
Programming Simple Reactive Systems in Ada:
Premature Program Termination

A.J. Wellings, A. Burns, A.L.C. Cavalcanti and N.K. Singh
Department of Computer Science, University of York

Heslington, York YO10 5GH, UK
(andy.wellings, alan.burns, ana.cavalcanti, neeraj.singh)@york.ac.uk

Abstract

Reactive systems are systems that respond to stimuli from the environment within the time con-
straints imposed by the environment. This paper identifies an ease-of-use issue with Ada for devel-
oping small reactive systems. The problem is that Ada defines program termination solely in terms
of whether all tasks have terminated. There are, however, some advantages in adopting a purely
interrupt-driven design in the implementation of small reactive systems. With such programs, there
are no tasks other than the environment task, which typically terminates when it finishes executing
the main program. We argue that this is not the expected behaviour. To avoid this unexpected
premature program termination, this paper proposes changes to the program termination condi-
tions in the language so that the environment task of an active partition terminates when (1) all its
dependent tasks have terminated, (2) the partition has no active timing events, and (3) no handlers
are attached to interrupts that are to be serviced by the partition. However, this would be a non-
backward compatible change, and some programs that currently terminate would not terminate
with the new rules if they still have attached interrupt handlers or outstanding timing events.

1 Introduction

Reactive systems respond to stimuli from the environment within the time constraints imposed
by the environment [3]. Hence they are typically event-triggered systems where the absence of an
expected event can also be considered as an event itself (a timeout event). In this short paper, we
illustrate an ease-of-use problem when programming small reactive systems in Ada.

Simple designs of a reactive system are based on (centralised) state information that is manip-
ulated by atomic operations. In these cases, the kernel of the system is typically implemented
as a deterministic automaton. Given a set of available inputs (or events), the automaton selects a
transition that can be performed and executes the associated code implementing an atomic opera-

Deterministic
Automaton

Interrupts

Timeouts

Outputs

Figure 1. A Simple Reactive System

tion; it is then ready for its next reaction – this is illustrated in Figure 1. More complex reactive
systems may be structured hierarchically and allow parallel or distributed execution of operations.
Esterel [2] is a language that targets the implementation of potentially complex reactive systems.
Here, however, we are concerned with single processor systems that are usually embedded. Our
motivating example has been that of a cardiac pacemaker [4].

2 Reactive Systems and Ada

In embedded Ada applications, interaction with the environment is via interrupt handling and
the various timeout mechanisms supported by the language. With systems for which environmental
events must be polled, Ada supports abstractions that allow periodic tasks to be implemented, or
periodic timing events to be generated. Here, we propose to use a combination of the Ada interrupt
handling facility and the Ada.Real T ime.T iming Events package to implement deterministic
automata, which in turn can be used to support simple reactive applications. Hence, we are inter-
ested in applications for which there are no tasks, other than the environment task that executes the
main program.

Our proposed approach is to encapsulate all the procedures for handling interrupts and timing
events within the same library-level protected object, as illustrated in Figure 2. The advantages of
this approach (for small systems) are:

• All event-handling procedures execute atomically with respect to one another – this is guar-
anteed by the language’s semantics for protected objects.

• The worst-case execution time needed to respond to each event is well defined – there can be
no preemptions (hence, no cache refills during execution, etc) and the code to be executed is
clearly identifiable from the procedure that handles the event.

• The response time for each event is predictable – there can be no preemptions and protected
procedures cannot self suspend for any reason.

There are, perhaps, two disadvantages of this implementation model.

Protected object

Interrupt
handling procedures

Timing Event
 handling procedures

State variable

Time event variable

Figure 2. The Implementation of a Simple Reactive System in Ada

1. Interrupts that are unable to be delivered are assumed to be queued by the hardware – this
is usually the case and certainly required for a reactive system that must keep up with the
environment.

2. It is not possible to control the order of handling when multiple events are available – this is
inevitable when interrupts come in from various sources; typically the hardware priority of
the device will determine the order in which the processor processes the outstanding inter-
rupts. Of course, if events are being polled for, the order of polling will allow some control.
More significantly, there is no order specified for the servicing of timing events that occur at
the same time.

These disadvantages may not be relevant for (many) applications. In the next section, we con-
sider a significant case study where these issues do not pose a serious problem.

3 An Illustrative Example

In this section we summarise an Ada implementation of our motivating example. A full descrip-
tion of the Cardiac Pacemaker is given in [4] along with details of the implementation in Safety
Critical Java and Ravenscar Ada.

