
Improved Priority Assignment for the
Abort-and-Restart (AR) Model

H.C. Wong and A. Burns
Department of Computer Science,

University of York, UK.

February 1, 2013

Abstract

This paper addresses the scheduling of systems that implement
the abort and restart (AR) model. The AR model requires that pre-
empted tasks are aborted. As a result high priority tasks run quickly
and shared resources need not be protected (as tasks only work on
copies of these resources). However there is significant wastage as low
priority tasks may be subject to a series of aborts. We show that ex-
act analysis of the AR model is intractable. A sufficient but tractable
test is developed and is used to address the priority assignment issue.
Again an optimal tractable algorithm is not available. The paper de-
velops a priority assignment heuristic than is demonstrated to perform
better than existing schemes.

1

1 Introduction

Abort-and-Restart (AR) is a scheme to support Priority-based Functional
Reactive Programming (P-FRP). P-FRP has been introduced as a new func-
tional programming scheme [3] for real-time systems. It combines the prop-
erty of stateless execution from Functional Reactive Programming (FRP)
[17], and supports priority assignments. Stateless execution means that tasks
execute independently and no resource is locked by any task. To achieve this
property of P-FRP, higher priority tasks can preempt lower priority tasks
and the lower priority tasks are aborted and restarted after the higher pri-
ority tasks have finished execution. In the classical preemptive model, the
lower priority tasks continue their execution but it is different for P-FRP; the
lower priority tasks restart as new. Abort-and-Restart is the key operation
for P-FRP so we call it the Abort-and-Restart (AR) model in this paper.

In the AR model, tasks can not access resources directly. Rather, tasks
make copies of the resource at the beginning of their execution. The updated
data is then copied back into the system once the tasks have completed their
execution. In some situations, higher priority tasks preempt lower priority
tasks. Once the higher priority tasks have completed execution, the lower
priority tasks are aborted and restarted. The operation of abort-and-restart
is to delete the old copy of the resource, and take a new copy from the system.

The classical preemptive model must deal with the problem of resource
sharing. These problems can bring serious consequences. They may lead to
inaccurate data, misses deadlines or deadlock. To cater for these problems
various forms of priority inheritance and priority ceiling protocols have been
developed[9, 10, 12, 15, 16]. One advantage of the AR model is that it does
not face these problems because tasks do not access resources directly. The
disadvantage is that aborted tasks delete the old copy of the resource and
restart as new, hence the time spent before preemption is wasted. In this
paper, we call this wasted time, the abort cost.

1.1 Contributions

This paper presents an analysis for the AR model. It first confirms that an
exact analysis is not feasible as the critical instance cannot, in general, be
identified in polynomial time. In the classical preemptive model, the critical
instant is when all tasks are released at the same time. But this is not
the case for the AR model. The second contribution is to develop a new
schedulability test for the AR model. This test is sufficient for the model
but is open to exact analysis. A final contribution is to address priority
assignment for the AR model. General priority assignment schemes such as

2

rate monotonic, are not optimal for the AR model or the developed test. In
this paper, we evaluate a number of existing priority assignment schemes and
provide an improved (though still not optimal) priority assignment scheme
which is termed Execution-time-toward-Utilization Monotonic (EUM).

1.2 Organization

The rest of the paper is organized as follows. Section 2 shows the system
model and the related work. It explains the AR model and the related work
introduces the previous research for critical instant, schedulability test and
priority assignment. Section 3 is our analysis for the AR model. It consists of
critical instant and schedulability test. Section 4 introduces a new priority
assignment for the AR model, and it includes a pseudo code. Section 5
discusses our experiments. Section 6 states our conclusions and future work.

2 System Model and Related Work

In this paper, we consider the static priority scheduling of a set of sporadic
tasks on a single processor. Each task consists of a potentially unbounded
sequence of jobs.

The notations and formal definitions used in this paper are listed as fol-
lows:

N the number of tasks.

τi any given task in the system.

Ci the worst-case execution time for τi. (also reference to as WCET)

Ti period for τi.

