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Abstract 
Modern real-time programming languages and operating 
systems provide support for monitoring the amount of 
CPU time a thread consumes. However, no system in 
widespread use fully integrates this monitoring with the 
scheduling facilities. The Real-Time Specification for Java 
(RTSJ) provides an integrated approach to scheduling 
periodic threads and monitoring their CPU execution time. 
It supports a cost enforcement model whereby a periodic 
thread is suspended when it consumes more time than it 
requested. Version 1.0 of the RTSJ is under specified and 
it is difficult to understand the full model. This paper 
clarifies the position and defines the conditions under 
which a real-time thread is resumed. The model presented 
is the one that will be fully defined in version 1.0.1 of the 
RTSJ. Unfortunately, version 1.0.1 of the specification will 
not have a general model for handling cost enforcement 
and deadline monitoring for all schedulable objects. This 
paper proposes extensions to the RTSJ that allow the cost 
enforcement model and deadline monitoring model to be 
consistently applied across all schedulable objects, and for 
it to be fully integrated with scheduling.  

1 Introduction 
Real-time systems must be able to interact with their 
environments in a timely and predictable manner. The days 
when real-time simply meant fast have long gone. It is no 
longer acceptable to build systems and hope that they meet 
their timing requirement. Instead, designers must engineer 
analysable systems whose timing properties can be 
predicted and mathematically proven correct (possibly 
from within a probabilistic framework). Advances in 
scheduling have brought about this change in practice. 

Scheduling is the ordering of thread/process executions 
so that the underlying hardware resources (processors, 
networks, etc.) and software resources (shared data 
objects) are efficiently and predictably used. In general, 
scheduling consists of three components [3] 
• an algorithm for ordering access to resources 
(scheduling policy) 
• an algorithm for allocating the resources (scheduling 
mechanism) 
• a means of predicting the worst-case behaviour of the 
system when the policy and mechanism are applied 

(schedulability analysis — called feasibility analysis by the 
Real-Time Specification for Java (RTSJ) [2]). 

Once the worst-case behaviour of the system has been 
predicted, it can be compared with the system’s timing 
requirements to ensure that all deadlines will be met. 

There have been many different scheduling approaches 
developed over the last 10-15 years [3], for example, cyclic 
scheduling, fixed priority scheduling, earliest deadline 
first, value-based, etc.  Most current real-time 
programming languages and operating systems in 
widespread use today support fixed priority scheduling. 
Some provide support for monitoring the amount of CPU 
time a thread consumes; a few allow the programmer to 
undertake actions if the amount of CPU time a thread 
consumes exceeds a defined value. However, no system 
fully integrates the monitoring with the scheduling 
facilities. Consequently, the system cannot ensure that the 
analysis that has been performed to guarantee the 
application’s deadline will not be undermined by the run-
time execution of the program. The RTSJ is the first main 
stream real-time programming language that attempts to 
fully integrate its scheduling with the CPU execution time 
monitoring facility.  

Unfortunately, version 1.0 of the RTSJ is under 
specified and it difficult to understand the full cost 
enforcement and deadline monitoring model. The initial 
aim of this paper is to clarify the position and define the 
conditions when a periodic real-time thread is descheduled 
due to a cost overrun and describe the mechanisms that 
allow the program to respond. The model presented is the 
one that will be fully defined in version 1.0.1 of the RTSJ. 
However, version 1.0.1 will not have a general model for 
handling cost enforcement and deadline monitoring for all 
schedulable objects. Such a change is beyond the allowable 
changes for a 1.0.1 release. This paper proposes extensions 
to the version 1.0.1 (in particular, the Schedulable 
interface and the RealtimeThread and 
AsyncEventHandler classes) that allow the cost 
enforcement model and deadline monitoring model to be 
consistently applied across all schedulable object, and for it 
to be fully integrated with scheduling. The goal is to begin 
the discussions for a future release of the RTSJ with more 
substantial changes. 