A pacemaker system is a small electronic device that helps the heart to maintain a regular beat.
The conventional pacemakers serve two major functions: pacing and sensing. The pacemaker’s
actuator paces by the delivery of a short, intense electrical pulse into the heart. The pacemaker
sensor uses the same electrode to detect the intrinsic activity of the heart. So, the pacemaker’s
pacing and sensing activities are dependent on the behavior of the heart.

Essentially, the pacemaker monitors (senses) the intrinsic activity of the heart and in the absence
of such activity forces the heart to beat by the delivery of an electric current (pacing). The sensing
and pacing activities can be performed in both chambers of the heart (atrial and ventricle). The

control requirements can be complex, and it is beyond the scope of this paper to consider them in
detail (see [4]).

Figure 3 depicts the scenarios for sensing and pacing activities. The Ventriculoatrial Interval
(VAI) is the maximum time the pacemaker should wait after sensing ventricle activity (either in-
trinsic or paced) for some indication of intrinsic activity in the atrium. If none is present, the
pacemaker should pace in the atrial chamber. The Atrioventricular Interval (AVI) is the maximum
time the pacemaker should wait after sensing atrial activity (either intrinsic or paced) for some
indication of intrinsic activity in the ventricles. If none is present then the pacemaker should pace
in the ventricle chamber. After every pace in the ventricle chamber, there is some sensed activity
in the atrial, but this is not true intrinsic heart activity and should be ignored. The Postventricular
Atrial Refractory Period (PVARP) indicates the length of time during which such activity should
be ignored. Sensed atrial activity is called a P wave, and sensed ventricular activity is called a QRS
complex. A T wave follows a QRS complex and represents the recovery of the ventricles. A P
wave is sensed when the amplitude of the signal is greater than a threshold Pth for Tp time units.
Similarly, a QRS complex is detected when the amplitude of the signal is greater than a threshold
QRSth for TQRS time units. For safety, it is imperative to ensure that pulsing does not occur during
a T wave.

There are four possible scenarios for pacing and sensing activities, which are given in Figure 3.

• Scenario A – shows a situation in which the pacemaker paces after standard time intervals
(VAI and AVI) in both chambers. This is the reaction when no intrinsic heart activity is
detected.

• Scenario B – shows a situation in which the pacemaker paces in the atrial chamber after
VAI, while the ventricular pacing is inhibited due to a sensing of intrinsic activity from the
ventricle.

• Scenario C – shows a situation in which intrinsic atria activity is sensed, pacing is inhibited in
the atrial chamber, but occurs in the ventricular chamber after AVI (due to a lack of intrinsic
ventricular activity).

• Scenario D – represents the case where both pacing activities are inhibited due to a sensing
of intrinsic activities in both chambers.

Table 1 summarises the main timing requirements for a particular pacemaker, and Figure 4 illus-
trates the basic requirements that must be met. The required pacing activities are not regular enough
to be controlled by a periodic activity. They are essentially aperiodic and time-triggered depending
on the presence or absence of intrinsic heart activity. There are no interrupts generated other than
those needed to support Ada’s timing events.

There are clearly several software architectures that could be adopted. Here we use Ada’s timing
events to control both the sensing and pacing activities as this eliminates the needs for tasks and,
therefore, reduces the size of the Ada run-time support needed. There are two main timing events:
the first (Watchdog) is used to detect the absence of intrinsics activities and to control the pacing

Atrial
Sense

Ventricle
Sense

time

(D)

Atrial
Sense

Ventricle
Pace

time

(C)

Ventricle
Sense

Atrial
Pace

time

(B)

Atrial
Pace

Ventricle
Pace

time

(A)

AVI

VAI

LRI

PVARP

P

Q

R

S

T

Figure 3. Example Pacing Scenarios

Time goes left to right, and a flat line indicates no heart activity. A spike above the
lines indicates intrinsic activity and a spike below the line indicates activity as a result
of the action of the pacemaker. A rounded spike indicates activity in the atrial and a
sharp spike indicates activity in the ventricle.

