
Locking Policies for Multiprocessor Ada

A. Burns and A.J. Wellings
Department of Computer Science,

University of York,
YO10 5GH, UK

Abstract

Lock-based resource sharing protocols for single processor systems are well understood and sup-
ported in programming languages such as Ada. In contrast, multiprocessor resource sharing protocols
are less well developed with no agreed best practice. In this paper we consider what the next version of
Ada should support. Two proposals are considered, one requiring a minor change to the current language,
another requiring a more substantial change.

1 Introduction

One of the significant extensions made to the definition of Ada during the Ada 2012 revision process was
the support provided for programming multi-tasking systems for execution on multiprocessor platforms.
The new language features, however, did not provide complete support for this paradigm. In particular, the
need to support the efficient use of protected objects accessed by tasks executing in parallel was not really
addressed. This lack of support is not really surprising as appropriate locking policies for such shared object
have not yet been identified. Although there has been some success in determining the necessary support for
scheduling [7], the issue of how best to support multiprocessor lock-based resource control protocols is far
from clear. New results are emerging; indeed, there is a plethora of proposed schemes (see [10] for a review
of the literature in this area, and the work of Brandenburg [4]); a consensus is, unfortunately, far from being
realised.

In this paper we consider two possible policies, one that can be achieved with only minor modifications
to Ada, the other requiring a new locking policy to be defined in the language. We concentrate on fixed
priority scheduling.

2 Ada 2012 Provision

Ada 2012 allows a collection of processors (CPUs) to be partitioned into a distinct set of dispatching do-
mains, (DDs). A task runs in only one DD. Within a DD, a task can be either bound to a single CPU, or
be allowed to execute and migrate over the entire DD. In this way, the two classic ways of scheduling tasks
(partitioned and global) can be supported as well as a number of semi-partitioned schemes [5].

Real programs share data; in Ada this means having concurrent access to protected objects (POs). With
a single processor, an effective sharing scheme is delivered by the pragma Locking Policy(Ceiling
Locking) which assigns a ceiling priority to each PO. Whenever a task enters a PO its priority is raised
to the ceiling. As a result, blocking time is minimised and deadlocks are prevented (where blocking time
is the time a task has to wait until a lower priority task has completed some action). As indicated above,
a similar well-accepted scheme for multiprocessor platforms and parallel (not just concurrent) access does
not yet exist.

1



The only support that Ada 2012 gives to concurrency control for POs in multiprocessor platforms is
to allow Locking Policy(Ceiling Locking) to mean that a task will spin at the ceiling priority if
immediate access to the PO is not possible (as another task on a different CPU is currently executing with
the PO lock).

As partitioned systems provide the greatest challenge for the definition of effective locking policies, we
restrict our considerations in this paper to programs that consist of a single dispatching domain onto which
all tasks are statically allocated. We note that this is the recommended structure for the Ravenscar protocol
when implemented on a multiprocessor architecture.

3 Blocking Time

As noted in the previous section, an effective locking scheme must bound the impact on schedulability. With
a static task allocation model, an ideal scheme would imply that for any task τi the progress it makes towards
completing before its deadline should only be negatively impacted by tasks of a higher priority running on
the same processor. Putting this another way, a task should not be blocked by lower priority tasks on the
same processor or by any task on another processor.

Unfortunately this ideal cannot be fully met if resources are to be shared under mutual exclusion. So if
task τi shares a protected object (POj) with task τk then, if τk has a lower priority or is allocated to another
CPU, blocking will occur. If all POs are only accessed by tasks on the same processor then the priority ceil-
ing protocol [15] (as supported by Locking Policy(Ceiling Locking)) gives a minimum blocking
time. Where more than one processor is involved, two issues arise; assume POj is being used by τk, and τi
wishes to gain access:

• should τi continue to spin while waiting to gain access, or should it be suspended? and

• as τk can be locally preempted, by a local high priority task (higher priority than the ceiling of POj),
τi can be held up for a relatively long interval of time.

There is considerable evidence (see [10, 4]) that spinning is the most appropriate approach to use unless
protected operations are exceedingly long (which most guidelines argue against). Moreover, suspension
brings with it another scheduling issue, as the state ‘suspended waiting to gain access to a protected object’
is not currently part of the tasking model within Ada. Therefore, it seems appropriate to use spinning as Ada
currently recommends. However, to bound the time that it takes to gain access (using spinning) it must be
possible to impose some form of queue on the waiting tasks (for example, a FIFO queue – see discussion
below).

To deal with the second issue we consider two schemes: Non-Preemptive Locking and a Multiprocessor
Resource Sharing Protocol which we name MrsP. These are now considered.