The paper is structured as follows. The remainder of 
this section characterizes the properties of a schedulable 



 

object that must be made available to any real-time 
scheduler that wants to provide guarantees (either offline 
or online). As such, it provides a rationale for the overall 
RTSJ model that is summarised in Section 2. Section 3 
then focuses on the cost enforcement and deadline-
monitoring model for real-time threads and asynchronous 
event handlers, indicating the support provided by version 
1.0.1 of the specification. Section 4 proposes extensions to 
the model. Section 5, addresses the problem of schedulable 
objects with aperiodic release parameters. Section 6 
discusses related work. Finally, section 7 presents the 
conclusions. 

2.1 Scheduling Model 
Most modern approaches to scheduling view the system as 
consisting of a number of real-time threads. Each thread is 
characterized by the following properties [11]. 
Release profile. Typically after a thread is started, it waits 
to be released (or may be released immediately); when 
released, it performs some computation and then waits to 
be released again (the time at which it waits is often called 
its completion time). The release profile defines the 
frequency with which the releases occur; they may be time 
triggered or event triggered. When time triggered releases 
occur on a regular basis, they are called periodic releases. 
Event-triggered releases are typically classified into 
sporadic (meaning that they are irregular but with a 
minimum inter-arrival time) or aperiodic (meaning that no 
minimum inter-arrival assumptions can be made) - of 
course, event-triggered periodic releases and time-
triggered sporadic and aperiodic release are also possible. 
Once a schedulable object has been released, it is eligible 
for execution. During its execution, it may be blocked 
waiting for a resource (for example, a mutual exclusion 
lock). When the resource becomes available, the thread is 
again eligible for execution.  
Processing cost per release. This is some measure of how 
much of the processor’s time is required to execute the 
computation associated with the thread’s release (this may 
be a worst-case value or an average value depending on the 
feasibility analysis being used). It is often referred to as a 
CPU budget. 
Other hardware resources required per release This is 
some measure of the hardware resources needed (other 
than the processor). For networks, it is usually the time 
needed (or bandwidth required) to send the thread’s 
messages across the network. For memory, it is the amount 
and type of memory required by the thread.  
Software resources required per release. This is a list of 
the non-shareable resources that are required for each 
release of the thread and the processing cost of using each 
resource. Access to non-shareable resources is a critical 
factor when performing schedulability analysis. This is 
because non-shareable resources are usually non pre-

emptible. Consequently, when a thread tries to acquire a 
resource, it may be blocked if that resource is already in 
use. This blocking time has to be taken into account in any 
analysis. If the list of software resources is not available 
then a maximum blocking time must be provided. 
Deadline The time that the thread has to complete the 
computation associated with each release. Where the 
deadline of a thread is greater than its minimum period 
between releases (or it has overrun its deadline, and the 
application has decided to let it continue), the thread may 
be released even though the execution associated with the 
previous release has not completed. In this case, when the 
thread does complete, it is immediately re-scheduled for 
execution (re-released). 
Value A metric that indicates the thread’s contribution to 
the overall functionality of the application. It may be: a 
very coarse indication (such as safety critical, mission 
critical, non critical), a numeric value giving a measure for 
a successful meeting of a deadline, or a time-valued 
function which takes the time at which the thread com-
pletes and returns a measure of the value (for those 
systems where there is no fixed deadline). 

One of the key characteristics of schedulability 
(feasibility) analysis is whether the analysis is performed 
off-line or on-line. For safety critical systems, where the 
deadlines associated with schedulable objects must always 
be met (so-called hard real-time systems), off-line analysis 
is essential, as the system must not enter service if there is 
a possibility of deadlines being missed. Other systems do 
not have such stringent timing requirements or do not have 
a predictable worst-case behavior. In these cases, on-line 
analysis may be the only option available. These systems 
must be able to tolerate threads not being feasible (that is, 
failing the schedulability analysis) and offer degraded 
services. Furthermore, they must be able to handle 
deadlines being missed or situations where the assumed 
worst-case loading scenario has been violated.  

2 Schedulable Objects and Scheduling in 
the RTSJ 

The RTSJ provides a framework from within which on-
line feasibility analysis of priority-based systems can be 
performed for single processor systems. The specification 
also allows the real-time JVM to monitor the processing 
resources being used and to release asynchronous event 
handlers if this use of resources goes beyond that specified 
by the programmer. 