U the total utilization of a task-set, U ≡
N∑
i=1

Ci

Ti
.

Pi priority for τi.

Di deadline for τi.

Ri response time for τi.

αi the maximum abort cost for τi (see equation 1).

Bi blocking time for τi.

In general we allow Di ≤ Ti, although previous work and many of the
examples in this paper have Di = Ti.

3

2.1 The Abort-and-Restart Model

The Abort-and-Restart (AR) model [14, 13] is an implementation scheme for
P-FRP. The classical preemptive model does not fit with P-FRP although
it is similar to the AR model except for the operation of abort-and-restart.
In the classical preemptive model, preempted tasks continue their job once
higher priority tasks completed execution. The key concept of the AR model
is that lower priority tasks are preempted and aborted by releases of higher
priority tasks. Once the higher priority tasks have completed, the lower
priority task are restarted as new.

Consider Table 1, there is a 2-task task-set. τ1 is the highest priority task
and has 3 ticks for WCET (Worst-case execution time). Task τ2 has 4 ticks
for WCET.

Task Period WCET release offset Priority
τ1 12 3 3 1
τ2 15 4 0 2

Table 1: An example task-set. (τ1 has the highest priority.)

In Figure 1, τ2 is released at 0 and executes until time 3, because of the
arrival of τ1, τ2 is aborted at 3. τ1 finishes its job at 6 and τ2 is restarted as
a new job so the spent time between 0 and 3 is wasted.

Figure 1: An example task-set.

2.2 Copy-and-Restore Operation

The Copy-and-Restore operation [3, 4, 5, 6] occurs when tasks begin or restart
execution, they get a copy of the current state from the system. We call the
copy scratch state, which is actually a set of data which will be used during
the execution of the task. Tasks only change their copy so no tasks lock the

4

data resource. If higher priority tasks arrive, the lower priority task discards
their copy. Once the higher priority tasks have completed execution, the
lower priority tasks are aborted and restart. When a task has finished, the
copy is restored into the system as an atomic action; this is illustrated in
Figure 2 where τ1 starts at time 0 and copies a set of data from the system.
After six ticks, its job is done and then it restores the updated data into the
system.

Figure 2: Copy-and-Restore Operation.

2.3 Related Research

In the paper of Ras and Cheng [13], the authors state that the critical instant
argument from Liu and Layland [11] may not apply fully to the ANR model.
In another paper from Belwal and Cheng [4], the authors also realised that
a synchronous release of tasks does not lead to the worst-case response time.
The simple example in Table 1 and Figure 1 illustrate this if τ1 and τ2 are
released together then R2 = 6. Figure 1 shows clearly τ2 ≥ 10.

Ras and Cheng [13] also state that standard response time analysis is not
applicable for the AR model, and assert that the abort cost can be computed
by the following equation:

αi =
N∑

j=i+1

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (1)

αi is the maximum abort cost for τi because the worst case is when a
higher priority task aborts the lower priority task which has the biggest
worst-case execution time. Equation (1) uses the number of releases for a
task, which has a higher priority than τi, then multiplies this by the value of

5

Ck which is the maximum worst-case execution time between τi and highest
priority task.

The central idea of their analysis is that the response time for the AR
model can be computed by the combination of standard response time anal-
ysis and Equation (1). The new equation is as follows:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + αi (2)

Task Period WCET
τ1 40 3
τ2 12 4
τ3 9 3

Table 2: A task-set is given from the paper[4].

Table 2 is a task-set given from paper [4]. τ3 is the highest priority task
and τ1 is the lowest priority task. They applied equation (2) to the task-set
and the calculation looks as below for τ3:

1. R1
1 = 3 + (

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4) +

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4 = 17

2. R2
1 = 3 + (

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4) +

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4 = 31

3. R3
1 = 3 + (

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4) +

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4 = 51

The task-set is deemed unschedulable.
In Section 3.2 we will derived an equivalent but more intuitive schedula-

bility test for the AR model.
It was noted above that Rate Monotonic (RM) priority assignment is

optimal for implicit deadline tasks in the standard model but is not optimal in
the AR model An alternative assignmeent policy is introduced by Belwal and
Cheng [3], namely: Utilization Monotonic (UM) priority assignment in which
a higher priority is assigned to a task which has a higher utilization. Belwal
and Cheng [3] state that it furnishes a better schedulability rate than RM.
They also note that when RM and UM give the same ordering of priorities
then that order is optimal.