4 Non-Preemptive Locking

If all the POs are executed non-preemptively then, obviously, a task cannot be preempted while holding a PO
lock. It follows that it will hold the lock for the duration of the protected action (which we will represent by
aj for POj). If there is FIFO spinning then the maximum time a task can wait to gain access is (mj − 1)aj
where mj is the number of processors on which is allocated a task that uses POj . This represents external
blocking time for the task. Its total execution time for using the PO will be (mj − 1)aj + aj which is just
mjaj .

So for task τi it has external blocking of (mj − 1)aj for each resource it uses, and for any local task τk
with priority higher than τi it has local blocking of mjaj . As non-preemption is an extreme form of ceiling

2



locking then arbitrary task τi will have a single local blocking term equal to the maximum value of mjaj
over all tasks τs with priority lower than τi.

To implement this approach in Ada 2020, a minor variation to the current locking policy is needed. As
well as spinning, a FIFO queue is required. This could be a refinement to the definition of Locking Policy
(Ceiling Locking) or could be a new pragma. Non-preemption locking can be achieved with current
Ada by just assigning the ceiling priority of all POs to be higher than the priority of all tasks. Alternatively
a new explicit locking policy, Locking Policy(Non Preemptive Locking), could be defined.

The disadvantage of the non-preemption approach is that the high priority tasks (those that typically
have the shortest deadlines) suffer significant blocking (both local and external). The amount of blocking
is bounded but may be too much to guarantee that deadlines will never be missed. If guarantees can be
made (blocking is manageable) then there is no better protocol than non-preemption. The next protocol to
be defined is for use when non-preemption is not adequate.

We note that once true parallel execution is enabled then failures such an deadlock are possible. Pure
non-preemption can lead to deadlock if resource use is nested (i.e one protected object calls another). A
common deadlock prevention scheme is to statically order resources and to only allow access to resources
with an order number greater than that of any currently held resource. Although this may be considered a
restriction on the expressive power of the computational model, it is more expressive than those protocols
that ban nested usage or require a group lock – that has the same impact as non-nesting. Within Ada the use
of exceptions for ‘out of order’ requests allow robust programs to be developed. We have investigated the
use of nested but ordered locks for general multiprocessor resource control protocols elsewhere [10] (though
not for non-preemption or MrsP). The adoption of ordered locking for the protocols discussed in this paper
is straightforward, though not covered further here.

5 Multiprocessor Resource Sharing Protocol - MrsP

There are a number of multiprocessor priority ceiling protocols discussed in the literature, for example
[13, 14, 12, 16, 9, 1, 2, 8, 11, 3]. MrsP has the distinctive property that it deals fairly with both high and
low priority tasks. In this section we first define a general model for MrsP, then an Ada-specific version is
defined. Finally, an implementation scheme is described.

5.1 The MrsP Protocol

If we return to the single processor notion that all activities associated with protected object POj occur
at the ceiling priority of POj , then tasks of high priority are unaffected by the existence of the PO. This
is clearly not true for the non-preemptive protocol. But if spinning occurs at the ceiling level then legal
preemption of the lock-holding task leads to excessive blocking (as described earlier). MrsP (defined in a
non-Ada paper [6]) eliminates this excess by using a ‘helping scheme’ [16].

We define here the MrsP protocol for non-nested PO usage (it is easily extended to nested usage). The
basic aspects of the protocol are:

1. All POs are assigned a set of ceiling priorities, one per processor (for those processors that have tasks
that use the resource); for processor pk it is the maximum priority of all tasks allocated to pk that use
the resource.

2. An access request on any PO results in the priority of the task being immediately raised to the local
ceiling for the PO.

3. Accesses to a PO are dealt with in a FIFO order.

3



4. While waiting to gain access to the resource, and while actually using the resource, the task continues
to be active and executes (possible spinning) with priority equal to the local ceiling of the PO.

5. Any task waiting to gain access to a resource must be capable of undertaking the associated computa-
tion on behalf of any other waiting task.

6. This cooperating task must undertake the outstanding requests in the original FIFO order.

So all action takes place at the ceiling priority level (hence higher priority tasks are not impacted). If there
is no local preemptions then a task will wait at most (mj − 1)aj to gain access (as described earlier). But
if there is a local preemption then the waiting tasks must take over the work. In the worst case task τi when
accessing POj will execute the protected actions on behalf of the other tasks that want to use POj (but are
preempted). So rather than spin unproductively the task executes the protected actions on behalf of other
task ahead of it in the queue. As long as at least one task is free to execute then progress will be made. And
if all tasks are locally preempted then it is acceptable for no progress to be made as all involved processors
are executing tasks with higher priorities.