The RTSJ incorporates the notion of a schedulable 
object rather than considering just threads. A schedulable 
object is any object that implements the Schedulable 
interface. The current specification supports only two types 
of object that implement this interface, 
RealtimeThreads and AsyncEventHandlers. 



 

They have the following associated attributes (represented 
by classes). 
ReleaseParameters — Giving the processing cost for 
each release (its CPU budget) and the deadline; if the 
object is released periodically or sporadically then 
subclasses allow an interval to be given. (For sporadic 
release parameters, the RTSJ provides facilities to ensure 
that the associated schedulable objects are not released 
more often than the minimum inter-arrival time.) Event 
handlers can be specified for the situation where the 
deadline is missed or the processing resource consumed 
becomes greater than the cost specified. Note, there is no 
requirement for a real-time JVM to monitor the processing 
time consumed by a schedulable object. If it does, then 
there is a requirement that a schedulable object be given 
no more than cost processing units each release (see 
Section 3). Note also, the RTSJ makes no mention of 
blocking time in any of the parameters associated with 
schedulable objects. The assumption is that a particular 
implementation will subclass ReleaseParameters to 
bring in this data.  
SchedulingParameters — This class is abstract; 
however subclasses allow the priority of the object to be 
specified along with its importance to the overall 
functioning of the application. Although the RTSJ 
specifies a minimum range of real-time priorities (28), it 
makes no statement on the allowed values of the 
importance parameter. Indeed, the default priority 
scheduler is not required to use importance in any of its 
scheduling decisions. 
MemoryParameters — Giving the maximum amount 
of memory used by the object in its default memory area, 
the maximum amount of memory used in immortal 
memory, and a maximum allocation rate of heap memory. 
An implementation of the RTSJ is obliged to enforce these 
maximums and throw exceptions if they are violated. 
ProcessingGroupParameters — Allowing several 
schedulable objects to be treated as a group (which has an 
associated period, cost and deadline, see Section 5).  

The methods in the Schedulable interface can be 
divided into three groups. 
• Methods that will communicate with the scheduler and 
will result in the scheduler either adding or removing the 
schedulable object from the list of objects on which it 
performs schedulability analysis (called its feasibility set), 
or changing the parameters associated with the schedulable 
object (but only if the resulting system is feasible).  
• Methods that get or set the parameter classes 
associated with the schedulable object. If the parameter 
object being set is different from the one currently 
associated with the schedulable object, the previous value 
is lost and the new one will be used in any future 
feasibility analysis performed by the scheduler. Note, these 
methods do not result in feasibility analysis being 

performed and the parameters are changed even if the 
resulting system is not feasible. 
• Methods that get or set the scheduler. For systems that 
support more than one scheduler, these methods allow the 
scheduler associated with the schedulable object to be 
manipulated. 
Changing the parameters of a schedulable object whilst it 
is executing can potentially undermine any feasibility 
analysis that has been performed, and cause deadlines to be 
missed. Consequently, the RTSJ provides methods that 
allow changes of parameters to occur only if the new set of 
schedulable objects is feasible. Some parameter changes 
take place immediately (for example, priority and cost 
changes), others do not have an impact on a schedulable 
object’s executions until its next release (for example, 
changes to deadline or period). In all cases, the 
scheduler’s feasibility set is updated. Of course, an 
infeasible system may still meet all its deadlines if the 
worst-case loading is not experienced (perhaps the worst-
case phasing between the threads does not occur, or 
threads do not run to the worst-case execution time). 