Time Intervals Purpose Time in
milliseconds

Length of a P
wave (TP)

Time during which intrin-
sic atrium activity must be
sensed

110

Duration of pulse
(Tpulse)

the time for which the
pulse current must be
maintained

1

Length of a QRS
complex (TQRS)

Time during which in-
trinsic ventricular activity
must be sensed

100

Atrioventricular
interval (AVI)

Provides time for ventricle
to fill following an atrial
contraction

150

Ventriculoatrial
interval (VAI)

Ensures an atrial pulse fol-
lowing a ventricular pulse

850

Postventricular
atrial refractory
(PVARP)

Ensures atrium doesn’t
falsely sense ventricular
activity

350

Mode Switching
Interval (MSI)

Time between two atrial
events used to change
modes

500

Table 1. Example Timing Intervals in a Single Heart Beat

Wait
PVARP

Atrium
Sensed

Set VAI
Countdown

Timer

VAI
Expired

Pace
Atrium

Set AVI
Countdown

Timer

Ventricle
Sensed

AVI
Expired

Pace
Ventricle

no

yes

no

yes

yes

no yes

No

Figure 4. The Required Pacing Cycle

Atrium_Pace_On

Atrium_Pace_Off

Ventricle_Pace_On

Ventricle_Pace_Off

PVARP_Timeout

No

No

No

No

Turn current on

Turn current off
Set Watdog
Time = AVI

Action = Ventricle_Pace_On

Yes

Yes

Turn current on

Turn current off

Cancel SensorReading alarm
Set Watdog

Time = Tpulse
Action = Ventricle_Pace_Off

Set Watdog
Time = TPulse

Action = Atrium_Pace_Off

Set Watdog
Time = PVARP

Action = PVARP_Timeout

Intrinsic attrium
activity detected

Set Watchdog
Time = AVI

Action = Ventricle_Pace_On
Reading = Ventricle

Set Watchdog
Time = VAI

Action = Atrium_Pace_On
Reading = Atrium

Set Sensor_Reading alarm

Yes

Yes

Yes Yes

No

Watchdog timer
expires

Yes

Sensor Reading
Atrium

Intrinsic attrium
activity detected

Set Watchdog
Time = AVI

Action = Ventricle_Pace_On
Reading = Ventricle

No

No, then sensor reading
Alarm expires

Yes Yes Set Sensor_Reading alarm

No

Intrinsic ventricle
activity detected

Set Watdog
Time = PVARP

Action = PVARP_Timeout

No, then sensor reading
 in ventricle

Yes

Set Sensor_Reading alarmNo

Figure 5. Cardiac Pacemaker Architecture in Ada

current, and the second (Sensor Readings) is used to initiate the reading of sensors. A single
protected object (Timer) is used for encapsulating the handlers for these timing events.

The details of the Ada approach are shown in Figure 5. The algorithm follows closely that given
in Figure 4 which informally defines the requirements. The protected object code is given below.
The full code for the application can be found at http://www.cs.york.ac.uk/circus/
hijac/case.html.
with Ada.Real_Time.Timing_Events; use Ada.Real_Time.Timing_Events;
with System; use System;
package Timers is
type Sensor is (Atrium, Ventricle);
protected Timer is

pragma Priority(Priority’Last);
procedure Atrium_Pace_On(E : in out Timing_Event);
procedure Atrium_Pace_Off(E : in out Timing_Event);

procedure Ventricle_Pace_On(E : in out Timing_Event);
procedure Ventricle_Pace_Off(E : in out Timing_Event);
procedure PVARP_Countdown(E : in out Timing_Event);
procedure Sensor_Read(E : in out Timing_Event);

private
Reading : Sensor := Atrium;
IntrinsicV_Sensed : Boolean := False;

end Timer;

General_Timeouts : Timing_Event;
Sensor_Readings : Timing_Event;

end Timers;

-- various with and use clauses

package body Timers is

protected body Timer is
procedure Atrium_Pace_On(E : in out Timing_Event) is
begin

Pace_A_On; -- turns pace current on
Set_Handler(General_Timeouts, Clock+Pulse_Duration, Atrium_Pace_Off’Access);

end;

procedure Atrium_Pace_Off(E : in out Timing_Event) is
begin

Pace_A_Off; -- turns pace current off
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);
Reading := Ventricle;

end;

procedure Ventricle_Pace_On(E : in out Timing_Event) is
Set : Boolean;

begin
Pace_V_On; -- turns pace current on
if IntrinsicV_Sensed then
IntrinsicV_Sensed := False;

end if;
Cancel_Handler(Sensor_Readings, Set);
pragma assert(Set);
Set_Handler(General_Timeouts, Clock+Pulse_Duration , Ventricle_Pace_Off’Access);

end;

procedure Ventricle_Pace_Off(E : in out Timing_Event) is
begin

Pace_V_Off; -- turns pace current off
Set_Handler(General_Timeouts, Clock+PVARP , PVARP_Countdown’Access);
Reading := Atrium;

end;

procedure PVARP_Countdown(E : in out Timing_Event) is
res : Float;

begin
res := Read_Atrium_Data; -- measure intrinsic activity
if res > 0.3 then

-- Intrinsic activity sensed in atrium;
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);