5.2 Ada-Specific MrsP

The general definition of MrsP required each protected object (shared resource) to have a ceiling priority
per processor. Although such a protocol could be defined for Ada, here we give a more constrained protocol
that is closer to current Ada. The first rule of the protocol (defined above) is replaced by:

1. All POs are assigned a ceiling priority, it is the maximum priority of all tasks that use the resource1.

In other words, this is the current definition of the priority ceiling for a protected object. With this definition
it remains the case that all actions take place at the ceiling priority level (hence higher priority tasks are not
impacted), but the actual value of the ceiling might be higher than it would be with the more expressive
protocol.

So, for example, if a set of tasks (τ1 . . . τ6; each with priority pi, with p6 > p5 etc.) are statically
allocated to two CPUs in the following way: τ2, τ4 and τ6 to CPU(1) and τ1, τ3 and τ5 to CPU(2). Assume
two POs (POx and POy). Let τ1 and τ4 access POx; and τ2 and τ4 access POy. Both POs therefore have
the priority ceiling p4 (one is used by tasks on different CPUs, the other is used by co-located tasks).

Let the execution time of the protected actions be A. Each task can be analysed in the following way:

τ1 Interference from τ3 and τ5; no blocking, use of POx costs 2A.

τ2 Interference from τ4 (including 2A from its use of POx) and τ6; no blocking, use of POy costs A.

τ3 Interference from τ5; blocking, via POx, of 2A.

τ4 Interference from τ6; blocking, via POy, of A; use of POx costs 2A.

τ5 No interference or blocking; ceiling priority of the POs (p4) less then p5.

τ6 No interference or blocking; ceiling priority of the POs (p4) less then p6.

If the full MrsP protocol had been used then τ3 would not suffer blocking as τ1 would spin at priority p1
(not p4). Note also that if non-preemption was used then τ5 and τ6 would also suffer blocking.

1This requires all tasks to be assigned priorities that are globally consistent even though the task set is partitioned amongst the
available processors. So, for example, deadline monotonic priorities assignment could be applied to the complete task set before it
is partitioned.

4



5.3 Implementation of Ada-Specific MrsP

In the context of Ada the notion of one task executing the code of a protected action on behalf of another
task (that has been released from an entry barrier) is part of the standard implementation model. Hence the
requirements for MrsP are not exceptional.

Ada provides for tasks to migrate between CPUs in the same dispatching domain. Here we assume
that tasks are statically allocated to CPUs apart from when they migrate to implement MrsP. Hence all the
functionality required (and explained in the following pseudo code) would be supported in an Ada 2012
compliant run-time support system.

The basis of the implementation scheme is to dynamically associate a set of affinities with each PO2. An
attempt to lock a PO adds a CPU to the PO’s affinities. While accessing the PO, the task inherits the PO’s
affinities and hence it can execute on any CPU that has a waiting (spinning) task. The following pseudo
code outlines a possible implementation; in this code R is the PO, t is the accessing task and p is the CPU
from which the lock request is being made (ie. t is executing on p). The code also keeps track, in R(t), of
the id of the task that currently holds the lock (if there is one, otherwise R(t) is null). When the request to
lock R is made, the protocol raises the priority of the t to the local ceiling and sets the affinity of the PO
to include its own affinity. If the PO is already locked, it sets the current lock-holder’s affinity to be that of
the resource and spins at the next available position in the FIFO queue. The task continues to spin until it is
released (by the action of some other task calling Unlock).

Lock (R, t, p) ->
raise priority of t to local ceiling of R
Affinities(R) := Affinities(R) + p
if already locked
get current resource user R(t)
Affinities(R(t)) := Affinities(R)
obtain FIFO lock on R and spin

else
Affinities(t) := Affinities(R)

end if
set current lock holder to self
raise priority of t by 1
-- use R

Unlock(R, t, p) ->
Affinities(R) := Affinities(R) - p
Release next task in FIFO queue (if there is one)
Affinities(t) := p
lower priority of t to its base value

It should be noted that all code is run at the ceiling priority of the resource, and hence the protocol does
not contain any non-preemptive sections.

The use of ‘+1’ in assigning the task’s priority means that the task holding the PO lock can migrate to
any processor on which there is a spinning task, and then preempt that spinning task. Obviously no other
task can be allocated this priority. And to be clear, the spinning task must be waiting to gain access the the
same PO.

We define this new locking policy: Locking Policy(MRSP Locking).
2A task’s affinity is the set of processor on which it is allowed to execute.

5



6 Global Scheduling

The MrsP approach has been defined for fully partitioned single dispatching domain (DD) systems. Here
we consider how to generalise the protocol. Within a single DD if some of the involved tasks are globally
scheduled (their affinities are equal the full set of CPUs) then the protocol is easily implemented as progress
will always be made unless there are N higher priority tasks runnable (for N CPUs).

