes; though care must be taken not to undermine any
feasibility analysis.

4.3 An Extended AsyncEventHandler Class

As well as providing methods to implement deschedule
and schedule, this extended class should provide a
deadlineMissCondition ⎯ this method would be
called by the system (at the end of the current release) if
an event handler missed a deadline and has no deadline
miss handler specified. This would allow an event handler
to provide a response in a similar manner to the “false
return” from the waitForNextRelease method in the
RealtimeThread class.

4.4 A Consistent Model of Deadline
Monitoring and Cost Enforcement for all
Schedulable Objects
Given the above mechanisms, it is now possible to define a
consistent integrated model for deadline monitoring and
cost enforcement.

For an arbitrary release, j, of a schedulable object, the
CPU budget is automatically fully replenished to cost
units when
• release j-1 has completed (or release j-1 has been
suspended as a result of a cost overrun), and
• release j has occurred.
Hence,
• if the completion time (or the suspension time) is less
than or equal to the time between releases, the CPU
budget is replenished at the time of release j;
• if the completion time (or suspension time) is greater
than the time between releases, the CPU budget is
replenished at the time of completion (or suspension) of
release j-1.
The completion point for a real-time thread is when it calls
the waitForNextRelease method. For an
asynchronous event handler, the completion point is when
it returns from the handleAsyncEvent method.

A cost overrun results in the schedulable object being
immediately automatically suspended - made not eligible
for execution - and any cost overrun handler released
(assuming cost enforcement is supported). The schedulable
object will not be resumed until either

• its next release occurs (or has occurred, in which case
its CPU budget is automatically replenished with the cost
value) or

• its associated cost value is increased.
Note, that the release of a schedulable object with sporadic
release parameters may be subject to a delay in order to
satisfy any minimum inter-arrival time restrictions.

If the schedulable object misses its deadline, it remains
eligible for execution (unless it has also suffered a cost
overrun). Any associated deadline-miss handler is released
at the point the deadline expires. If there is no associated
handler, a count is kept of the number of missed deadlines.

When a schedulable object has missed its deadline and
indicates that it has completed its current release (called
the waitForNextRelease method for a real-time
thread, and returned from the handleAsyncEvent
method for an event handler), the system undertakes the
following:
• if a deadline has been missed and there was an
associated deadline-miss handler, the schedulable object is
descheduled unless the schedule method has been
called since the last deadline miss; if it is descheduled, it
will remained descheduled until schedule is called;

• if there is no deadline miss handler, the
deadlineMiss count is decremented, the system then
requests that the schedulable object provide a recovery
mechanism; for a real-time thread, it does this by
waitForNextRelease returning false immediately ⎯
subsequent calls to waitForNextRelease return false
if the count is greater than 0 and there has been no
subsequent call to schedule since the last deadline miss.
For an event handler, the deadlineMissCondition
method is called immediately the handleAsyncEvent
returns ⎯ the method is called again if the count remains
above zero and no call to schedule has occurred since
the last deadline miss.

5 Handling Aperiodic Activities
In any system where it is required to give guarantees,
aperiodic schedulable objects present a problem. As they
have no well-defined release characteristics, they can
impose an unbounded demand on the processor’s time.

To support aperiodic activities, a server can be
employed. Servers protect the processing resources needed
by periodic and sporadic schedulable objects but otherwise
allow aperiodic schedulable objects to run as soon as
possible. The real time community has defined several
types of servers. The one that is most relevant to the RTSJ
is a deferrable server [7]. With the deferrable server, an
analysis is undertaken that enables a new thread to be
introduced at a particular priority level. This thread, the
server, has a period and a capacity. These values can be

chosen so that all the periodic and sporadic schedulable
objects in the system remain schedulable even if the server
executes periodically and consumes its capacity. At run-
time, whenever an aperiodic thread is released, and there is
capacity available, it starts executing at the server’s
priority level until either it finishes or the capacity is
exhausted. In the latter case, the aperiodic thread is
suspended (or transferred to a background priority). With
the deferrable server model, the capacity is replenished
every period.

The RTSJ provides support for aperiodic server
technologies via processing group parameters. When
processing group parameters are assigned to one or more
schedulable object, a server is effectively created. The
server’s start time, cost (capacity) and period is defined by
the particular instance of the parameters. These
collectively define the points in time when the server’s
capacity is replenished.

Any aperiodic schedulable object that belongs to a
processing group is executed at the schedulable object’s
defined priority. However, it only executes if the server
still has capacity (and it has not overrun its own individual
CPU budget). As it executes, each unit of CPU time
consumed is subtracted from the server’s capacity (as well
as its own). When capacity is exhausted, the aperiodic
threads are not allowed to execute until the start of the next
replenishment period. If the application only assigns
aperiodic schedulable objects of the same priority level to a
single ProcessingGroupParameters object, then
the functionality of a deferrable server can be obtained [4].