6

3 New Analysis

In this section we derive a new sufficient test of schedulability for the AR
model. But first we explain why the method cannot be exact.

3.1 Critical Instant for the AR model

First we consider periodic tasks and then sporadic. In the AR model, a
critical instant occurs when a higher priority task aborts a lower priority,
because the abort cost is added to the response time. For 2-task task-set,
there is only one case where the highest priority task aborts the lowest priority
task. This was illustrated in earlier example (in Table 1 and Figure 1). For
3-task task-set, there are two cases as the highest priority task can abort
either of the two lower priority tasks. To generalise:

Lemma 3.1. A task-set with N periodic tasks under the AR model has at
least (N-1)! abort combinations.

Proof. Consider a pure periodic task-set ΓN = {τ1, τ2, ..., τn} and all tasks
only release once. The highest priority task is τ1 and the lowest priority task
is τn. Task τ1 has N - 1 choices of lower priority tasks to abort in each of their
cases; τ2 has N - 2 choices of lower priority tasks to abort. This continues until
τn−1 which has only one choice to abort. Finally, τn has zero choices because
there is no lower priority task. When higher priority tasks are released more
than once, the number of choices for those tasks are increased. The number
of abort combinations is therefore at least (N − 1) ∗ (N − 2) ∗ ... ∗ 1, which
is (N-1)!.

There is no information within the task set that would indicate which set
of abort combination could give rise to the worst-case response times. Hence
they all need to be checked for exact analysis. For sporadic tasks:

Lemma 3.2. A sporadic task with a later release may bring a longer response
time.

Proof. In general, a sporadic task with its maximum arrival rate delivers the
worst-case response time. Lemma 3.2 can be proved by showing a counter
example. In Table 3, there is a 3-task task-set. Task τ1 is a sporadic task
and has the highest priority. It has a minimum inter-arrival time, 8. Other
tasks are periodic tasks.

In Figure 3, the response time of τ3 is 16 when the second job of τ1 is
released with the minimum inter-arrival time, 8.

7

Task Period WCET Priority
τ1 8 1 1
τ2 20 2 2
τ3 40 4 3

Table 3: A task-set with a sporadic task.

Figure 3: A time chart.

If, however, the second job of τ1 is released 1 tick later, the response time
of τ3 will be 17. In this condition, a sporadic task with a later release may
bring a longer response time.

For a set of sporadic tasks exact analysis would require all possible re-
leased times to be checked.

Theorem 3.3. Finding the critical instant for the AR model with periodic
and sporadic tasks is intractable.

Proof. Lemma 3.1 shows that there is at least (N − 1)! abort combinations
for N periodic tasks, and all of which must be checked for the worst-case
to be found. For sporadic tasks all possible release-time over a series of
releases must be checked to determinate the worst-case impact of the sporadic
task. These two properties in isolation and together show that this is an
intractable number of release conditions to check in order to define the critical
instant.

In real-time scheduling, a schedulability test cannot be exact (sufficient
and necessary) if the critical instant cannot be found in polynomial time.

8

3.2 New Formulation for schedulability tests

In the last section we showed that an exact analysis for the AR model is not
possible. In this section we derive a sufficient test that is itself tractable.
Hence we have traded sufficiency with tractability. We believe this new test
is more intuitive than those previously published,

Given a priority assignment, the worst-case response time of task τn (pri-
ority Pn) will depend only on the behaviour of tasks of priority greater than
Pn. Consider the interference caused by a single release of task τi(Pi > Pn).
In the worst-case τi will abort (just before it completes) a task with a lower
priority than τi but with the maximum execution time of all lower priority
tasks. Let the aborted task be τa, so Pi > Pa ≥ Pn and Ca = max

∀j∈hepn
⋂

lpi
Cj.