Reading := Ventricle;
else

Reading := Atrium;
Set_Handler(General_Timeouts, Clock+VAI, Atrium_Pace_On’Access);

end if;
Set_Handler(Sensor_Readings, Sensor_Period, Sensor_Read’Access);

end;

procedure Sensor_Read(E : in out Timing_Event) is
res : Float;

begin

if Reading = Atrium then
res := Read_Atrium_Data;
if res > 0.3 then

-- Intrinsic activity sensed in Atrium
Set_Handler(General_Timeouts, Clock+AVI, Ventricle_Pace_On’Access);
Reading := Ventricle;

end if;
Set_Handler(Timers.Sensor_Readings, Sensor_Period, Timer.Sensor_Read’Access);

else -- reading ventricle
res := Read_Ventricle_Data;
if res >= 0.9 then
-- Intrinsic activity sensed in ventricle;
Set_Handler(General_Timeouts, Clock+PVARP , PVARP_Countdown’Access);
Reading := Atrium;
IntrinsicV_Sensed := True;

else
IntrinsicV_Sensed := False;
Set_Handler(Timers.Sensor_Readings, Sensor_Period, Timer.Sensor_Read’Access);

end if;
end if;

end Sensor_Read;
end Timer;

end Timers;

The main program sets up the first timing event. From that point on, every timing event handler
will set up at least one other timing event.
-- with clauses omitted
procedure Pacemaker is --DDDR
begin

Set_Handler(Timers.Sensor_Readings, Clock+PVARP, Timer.Sensor_Read’Access); -- sets initial event
end Pacemaker;

The resulting program design is efficient, with handlers only executing when control is needed.
(We observe, however, that there is a problem with this solution, which we discuss in the next
section.) The handlers for timing events in Ada are called from the Ada run-time clock interrupt
handling code. Hence, no Ada tasks are actually required. As all code is run at interrupt-level,
it is imperative to keep the handling code as simple and as short as possible so that the compu-
tation can be completed before another timing event needs to be set. The Atrium Pace On,
Atrium Pace Off, Ventricle Pace Off and PVARP Timeout handlers are mutually ex-
clusive events. Hence the requirements are for:

• Atrium Pace On to be completed before the pulse duration (Tpulse) has expired (1 mil-
lisecond – see Table 1) when Atrium Pace Off needs to be called. The code in the
handler is simply one actuator operation and the setting of one timing event.

• Atrium Pace Off to be completed within safety margins for the pulse duration – and
before the AVI (150 milliseconds). The code in the handler is simply one actuator operation
and the setting of one timing event.

• Ventricle Pace On to be completed before the pulse duration (Tpulse) has expired (1
millisecond – see Table 1) when Ventricle Pace Off needs to be called. The code
in the handler is simply one actuator operation and the setting of one timing event and the
canceling of another.

• Ventricle Pace Off to be completed within safety margins for the pulse duration –
and before the PVARP duration (350 milliseconds). The code in the handler is simply one
actuator operation and the setting of one timing event.

• PVARP Timeout to be completed before the VAI duration (850 milliseconds). The maxi-
mum code in the handler is simply one sensor operation and the setting of two timing events.

The sensor reading handlers are similarly simple, mainly consisting of one sensor reading operation
and at most two settings of timing events. The asynchronous relationship between the watchdog
and sensor-reading timing events means that it is possible for one event to want to fire whilst the
other event is being handled. Hence, the response time of each handler must include an interference
time equal to the maximum handling timing of the other event.

4 The Premature Termination of Simple Reactive Programs in Ada

The implementation of our motivating example, as presented so far, does not work. This is be-
cause the program terminates as soon as the main program finishes executing; there are no tasks
to keep the program alive. Hence, we had to add a delay in the main procedure to keep the pro-
gram alive, as illustrated below. (The alternative is to introduce a low priority idle task, or to call
Suspend Until True on a suspension object.)
-- with clauses omitted
procedure Pacemaker is --DDDR
begin

Set_Handler(Timers.Sensor_Readings, Clock+PVARP, Timer.Sensor_Read’Access); -- sets initial event
delay until Ada.Real_Time.Time_Last;

end Pacemaker;

This is clearly not very elegant. The reason is that the Ada programming language specification
defines the following.