The only scheduler that the RTSJ fully defines is a 
priority scheduler, which can be summarized as follows. 
Scheduling policy.  The PriorityScheduler 
• supports the notion of base and active priority – with 
at least 28 unique real-time priorities;  
• orders the execution of schedulable objects on a single 
processor according to the active priority; 
• allows the programmer to assign the base priorities at 
run time; 
• supports priority inheritance or the priority ceiling 
emulation protocol for synchronized objects; 
• assigns the active priority of a schedulable object to be 
the higher of its base priority and any priority it has 
inherited. 
Scheduling mechanism. The PriorityScheduler  
• supports pre-emptive priority-based dispatching of 
schedulable objects; 
• does not define where in the run queue (associated 
with the priority level) a pre-empted object is placed; the 
RTSJ recommends that it be placed at the front of the 
queue; 
• places a blocked schedulable object that becomes 
runnable, or has its base priority changed, at the back of 
the run queue associated with its (new) priority; 
• does not define whether schedulable objects of the 
same priority are scheduled in FIFO, round-robin order or 
any other order. 
Schedulability analysis. The PriorityScheduler requires 
no particular analysis to be supported.  



 

3 Cost Enforcement and Deadline 
Monitoring in Version 1.0.1 of RTSJ 

As mentioned in Section 2, every schedulable object has a 
release profile (periodic, sporadic or aperiodic) and for 
each release it is given a CPU budget of  “cost” and a 
deadline. However, the details of the cost enforcement and 
deadline monitoring models are not well defined in 
Version 1.0 of the RTSJ. This section clarifies the model. 
Section 4 proposes extensions to allow the model to be 
consistently applied across all schedulable objects. 

In Version 1.0.1, the cost enforcement and deadline 
monitoring model applies to periodic real-time threads 
whose deadlines are less than their period and to 
asynchronous event handlers. In both cases, event handlers 
may be released when cost overruns and deadline misses 
occur. However, the response of the system when handlers 
are not released is different. 

3.1 Periodic Real-Time Threads 
Each thread can define (but need not do so) deadline-miss 
and cost-overrun asynchronous event handlers. An 
implementation must support deadline monitoring, and it is 
required that any deadline-miss handler be released at the 
point its associated real-time thread misses its deadline 
(note, however, the real-time thread remains executable). 
Cost overrun detection is optional. If cost monitoring is 
supported, the RTSJ requires that the priority scheduler 
gives a schedulable object a CPU budget of no more than 
its cost value on each release. Hence, if a periodic real-
time thread overruns its cost budget, it is automatically 
suspended. It will not be resumed until either its next 
release occurs (in which case its budget is replenished) or 
its associated cost value is increased.  

The RealtimeThread class has the following 
methods to support the overall model: 

• waitForNextPeriod – when called by a periodic  
real-time thread (and in the absence of any deadline miss),  
the thread is blocked until its next release, when the 
method returns true; 

• deschedulePeriodic – when called, the real-
time thread is descheduled when it finishes its current 
release (i.e. calls waitForNextPeriod); 

• schedulePeriodic – when called, if the real-time 
thread is currently descheduled in waitForNext-
Period, it is re-scheduled when its next release occur (if 
not already descheduled, schedulePeriodic cancels 
any outstanding deschedulePeriodic requests). 

If the programmer has set up an appropriate deadline- 
miss handler, the RTSJ assumes that the handler will take 
some corrective action on a deadline miss and then (if 
appropriate) reschedule the real-time thread by calling the 
schedulePeriodic method. If no call to the 

schedulePeriodic method has been made in between 
the deadline miss and the call to waitForNextPeriod, 
the method automatically deschedules the real-time thread 
(a call to waitForNextPeriod signals the end of the 
current release). It remains descheduled until a call to 
schedulePeriodic is made. In this situation, the 
waitForNextPeriod method returns at the next 
release time following the call to schedulePeriodic. 
All releases in between are lost. A descheduled thread, by 
definition, cannot miss any further deadlines. 

If the programmer has not set up the appropriate 
handler, the waitForNextPeriod method assumes that 
the real-time thread itself will undertake some corrective 
action and then call waitForNextPeriod again. 
Hence, the method returns false immediately indicating 
that the current release is still active and the real-time 
thread should respond to the deadline-miss condition. 