The impact of τi will therefore be, in the worst-case, Ci at priority Pi

and Ca at priority Pa. As Pa ≥ Pn this is equivalent (for τn) to τi having
an execution time of Ci + Ca at priority Pi. Let βi = Ci + Ca. The original
task-set with computation times Ci is transposed into a task-set with βi.
This is now a conventional task-set, so the critical instant is when there is
a synchronous release. (The maximum interference on τn must occur when
all higher priority tasks arrive at their maximum rate, initially at the same
time, and all have their maximum impact.)

The worst-case for the AR model is that any higher priority task aborts
a lower priority task which has a biggest possible worst-case execution time,
and that this abort occurs just before the aborted task would actually com-
plete. By this process, a new value βj for τj is combined by Cj and Ck:

βj = Cj + max
∀k∈hepi

⋂
lpj
Ck (3)

where βj is the new value for the WCET of τj, Cj is the original WCET of
τj and Ck is the bigger execution time of a task with priority between τi and
τj but τj is not included. The response time analysis applies to τi. Note that
in general the βj values will depend on the task under investigation.

Task Period C β Priority
τ1 28 2 7(2+5) 1
τ2 120 3 8(3+5) 2
τ3 140 4 9(4+5) 3
τ4 200 5 5(5+0) 4

Table 4: An example with new WCET for 4-task task-set.

9

In Table 4, there is an example task-set. Deadline is equal to period and
the time unit is a tick. The highest priority is 1. The response time of task
τ4 is being computed.

The β values are computed by Equation (3). In this example we consider
the response time for τ4 so i = 4. For β1, j is 1 and Ck is higher than or equal
to τ4 but lower than τ1. The calculation is β1 = C1 + C4, so the result of β1
is 2 + 5 = 7.

For β4, i and j are 4. Ck is higher than or equal to τ4 but lower than τ4 so
no task is matched, so the result of β4 is 5+0 = 5. After all the β values had
been calculated, we use β instead of C in the response time analysis; that is:

R4 = β4 +
∑
∀j∈hp4

⌈
R4

Tj

⌉
· βj (4)

This is solved in the usual way by forming a recurrence relationship. The
calculations are as follows:

1. RT 1
4 = 5 + (

⌈
5
28

⌉
· 7 +

⌈
5

120

⌉
· 8 +

⌈
5

140

⌉
· 9) = 29

2. RT 2
4 = 5 + (

⌈
29
28

⌉
· 7 +

⌈
29
120

⌉
· 8 +

⌈
29
140

⌉
· 9) = 36

3. RT 3
4 = 5 + (

⌈
36
28

⌉
· 7 +

⌈
36
120

⌉
· 8 +

⌈
36
140

⌉
· 9) = 36

To compare the result with the equation of Ras and Cheng [13]. Their
calculation would be:

1. RT 1
4 = 5+(

⌈
5
28

⌉
·2+

⌈
5

120

⌉
·3+

⌈
5

140

⌉
·4)+

⌈
5
28

⌉
·5+

⌈
5

120

⌉
·5+

⌈
5

140

⌉
·5 = 29

2. RT 2
4 = 5+(

⌈
29
28

⌉
·2+

⌈
29
120

⌉
·3+

⌈
29
140

⌉
·4)+

⌈
29
28

⌉
·5+

⌈
29
120

⌉
·5+

⌈
29
140

⌉
·5 = 36

3. RT 3
4 = 5+(

⌈
36
28

⌉
·2+

⌈
36
120

⌉
·3+

⌈
36
140

⌉
·4)+

⌈
36
28

⌉
·5+

⌈
36
120

⌉
·5+

⌈
36
140

⌉
·5 = 36

The results are the same but Equation (4) clearly involves less computa-
tion.

To compute the worst-case response time for τ3 requires the β values to
be recomputed (as show in Table 5).