The execution of a program consists of the execution of a set of partitions. Further de-
tails are implementation defined. The execution of a partition starts with the execution

of its environment task, ends when the environment task terminates, and includes the
executions of all tasks of the partition. The execution of the (implicit) task body of the
environment task acts as a master for all other tasks created as part of the execution of
the partition. When the environment task completes (normally or abnormally), it waits
for the termination of all such tasks, and then finalizes any remaining objects of the
partition. (Ada Reference Manual Section 10.2 Program Execution).

On a single processor system, a program is considered to be a single active partition that terminates
when its environment task terminates. Hence, when the environment task finishes executing the
main program, it checks to see if there are any active tasks. If there are not, the program terminates.

Modifying Ada Program Termination Rules

In order to ensure that unexpected terminations of programs do not occur, the Ada language
specification would need to be changed so that:

The environment task of an active partition terminates when all its dependent tasks
have terminated and the partition has no active timing events and there are no handlers
attached to interrupts that are to be serviced by the partition.

This would require all interrupt handlers to be attached dynamically rather than via the static
use of the Attach Handler pragma. Alternatively, the language could be modified to allow
dynamic detaching of a static handler. For the Ravenscar profile, where programs are not meant to
terminate, an additional pragma could be used to indicate that there are no tasks in the program.

With this new rule, our implementation described in the previous section would be correct. How-
ever, such a change would not formally be backward compatible. Some programs that currently
terminate would not terminate with the new rules, if they still have outstanding timing events or
attached interrupt handlers. Arguably, a program that terminates with an outstanding timing event
has a dormant fault – it is almost the equivalent of mixing the terminate and a delay alternatives
in a select statement (only at the program level rather than the task level). For interrupt handling,
the current rules generate a race condition between the interrupts being handled and the program
terminating. The new rules, however, could lead to the case where handlers are attached but all
interrupts have been disabled. This would be equivalent of writing a program that deadlocks.

5 Conclusions

This paper has identified an ease-of-use issue with Ada for developing small reactive systems.
The issue is that Ada defines program termination solely in terms of whether all tasks (application
and environment) have terminated. There are some advantages in implementing small reactive
systems as being interrupt driven, be they timing interrupts or other device interrupts. With such
programs, there are no tasks other than the environment task, which typically terminates when it

finishes executing the main program. This is not the expected behaviour. While the work-arounds
are simple, they are a little inelegant.

To avoid this unexpected premature program termination, it is necessary to change the program
termination conditions in the language so that the environment task of an active partition terminates
when all its dependent tasks have terminated and the partition has no active timing events and no
handlers that are attached to interrupts that are to be serviced by the partition. It is interesting to
note that the initial version of the Real-Time Specification for Java had a similar problem with
the way it specified program termination[1]. There, all asynchronous event handlers attached to
environment-generated events (happenings in the RTSJ terminology) were treated as daemon Java
threads. This resulted in purely reactive programs suffering from premature termination.

The paper has also illustrated that for time-driven reactive programs, the order of servicing
timing events is undefined when more than one event is due at the same time. Most implementation
probably service them in a FIFO order. There may be some merit is allowing a priority to be
assigned to each event. Also, allowing periodic timing events to be specified would remove the
need to continually reset them.

Acknowledgements

The authors are grateful to Johan Nielsen for pointing up the backward incompatibility of our
proposals, and for suggesting the use of suspension objects as another work-around.

References

[1] Greg Bollella, James Gosling, Benjamin Brosgol, P. Dibble, S. Furr, and M. Turnbull. The
Real-Time Specification for Java. Java Series. Addison-Wesley, June 2000.

[2] F. Boussinot and R. de Simone. The Esterel language. Proceedings of the IEEE, 79(9):1293
–1304, sept 1991.

[3] Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic Pub-
lishers, 1993.

[4] N.K. Singh, A.J. Wellings, and A.L.C. Cavalcanti. The cardiac pacemaker case study and
its implementation in Safety-Critical Java and Ravenscar Ada. In Proceedings of the 10th
International Workshop on Java Technologies for Real-time and Embedded Systems - JTRES
2012., 2012.