If there is a combination of fixed and global tasks (within the same DD) then the partitioned tasks must
inherit the full set of CPUs when it is accessing a PO shared with one or more ‘global’ tasks.

Between DDs, the situation is less clear. What is the right means of communicating between tasks
within different DDs? Perhaps only non-locking protocols should be used. It would seem inappropriate to
use MrsP. One of the key properties of the Ada model, in its use of DDs, is that tasks can never migrate
between DDs. The use of migration for MrsP would seem to prevent its use. One is therefore left with
non-preemptive locking for POs that are shared between DDs.

7 Conclusions

To complete the definition of Ada for use on multiprocessor platforms it is necessary to define appropriate
locking policies for protected objects (PO). Currently, the language recommends spinning at the ceiling
priority of the PO. We argue here that, at a minimum, a queuing discipline needs to be added to this policy.
And that, at least, FIFO queuing should be supported.

With FIFO spinning, non-preemptive locking (if it can deliver a schedulable system) is an acceptable
policy. It is easy and efficient to implement. However, on a single processor system, non-preemption is
not considered sufficient (hence the use of ceiling locking). On a multiprocessor, blocking is inevitably
increased and it is therefore unlikely that non-preemption can form the basis of a general purpose solution.

The MrsP policy uses controlled migration to ensure that external and internal blocking is limited (to
its minimum value). High priority tasks with short deadlines will not suffer blocking from POs with lower
ceiling priorities. Clearly an implementation is required to evaluate the overheads with the policy. We
recommend that such an implementation is attempted, and if successful the policy be included in Ada 2020.

References
[1] A. Block, H. Leontyev, B. B. Brandenburg, and J. H. Anderson. A flexible real-time locking protocol for multi-

processors. In 13th International Conference on Embedded and Real-Time Computing Systems and Applications,
RTCSA ’07, pages 47–56. IEEE Computer Society, 2007.

[2] B.B. Brandenburg and J.H. Anderson. Optimality results for multiprocessor real-time locking. In Real-Time
Systems Symposium (RTSS), pages 49–60, 2010.

[3] B.B. Brandenburg and J.H. Anderson. Real-time resource sharing under cluster scheduling. In Proc. EMSOFT.
ACM Press, 2011.

[4] Björn B. Brandenburg. Scheduling and Locking in Multiprocessor Real-Time Operating Systems. PhD thesis,
The University of North Carolina at Chapel Hill, 2011.

[5] A. Burns and A.J. Wellings. Dispatching domains for multiprocessor platforms and their representation in Ada.
In J. Real and T. Vardanega, editors, Proc. of Reliable Software Technologies - Ada-Europe 2010, volume LNCS
6106, pages 41–53. Springer, 2010.

[6] A. Burns and A.J. Wellings. A schedulability compatible multiprocessor resource sharing protocol - MrsP. In
Under Review, 2013.

[7] R.I. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems. ACM Computing
Surveys, 43(4):35:1 –35:44, 2011.

6



[8] D. Faggioli, G Lipari, and T. Cucinotta. The multiprocessor bandwidth inheritance protocol. In Proc. of the 22nd
Euromicro Conference on Real-Time Systems (ECRTS), pages 90–99, 2010.

[9] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of real-time task sets in single and multi-
processor systems-on-a-chip. In Proc. 22nd RTSS, pages 73–83, 2001.

[10] S. Lin, A. Burns, and A.J. Wellings. Supporting lock-based multiprocessor resource sharing protocols in real-
time programming languages. Provisionally accepted for Concurrency and Computation: Practice and Experi-
ence, 2012.

[11] J.P. Lozi, G. Thomas, G. Muller, and J. Lawall. The remote core lock (RCL): Can migrating the execution of
critical sections to remote cores improve performance? In EuroSys11, 2011.

[12] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheritance Approach. Kluwer Academic
Publishers, 1991.

[13] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time synchronization protocols for multiprocessors. In Proc. 9th
IEEE Real-Time Systems Symposium, pages 259–269, 1988.

[14] R. Rajkumar, L. Sha, and J.P. Lehoczky. Real-time synchronization protocols for shared memory multiproces-
sors. In Proc. of the 10th International Conference on Distributed Computing, pages 116–125, 1990.

[15] L. Sha, R. Rajkumar, and J.P. Lehoczky. Priority inheritance protocols: An approach to real-time synchronisation.
IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[16] H. Takada and K. Sakamura. A novel apporach to multiprogramming multiprocessor synchronization for real-
time kernels. In Proc. 18th IEEE Real-Time Systems Symposium, pages 134–143, 1997.

7