The behavior of a real-time thread with periodic release 
parameters can be defined in terms of four private 
variables added to the real-time thread state, which are not 
accessible to the programmer (here it is assumed that no 
changes to the release parameters occurs):  

• boolean lastReturn ⎯ the last value returned 
by waitForNextPeriod,   

• integer missCount ⎯ the number of deadlines 
that have been missed and that have not been 
communicated to the application (by releasing a deadline-
miss handler) 

• boolean descheduled ⎯ when true, results in 
the thread being descheduled at the end of its current 
release (it will not receive any further release events and 
no deadlines can be missed) 

• integer pendingReleases ⎯ indicates the 
number of outstanding release events (periods) that haven’t 
been acted upon.  
The semantics of these values are detailed below. The 
approach is to consider each significant event in the 
execution of an RTSJ program that manipulates them. 
1. On each deadline miss: if the associated real-time 

thread has a deadline-miss handler, the value of 
descheduled is set to true, the deadline miss 
handler is released and the missCount is set to 
zero1. If the real-time thread does not have a deadline-
miss handler, one is added to its missCount value. 

                                                           
1 Any outstanding deadline misses not acted upon by the 
program will be passed to the asynchronous event handler 
(AEH) at this time  (via the AEH’s fireCount – see 
section 3.2), hence missCount is set to zero. 



 

2. On each cost overrun: the execution of the real-time 
thread is suspended (its new state is blocked-for-cost-
replenishment) - any overrun handler is released. 

3. At the start of each period: If the thread is waiting 
for its next release (that is, it is blocked-for-reschedule 
in waitForNextPeriod) and it is descheduled, no 
action is taken. Otherwise, the thread’s 
pendingReleases value is incremented. If the 
thread is waiting for its next release, it is notified. If 
the thread is not eligible for execution because it is 
blocked-for-cost-replenishment, its cost budget is 
replenished and it is made eligible for execution. 

4. When the thread’s schedulePeriodic method is 
invoked: the value of descheduled is set to false. 
If the thread is blocked-for-reschedule in 
waitForNextPeriod, the value of 
pendingReleases is set to zero and the thread is 
notified. 

5. When the thread’s deschedulePeriodic 
method is invoked: the value of descheduled is 
set to true. 

6. When the thread’s cost parameter changes: if the 
change causes the thread’s cost budget to be depleted 
and the thread is currently eligible for execution, a 
cost overrun is triggered for the thread (see 2. above), 
otherwise if the change causes the cost budget not to 
be depleted and the thread is currently blocked for cost 
replenishment, the thread is made eligible for 
execution. 

7. When the waitForNextPeriod method is 
called: there are two possible behaviors depending on 
the state of missCount and descheduled: 

• If missCount is greater than zero: the 
missCount value is decremented. If the 
lastReturn value is false, pending-
Releases is decremented and false is returned. 
If the lastReturn value is true, it is set to false 
and false is returned. 

• Otherwise, the method waits while the 
descheduled value is true or 
pendingReleases is zero, then pending-
Releases is decremented and the 
lastReturn value to set to true and the method 
returns true. 

A return of false from the waitForNextPeriod 
method indicates that the current release has missed its 
deadline. A second return of false indicates that not only 
did the current release miss its deadline, but also the next 
release has already occurred and the deadline for that 
release has been missed. 

3.2 Asynchronous Event Handlers 
The RTSJ views asynchronous events as data-less 
occurrences that are either fired by the program or 
associated with the triggering of interrupts (or signals or 
other asynchronous events) in the environment. One or 
more handlers can be associated with a single event, and a 
single handler can be associated with one or more events. 
The association between handlers and events is dynamic. 
Each handler has a count (called fireCount) of the 
number of outstanding occurrences. When an event occurs, 
the count is atomically incremented. The attached handlers 
are then released for execution. Recall from section 2, a 
schedulable object can be released even though it has not 
completed the execution associated with its previous 
releases. The fire count caters for this situation, allowing 
the implementation to start the execution associated with 
the new release immediately the old releases have finished.  

The release of each asynchronous event handler (AEH) 
has an associated deadline and cost budget. As with real-
time threads, other event handlers can be released if 
deadline misses or cost overruns occurs. Cost overruns 
result in the errant AEH being automatically suspended 
until either its cost parameter is increased, or it is released 
again.  