The test derived above whilst more intuitive and more efficiently solved
is nevertheless equivalent to take previous published.

Theorem 3.4. Equations (2) and (4) are equivalent.

10

Task Period C β Priority
τ1 28 2 6(2+4) 1
τ2 120 3 7(3+4) 2
τ3 140 4 4(4+0) 3

Table 5: β values for τ3

Proof. We rephrase Equation (2) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑
∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (5)

and simplify:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

j−1
max
k=i

Ck (6)

both
j−1

max
k=i

Ck and max
∀k∈hepi

⋂
lpj
Ck are to pick a bigger WCET task with priority

is higher or equal to τ(i) and lower than τj, so we rephrase it again.

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + max

∀k∈hepi
⋂

lpj
Ck (7)

Equation (3) replaces into Equation (7) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· βj (8)

Finally, βi replaces to Ci using Equation (3).

As equation (2) was previously proved to be sufficient for the AR model
[13] it follows that equation (4) is similarly sufficient.

Although the equations are equivalent, Equation (4) is in the standard
form for response time analysis and is therefore amenable to the many ways
that have been found to efficiently solve this form of analysis[8]. It is also in
a form that allows the issue of priority assignment to be addressed.

4 Priority assignment schemes

In the section on related research, Rate Monotonic (RM) and Utilization
Monotonic (UM) have been introduced as possible priority assignment schemes

11

for the AR model. Here, we introduce another priority assignment called
Execution-time Monotonic (EM) which assigns a higher priority to a task
which has a bigger worst case execution time. An inspection of Equation
(3) shows that the minimum execution times (the β values) are obtained
when priority is order by execution time. Although this does not necessarily
minimise utilisation, it may furnish an effective priority assignment scheme.

For many scheduling problems, Audsley Algorithm furnishes an optimal
priority assignment; i.e. the algorithm can find a schedulable priority order-
ing if such an ordering exists[1, 2]. Unfortunately one of the prerequisites for
Audsley’s Algortihm does not hold. Specifically the response time of a task
depends not only on the set of higher priority tasks but also on their relative
order (which is not allowed).

Task Period WCET β Priority
τ1 100 5 9(5+4) 1
τ2 120 4 7(4+3) 2
τ3 140 3 5(3+2) 3
τ4 200 2 2(2+0) 4

Table 6: The response time of τ4 is 23.

In Table 6 τ4 is the lowest priority task and its response time is 23. After
τ2 and τ3 (higher priority) swapped their priorities, the response time for τ4
is changed to 24 as shown in Table 7.

Task Period C β Priority
τ1 100 5 9(5+4) 1
τ3 140 3 7(3+4) 2
τ2 120 4 6(4+2) 3
τ4 200 2 2(2+0) 4

Table 7: The response time of τ4 is 24.

4.1 New Algorithm

The Exhaust Search (ES) Algorithm is optimal for any model but the com-
plexity is the factorial of the number of tasks. Therefore, it is not applicable
in general but it can validate other algorithms for small values of N. By com-
parison with ES, both UM and EM are not optimal. Sometimes, there are

12

more than one schedulable orderings for a task-set. Some tasks are scheduled
by EM but not UM, vice versa. Their relationship is shown in Figure 4.

Figure 4: Relationships between UM, EM and ES.

These circles represent task-sets that are scheduled by the labeled algo-
rithms. White space are task-sets that are unscheduled by any algorithm. ES
covers both UM and EM because it is optimal. UM and EM are overlapped
because some task-sets are scheduled by both of them. In a later section,
the experiments show that UM and EM have similar results. If an algorithm
dominates both UM and EM, it will offer a better schedulability rate.