6 Related Work
Over the last 10-15 years, there has been a gradual
migration from sequential real-time systems based on
cyclic scheduling to concurrent real-time systems based on
priority-based scheduling. In cyclic executives, overrun
conditions are automatically caught if one minor cycle is
still executing when the next is due. However, industrial-
strength modern languages and operating systems have
been slow to realize the importance of monitoring the
amount of CPU time consumed by a concurrent entity.
Any support that has been provided has been in the context
of profiling an application looking for hot spots.

The problems are further compounded by the lack of
support provided for release profiles for concurrent
entities. For example Ada 95 [1], CHILL [5] and the real-
time extensions to POSIX [10] do not support the explicit
specification of periodic or sporadic processes with
deadlines; rather a delay primitive, timer and so on, must
be used within a looping construct (although POSIX does
allow a periodic timer to be set). Any deadline overrun
detection mechanisms must similarly be programmed with
low-level mechanisms such as the "select then abort"
statement in Ada or via watchdog timers in real-time
POSIX.

The notable exception to this "low level mechanism"
approach occurs in the German industrial control language
PEARL [9] which provides explicit timing information
concerning the start, frequency and termination of
processes. Some research-oriented languages have also
taken this approach (for example, Real-Time Euclid [6]).

The situation with CPU budgets and cost enforcement
nowadays is more encouraging. The POSIX community
has led the way by supporting execution time monitoring
by extending its clock and timer facilities to include CPU-
time clocks for processes and threads. Each process/thread
has an associated execution-time clock whose current
value can be queried or set. The standard POSIX timers
can be used to create timers that generate process signals
when the execution time set has expired. However, it has
no facilities other than setjmp and longjmp to provide
controlled termination of the errant thread.

In the current revision process of Ada (for Ada 2005) it
is likely that facilities similar to those provided by POSIX
will be added. In particular, a new clock is proposed which
measures CPU execution time. A timer can be constructed
via an Ada protected type. This allows the mechanisms to
be linked into other Ada facilities, such as the “select then
abort” statement, to provide various models [8]. However,
scheduling and CPU monitoring has not been fully
integrated in the way that it is with the cyclic executive
approach and with the RTSJ.

7 Conclusions
This paper has clarified the intended support for cost
enforcement and deadline monitoring in the RTSJ.
However, there is not a consistent model for the integration
of scheduling, cost enforcement and deadline monitoring
for all schedulable objects, irrespective of their release
profiles. Modifications to the following interfaces and
classes have been proposed to rectify this problem:

• Schedulable interface ⎯ the addition of methods
to deschedule and schedule a schedulable object at
the end of its current release and at the start of its next
release respectively.

• RealtimeThread class ⎯ methods to implement
the new functionality in the Schedulable interface, a
method that allows a real-time thread to wait for its next
release and a method that allows the application to indicate
that a real-time thread should be released.

• AsyncEventHandler class ⎯ methods to
implement the new functionality in the Schedulable
interface, a method that is called by the implementation
when an asynchronous event handler misses its deadlines
and has not specified a handler for this condition.

With these modifications, a model has been proposed
which will ensure that schedulable object execution will
remain within the cost boundaries the programmer has
specified (and has been assumed in the feasibility
analysis). They can be used in conjunction with the
asynchronous transfer of control facilities to provide
structured support for immediately informing a
schedulable object that its deadline has been missed or its
cost overrun. They are fully integrated within the RTSJ
scheduling model.

References
[1] ARM, 1995, "Ada 95 Reference Manual", ANSI/ISO/IEC-

8625:1993.
[2] Bollella, G., Brosgol, B., Dibble, P., Furr, S., Gosling, J.,

Hardin, D., and Turnbull, M., “The Real-Time Specification
for Java”, version 0.9, Addison Wesley, 2000 (version 1.0 is
available from www.rtj.org).

[3] Burns, A., and Wellings, A.J, "Real-Time Systems and
Programming Languages", Addison Wesley, 2001.

[4] Burns, A., and Wellings, A.J., “Processing Group Parameters
in the Real-Time Specification for Java”, Workshop on Java
Technologies for Real-Time and Embedded Systems, JTRES
2003.

[5] CHILL, “CHILL – The ITU-T Programming Language”,
International Telecommunications Union, ITU-T
Recommendation Z.2000, 1999.

[6] Kligerman, E. and Stoeyenko, A., "Real-Time Euclid: a
Language for Reliable Real-Time Systems", IEEE TOSE,
SE-12(9), pp 941-949, 1986.

[7] Lehoczky, J.P., Sha, L. and J. K. Strosnider, J.K., "Enhanced
Aperiodic Responsiveness in a Hard Real-Time
Environment", Proceedings of the IEEE RTSS, pp 261-270,
1987.

[8] Miranda Gonzalez, J. and Gonzalez Harbour, M., Ada Issue
95-00307/03, 2002.

[9] PEARL 90, “PEARL 90 Language Report, Version 2.2”, GI-
Working Group 4.4.2., 1998.

[10] POSIX.1d, 1999, IEEE std 1003.d-1000, "Portable
Operating Sysrem Interface)POSIX) Part 1: Systems
Application Programmer Interface (API) Amendment:
Additional Realtime Extensions [C Language]", IEEE.

[11] Wellings, A.J., "Concurrent and Real-Time Programming in
Java", Wiley, 2004.