To support optimizations of event handlers, the RTSJ 
allows an AEH to manipulate its fireCount value. 
These methods do not have an impact on either the current 
deadline or the current cost budget  

4 Generalising the RTSJ Model 
Version 1.0.1 of the RTSJ provides a much more detailed 
explanation of its cost enforcement and deadline 
monitoring model. However there are two weaknesses in 
the approach that require more significant changes to the 
specification. These changes go beyond the removal of 
ambiguity and errors that are normally associated with a 
minor re-release of the specification. These weaknesses 
are: 
• the support for sporadic and aperiodic real-time 
threads is not adequate to allow multiple releases and the 
detection of a deadline miss or a cost overrun; furthermore, 
sporadic and aperiodic threads cannot be descheduled ; 
• the support for asynchronous events does not allow a 
handler to recover from a deadline miss other than by 
releasing another asynchronous event handler  ⎯ this is 
not consistent with the model provided for periodic real-
time threads;  furthermore, asynchronous event handlers 
cannot be descheduled. 
This section considers how the facilities supported by 
version 1.0.1 of the RTSJ can be generalized to provide 
consistent support for all schedulable objects and whose 
deadlines can be less than, equal to, or greater than the 
time between releases. It should be stressed that this 



 

proposal is not sanctioned or supported by any Java JSR. 
The goal is to help stimulate discussion in the community 
on the functionality of future RTSJ releases. 

In order to generalize the facilities provided by the 
RTSJ and provide a consistent set of mechanisms for all 
schedulable objects it is necessary to augment: 

• the Schedulable interface with facilities to allow a 
schedulable object to be included/excluded from the set of 
schedulable objects currently being considered for 
execution; 

• the RealtimeThread class with a general release 
mechanism; 

• the AsyncEventHandler class with a mechanism 
to handle deadline misses when no deadline miss handler 
has been specified. 

4.1 An Extended Schedulable Interface  

Currently the RTSJ provides a mechanism that allows a 
periodic real-time thread to be removed from the current 
group of objects that are eligible for scheduling 
(deschedulePeriodic). The “suspension” is not like 
the normal asynchronous suspend operation that has been 
deprecated in standard Java. It is a much safer real-time 
equivalent, as the “suspension” occurs at the end of the 
current release. The corresponding “resume” mechanism is 
provided by schedulePeriodic. This paper proposes 
that these mechanisms should be generalized and made 
available to all schedulable objects and, consequently, 
should be provided in the Schedulable interface: 

• deschedule – when called, the schedulable object 
is descheduled (made not eligible for release) when it 
finishes its current release; 

• schedule – when called, if the schedulable object is 
currently descheduled, it becomes eligible for release; it 
next executes when its next release occurs. 
All releases that occur when a schedulable object is 
descheduled are lost and, by definition, no deadlines are 
missed. 

4.2 An Extended  RealtimeThread Class 

As well as providing methods to implement deschedule 
and schedule (the new methods in the Schedulable 
interface), the RealtimeThread class should provide: 

• waitForNextRelease – when called by a real-
time thread, in the absence of any deadline-miss condition,  
the thread is blocked until its next release occurs; 

• release – when called, this indicates that the real-
time thread should be released. 
With this proposal, the current waitForNextPeriod 
method would be synonymous with 

waitForNextRelease; deschedulePeriodic 
synonymous with deschedule and schedule-
Periodic synonymous with schedule. The scheduler 
will usually be responsible for releasing a real-time thread 
with periodic release parameters. However, the application 
can force a release by calling the release method 
explicitly. Such a facility might be useful during mode 
changes; though care must be taken not to undermine any 
feasibility analysis. 

4.3 An Extended AsyncEventHandler Class 

As well as providing methods to implement deschedule 
and schedule, this extended class should provide a 
deadlineMissCondition ⎯ this method would be 
called by the system (at the end of the current release) if 
an event handler missed a deadline and has no deadline 
miss handler specified.  This would allow an event handler 
to provide a response in a similar manner to the “false 
return” from the waitForNextRelease method in the 
RealtimeThread class. 

4.4 A Consistent Model of Deadline 
Monitoring and Cost Enforcement for all 
Schedulable Objects 
Given the above mechanisms, it is now possible to define a 
consistent integrated model for deadline monitoring and 
cost enforcement. 