We derive a new algorithm that starts with EM ordering and tests the
tasks in priority order starting with the highest priority task. If any task
can not be scheduled then try to find a higher priority task which has less
utilization. The ordering begins from the failed task to the top. If a task is
found then shift down the higher priority task below the lower priority task.
If no task is found, the task-set is deemed to be not schedulable. Pseudo code
of the new algorithm is given in Algorithm 1. The explanations of functions
are list below:

• sortByEM(ts) = do a EM priority assignment for task-set ts

• st(i) = Schedulability Test for task i

13

• u(i) = get utiliation of task i

• d(i) = get deadline of task i

• move(x, y) = move task x below task y (top is higher priority).

sortByEM(taskset);
for i in 2 .. N do

if st(i) = true then
continue;

else
for j in i-1 .. 1 do

if u(j) < u(i)||(u(j) = u(i)&d(j) > d(i)) then
found = true;
move(j,i);
i=j-1;

else
found = false;

end
if not found then

return fail;
end

end

end

end
return pass;

Algorithm 1: A pseudo code of the new algorithm.
An example of the use of the algorithm is given in Table 8. Again deadline

is equal to period; RT is response time. Note only C values are given in the
table, the necessary β values are dependent on which task is actually been
tested, they must be re-computed for each task.

Task Period C U Priority RT
τ1 60 6 0.1 1 6
τ2 50 5 0.1 2 16
τ3 32 4 0.125 3 24
τ4 25 3 0.12 4 30 (X)
τ5 100 2 0.02 5

Table 8: An example task-set fails in EM ordering.

14

The task-set is initially ordered by the EM algorithm. The schedulability
test begins from the top. τ1, τ2 and τ3 meet their deadlines. A missed deadline
occurs at τ4 so the algorithm searches for a less utilization task from τ3 to τ1.
The utilization of τ2 is 0.1 which is less than τ4, τ2 shifts down below τ4. The
priority of τ3 shifts up to 2. The priority of τ4 shifts up to 3. The priority of
τ2 changes to 4.

Task Period C U Priority RT
τ1 60 6 0.1 1 6
τ3 32 4 0.125 2 14
τ4 25 3 0.12 3 20
τ2 50 5 0.1 4 50
τ5 100 2 0.02 5 88

Table 9: The task-set is scheduled by EUM algorithm.

In Table 9, the task-set has had its priorities changed and is schedulable
after the shifting. By the nature of shifting down less utilization tasks to the
bottom, UM ordering is the worst-case. The algorithm is intuitively a set of
transformations starting at EM and moving towards UM. It dominates both
EM and UM. We name it, the Execution-time-toward-Utilization Monotonic
(EUM). A set diagram for EUM is shown in Figure 5.

4.2 Time complexity

EUM priority assignment starts with EM ordering and the worst-case is when
a task-set can only be scheduled by UM ordering (or is not schedulable at
all, by only fails at the last task). The lower priority tasks shift up with
higher priority level one by one until the task-set is in UM ordering. After
each shifting, a schedulability test for the shifted task is undertaken. In the
analysis of time complexity, we count each schedulability test rather than
the computational complexity. For instance, a N-task task-set starts with
EM ordering and the task-set is only scheduled by UM ordering which is
completely opposite to EM. Task τ1 is the highest priority task and the lowest
priority task is τN . The algorithm tests each task by the priority ordering
from high to low. In the first recursion, it takes N tests from τ1 to τN and it
fails at τN . According to the nature of the algorithm, a failed task shifts up if
a higher priority task has less utilization. The current status of the task-set
is in reverse order of UM. In other words, τN will shift up and test again one
by one, i.e. τN to τN−1, τN−1 to τN−2 and so on. For the recursion of τN , the

15

Figure 5: A set diagram for EUM.

number of tests is N-1. The number of tests for τN−1 is N-2. The number of
tests for τ2 is 1, and τ1 is 0. The equation can be represented as below:

N−1∑
k=1

k =
N(N − 1))

2
(9)

so the time complexity of EUM priority assignment is N(N−1))
2

in worst-case.
Clearly, EUM dominates EM and UM because the algorithm starts with EM
ordering and ends at UM ordering in the worst-case steps. Unlike ES it is a
tracable task.

5 Experimental Evaluation

The experiments are separated into two parts. First, the EUM algorithm
is compared with the non-optimal group (RM, UM and EM). Secondly, the
EUM algorithm is compared with ES, the optimal algorithm for the largest
feasible value for N (8). All experiments used the same parameters but
different priority assignments. The parameters are:

• Deadline is equal to period.

16

• All tasks are periodic.

• A set of N utilization values Ui was generated by the UUniFast Algo-
rithm [7].

• Task periods were generated between 500 and 5000 according to a log-
uniform distribution1. And the value Ti assigns to τi.

• Task execution times are: Ci = Ui · Ti

• Utilization for task-sets are ranged between 10% and 70%.

• Each utilization rate generates 10000 different task-sets, i.e. U = 10%
generates 10000 task-sets, U = 11% generates another 10000 task-sets,
and so on.

• The numbers of task for the non-optimal group are 5, 10, 15 and 20.
A maximum of 8 task is all that can be accomplished by ES. The final
experiment is therefore restricted to just 8 tasks.

For all diagrams, the X-axis is Utilization rate and the Y-axis is the
Schedulability rate, i.e. the percentage of task sets that were deemed schedu-
lable.

In Figure 6 the number of tasks is 5. We observe that RM has the worst
schedulability, UM and EM are quite similar before U = 27%. After that,
UM is better than EM. EUM is of course always better than the others.

In Figure 7 the number of tasks is 10; RM is still the worst and EM is
better than UM.

In Figures 8 and 9 the numbers of tasks is 15 and 20. Again RM is the
worst; EM is better than UM and EUM is the best. The two diagrams have a
similar pattern. Results for larger value of N are similar (but not included).

For the final comparing experiment of EUM and ES, ES is the factorial
of the number of task so we picked the number of task as large as possible.
In Figure 10 the number of tasks is 8. The diagram shows the result that
EUM is very close to ES. Indeed it is impossible to distinguish between them
in the diagram. Nevertheless EUM is not optimal, the figure contains in
total 410,000 task sets of which ES deemed 137,366 schedulable and EUM
(136,712), a difference of 654 (i.e. schedulable by ES but not by EUM).
Finally, Tables 10 and 11 show an example task-set which is schedulable by
ES but not by EUM.

1The log-uniform distribution of a variable x is such that ln(x) has a uniform distribu-
tion.

17

Figure 6: The number of tasks is 5.

Figure 7: The number of tasks is 10.

18

Figure 8: The number of tasks is 15.

Figure 9: The number of tasks is 20.

19

Figure 10: The number of tasks is 8.

Task Period C U Priority RT
τ3 1430 179 0.125 1 179
τ6 1035 90 0.087 2 359
τ2 656 49 0.075 3 457
τ5 1269 27 0.021 4 511
τ7 1925 131 0.068 5 X
τ4 2579 31 0.012 6 X
τ1 2688 8 0.003 7 X
τ8 1042 7 0.007 8 X

Table 10: A task-set deemed not schedulable by EUM algorithm.

20

Task Period C U Priority RT
τ7 1925 131 0.068 1 131
τ3 1430 179 0.125 2 489
τ2 656 49 0.075 3 587
τ6 1035 90 0.087 4 947
τ8 1042 7 0.007 5 961
τ5 1269 27 0.021 6 1035
τ4 2579 31 0.012 7 1264
τ1 2688 8 0.003 8 1746

Table 11: The task-set is schedulable by ES algorithm.

6 Conclusion

The AR model has been proposed as a means of implementing priority-
based functional reactive programming. Any released task, if it has a higher
priority than the current running task, will abort that task. It can therefore
immediately make progress. As a consequence the aborted task must re-start
its execution when it is next executed.

We have confirmed that the AR model is intractable, in the sense that
exact analysis is not possible due to the number of cases that need to be
investigated in order to identify the worst-case release conditions (the critical
instant). Nevertheless a tractable sufficient test has been developed that
allow the issue of priority ordering to be addressed.