For an arbitrary release, j, of a schedulable object, the 
CPU budget is automatically fully replenished to cost 
units when 
• release j-1 has completed (or release j-1 has been 
suspended as a result of a cost overrun), and 
• release j has occurred. 
Hence,  
• if the completion time (or the suspension time)  is less 
than or equal to the time between releases,  the CPU 
budget is replenished at the time of release j; 
• if the completion time (or suspension time) is greater 
than the time between releases,  the CPU budget is 
replenished at the time of completion (or suspension) of 
release j-1. 
The completion point for a real-time thread is when it calls 
the waitForNextRelease method. For an 
asynchronous event handler, the completion point is when 
it returns from the handleAsyncEvent method. 

A cost overrun results in the schedulable object being 
immediately automatically suspended - made not eligible 
for execution - and any cost overrun handler released 
(assuming cost enforcement is supported). The schedulable 
object will not be resumed until either  



 

• its next release occurs (or has occurred, in which case 
its CPU budget is automatically replenished with the cost 
value) or  

• its associated cost value is increased.  
Note, that the release of a schedulable object with sporadic 
release parameters may be subject to a delay in order to 
satisfy any minimum inter-arrival time restrictions. 

If the schedulable object misses its deadline, it remains 
eligible for execution (unless it has also suffered a cost 
overrun). Any associated deadline-miss handler is released 
at the point the deadline expires. If there is no associated 
handler, a count is kept of the number of missed deadlines. 

When a schedulable object has missed its deadline and 
indicates that it has completed its current release (called 
the waitForNextRelease method for a real-time 
thread, and returned from the handleAsyncEvent 
method for an event handler), the system undertakes the 
following: 
• if a deadline has been missed and there was an 
associated deadline-miss handler, the schedulable object is 
descheduled unless the schedule method has been 
called since the last deadline miss; if it is descheduled, it 
will remained descheduled until schedule is called; 

• if there is no deadline miss handler, the 
deadlineMiss count is decremented,  the system then 
requests that the schedulable object provide a recovery 
mechanism; for a real-time thread, it does this by 
waitForNextRelease returning false immediately ⎯ 
subsequent calls to waitForNextRelease return false 
if the count is greater than 0 and there has been no 
subsequent call to schedule since the last deadline miss. 
For an event handler, the deadlineMissCondition 
method is called immediately the handleAsyncEvent 
returns ⎯ the method is called again if the count remains 
above zero and no call to schedule has occurred since 
the last deadline miss.  

5 Handling Aperiodic Activities 
In any system where it is required to give guarantees, 
aperiodic schedulable objects present a problem. As they 
have no well-defined release characteristics, they can 
impose an unbounded demand on the processor’s time.  

To support aperiodic activities, a server can be 
employed. Servers protect the processing resources needed 
by periodic and sporadic schedulable objects but otherwise 
allow aperiodic schedulable objects to run as soon as 
possible. The real time community has defined several 
types of servers. The one that is most relevant to the RTSJ 
is a deferrable server [7]. With the deferrable server, an 
analysis is undertaken that enables a new thread to be 
introduced at a particular priority level. This thread, the 
server, has a period and a capacity. These values can be 

chosen so that all the periodic and sporadic schedulable 
objects in the system remain schedulable even if the server 
executes periodically and consumes its capacity. At run-
time, whenever an aperiodic thread is released, and there is 
capacity available, it starts executing at the server’s 
priority level until either it finishes or the capacity is 
exhausted. In the latter case, the aperiodic thread is 
suspended (or transferred to a background priority). With 
the deferrable server model, the capacity is replenished 
every period. 

The RTSJ provides support for aperiodic server 
technologies via processing group parameters. When 
processing group parameters are assigned to one or more 
schedulable object, a server is effectively created. The 
server’s start time, cost (capacity) and period is defined by 
the particular instance of the parameters. These 
collectively define the points in time when the server’s 
capacity is replenished. 