Unfortunately optimal priority ordering is also problematic with the AR
model. Deadline (or Rate) monotonic ordering is demonstrably not optimal.
Also the optimal Audsley’s algorithm is not applicable. We have however
developed a heuristic (called EUM) that performs well and has only N2

complexity (for N tasks). On small sized systems (N = 8) EUM performs
almost identically to an optimal scheme (using exhaustive search). For larger
numbers of N (where exhaustive search is infeasible) it performs better than
previous published approaches.

References

[1] N.C. Audsley. Optimal priority assignment and feasibility of static pri-
ority tasks with arbitrary start times. Report YCS 164, University of
York, 1991.

21

[2] N.C. Audsley. On Priority Assignment in Fixed Priority Scheduling.
Information Processing Letters, 79(1):39–44, 2001.

[3] C. Belwal and A.M.K. Cheng. On Priority Assignment in P-FRP. RTAS,
pages 45–48, 2010.

[4] C. Belwal and A.M.K. Cheng. Determining Actual Response Time in P-
FRP. In Ricardo Rocha and John Launchbury, editors, Practical Aspects
of Declarative Languages, volume 6539 of Lecture Notes in Computer
Science, pages 250–264. Springer Berlin/Heidelberg, 2011.

[5] C. Belwal and A.M.K. Cheng. Determining Actual Response Time
in P-FRP Using Idle-Period Game Board. Object-Oriented Real-Time
Distributed Computing, IEEE International Symposium on, 0:136–143,
2011.

[6] C. Belwal and A.M.K. Cheng. Feasibility Interval for the Transactional
Event Handlers of P-FRP. In Proc. of the IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications,
TRUSTCOM, pages 966–973, Washington, DC, USA, 2011.

[7] E. Bini and G. Buttazzo. Measuring the Performance of Schedulability
Tests. Real-Time Systems, 30:129–154, 2005.

[8] R.I. Davis, A. Zabos, and A. Burns. Efficient Exact Schedulability Tests
for Fixed Priority Real-Time Systems. IEEE Transactions on Comput-
ers, 57(9):1261–1276, 2008.

[9] S. Kim, S. Hong, and T.-H. Kim. Integrating real-time synchronization
schemes into preemption threshold scheduling. In Object-Oriented Real-
Time Distributed Computing, (ISORC), pages 145–152, 2002.

[10] S. Kim, S. Hong, and T.-H. Kim. Perfecting preemption threshold
scheduling for object-oriented real-time system design: From the per-
spective of real-time synchronization. In Proc. of the joint conference
on Languages, compilers and tools for embedded systems: software and
compilers for embedded systems, LCTES/SCOPES, pages 223–232, New
York, NY, USA, 2002. ACM.

[11] C. Liu and J. Layland. Scheduling Algorithms for Multiprogramming
in a Hard-Real-Time Environment. J. ACM, 20(1):46–61, 1973.

[12] J. Ras and A.M.K Cheng. An Evaluation of the Dynamic and Static
Multiprocessor Priority Ceiling Protocol and the Multiprocessor Stack

22

Resource Policy in an SMP System. In Real-Time and Embedded Tech-
nology and Applications Symposium, pages 13–22, 2009.

[13] J. Ras and A.M.K Cheng. Response Time Analysis for the Abort-and-
Restart Task Handlers of the Priority-Based Functional Reactive Pro-
gramming (P-FRP) Paradigm. In Embedded and Real-Time Computing
Systems and Applications, RTCSA, pages 305–314, 2009.

[14] J. Ras and A.M.K. Cheng. Response Time Analysis of the Abort-and-
Restart Model under Symmetric Multiprocessing. In Computer and In-
formation Technology (CIT), pages 1954–1961, 2010.

[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority inheritance protocols:
An approach to real-time synchronization. IEEE Transactions on Com-
puters, 39(9):1175–1185, 1990.

[16] H. Takada and K. Sakamura. Real-Time Synchronization Protocols with
Abortable Critical Sections. pages 44–52, 1994.

[17] Z. Wan and P. Hudak. Functional reactive programming from first prin-
ciples. In Proc. of the ACM SIGPLAN, PLDI, pages 242–252. ACM,
2000.

23