Any aperiodic schedulable object that belongs to a 
processing group is executed at the schedulable object’s 
defined priority. However, it only executes if the server 
still has capacity (and it has not overrun its own individual 
CPU budget). As it executes, each unit of CPU time 
consumed is subtracted from the server’s capacity (as well 
as its own). When capacity is exhausted, the aperiodic 
threads are not allowed to execute until the start of the next 
replenishment period. If the application only assigns 
aperiodic schedulable objects of the same priority level to a 
single ProcessingGroupParameters object, then 
the functionality of a deferrable server can be obtained [4]. 

6 Related Work 
Over the last 10-15 years, there has been a gradual 
migration from sequential real-time systems based on 
cyclic scheduling to concurrent real-time systems based on 
priority-based scheduling. In cyclic executives, overrun 
conditions are automatically caught if one minor cycle is 
still executing when the next is due.   However, industrial-
strength modern languages and operating systems have 
been slow to realize the importance of monitoring the 
amount of CPU time consumed by a concurrent entity. 
Any support that has been provided has been in the context 
of profiling an application looking for hot spots.  

The problems are further compounded by the lack of 
support provided for release profiles for concurrent 
entities. For example Ada 95 [1], CHILL [5] and the real-
time extensions to POSIX [10] do not support the explicit 
specification of periodic or sporadic processes with 
deadlines; rather a delay primitive, timer and so on, must 
be used within a looping construct (although POSIX does 
allow a periodic timer to be set). Any deadline overrun 
detection mechanisms must similarly be programmed with 
low-level mechanisms such as the "select then abort" 
statement in Ada or via watchdog timers in real-time 
POSIX.  



 

The notable exception to this "low level mechanism" 
approach occurs in the German industrial control language 
PEARL [9] which provides explicit timing information 
concerning the start, frequency and termination of 
processes. Some research-oriented languages have also 
taken this approach (for example, Real-Time Euclid [6]). 

The situation with CPU budgets and cost enforcement 
nowadays is more encouraging. The POSIX community 
has led the way by supporting execution time monitoring 
by extending its clock and timer facilities to include CPU-
time clocks for processes and threads. Each process/thread 
has an associated execution-time clock whose current 
value can be queried or set. The standard POSIX timers 
can be used to create timers that generate process signals 
when the execution time set has expired. However, it has 
no facilities other than setjmp and longjmp to provide 
controlled termination of the errant thread.  

In the current revision process of Ada (for Ada 2005) it 
is likely that facilities similar to those provided by POSIX 
will be added. In particular, a new clock is proposed which 
measures CPU execution time. A timer can be constructed 
via an Ada protected type. This allows the mechanisms to 
be linked into other Ada facilities, such as the “select then 
abort” statement, to provide various models [8].  However, 
scheduling and CPU monitoring has not been fully 
integrated in the way that it is with the cyclic executive 
approach and with the RTSJ. 

7 Conclusions 
This paper has clarified the intended support for cost 
enforcement and deadline monitoring in the RTSJ. 
However, there is not a consistent model for the integration 
of scheduling, cost enforcement and deadline monitoring 
for all schedulable objects, irrespective of their release 
profiles. Modifications to the following interfaces and 
classes have been proposed to rectify this problem: 

• Schedulable interface ⎯ the addition of methods 
to deschedule and schedule a schedulable object at 
the end of its current release and at the start of its next 
release respectively.  

• RealtimeThread class ⎯ methods to implement 
the new functionality in the Schedulable interface, a 
method that allows a real-time thread to wait for its next 
release and a method that allows the application to indicate 
that a real-time thread should be released. 
 
 
 
 
 
 

• AsyncEventHandler class ⎯ methods to 
implement the new functionality in the Schedulable 
interface, a method that is called by the implementation 
when an asynchronous event handler misses its deadlines 
and has not specified a handler for this condition. 

With these modifications, a model has been proposed 
which will ensure that schedulable object execution will 
remain within the cost boundaries the programmer has 
specified (and has been assumed in the feasibility 
analysis). They can be used in conjunction with the 
asynchronous transfer of control facilities to provide 
structured support for immediately informing a 
schedulable object that its deadline has been missed or its 
cost overrun. They are fully integrated within the RTSJ 
scheduling model. 
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