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Abstract

This paper addresses the scheduling of systems that implement
the abort and restart (AR) model. The AR model requires that pre-
empted tasks are aborted. As a result high priority tasks run quickly
and shared resources need not be protected (as tasks only work on
copies of these resources). However there is significant wastage as
low priority tasks may be subject to a series of aborts. We show
that exact analysis of the AR model is intractable. A sufficient but
tractable test is developed and is used to address the priority as-
signment issue. Again an optimal tractable algorithm is not avail-
able. The paper develops a priority assignment heuristic that is
demonstrated to perform better than existing schemes.

1 Introduction

Abort-and-Restart is a scheme to support Priority-based Func-
tional Reactive Programming (P-FRP). P-FRP has been introduced
as a new functional programming scheme [2] for real-time systems.
It combines the property of atomic execution from Functional Re-
active Programming (FRP) [11], and supports priority assignments.
To achieve this property of P-FRP, preempted tasks are aborted and
the tasks restart as new once the higher priority tasks are completed.
We call it the Abort-and-Restart (AR) model in this paper.

Various forms of priority inheritance and priority ceiling proto-
cols have been developed [10] to deal with the problems of shared
resources. The AR model does not face the problems because
tasks do not access resources directly. But the disadvantage is that
aborted tasks delete the old copy of the resource and restart as new,
hence the time spent before preemption is wasted. In this paper, we
call this wasted time, the abort cost.

1.1 Motivation for the AR model
The AR model provides strong correctness guarantees on deal-

ing with shared resources, and it also supports FRP which has
been used for the domains of computer animation, computer vision,
robotics and control systems [6]. Original FRP cannot be used for
real-time systems but P-FRP has rectified this. Preemptible Atomic
Regions (PAR) is a new concurrency control abstraction for real-
time systems [8]. The basic notions of the AR model and the PAR
model are similar. In other words, the AR model has been imple-
mented in a common programming language.

1.2 Contributions
This paper presents an analysis for the AR model. It first con-

firms that an exact analysis is not tractable as the critical instance
cannot, in general, be identified in polynomial time. The second
contribution is to develop a new schedulability test for the AR

model. A final contribution is to address priority assignment. Gen-
eral priority assignment policies such as rate and deadline mono-
tonic, are not optimal for the AR model or the developed test. In
this paper, we evaluate a number of existing priority assignment
policies and provide an improved (though still not optimal) policy
called Execution-time-toward-Utilisation Monotonic (EUM).

2 System Model and Related Work

We consider the static priority scheduling of a set of sporadic
tasks on a single processor. Each task gives rise to a potentially
unbounded sequence of jobs. The notations and formal definitions
used are as follows: N is the number of tasks. τi, any given task in
the system. Ci worst-case execution time (WCET), Ti period, Di

deadline, Pi priority, Ri worst-case response time, Ui utilisation
of task τi. U is the total utilisation of all the tasks in the task-
set. αi is the maximum abort cost for τi (see equation 1). C̃n

i is
the new value for the WCET of τi, the biggest abort cost is picked
between τi and τn (see equation 3). In general we allow Di ≤ Ti,
although previous work and many of the examples in this paper
have Di = Ti.

2.1 The Abort-and-Restart Model
In the Abort-and-Restart (AR) model [9], lower priority tasks are

preempted and aborted by releases of higher priority tasks. Once
the higher priority tasks have completed, the lower priority tasks
are restarted as new.

Table 1. An example task-set.
Task Period WCET Release offset Priority
τ1 12 3 3 H
τ2 15 4 0 L

In Table 1 and Figure 1, τ2 is released at 0 and executes until
time 3, because of the arrival of τ1, τ2 is aborted at time 3. τ1
finishes its job at time 6 and τ2 is restarted as a new job so the spent
time between 0 and 3 is wasted.

Figure 1. An example task-set.

2.2 Copy-and-Restore Operation
When tasks begin or restart execution, they get a copy (scratch

state) of the current state from the system [3]. Tasks only mod-
ify the copy so no tasks lock the data resource. The copy will be
discarded when a higher priority task is released. Once the higher
priority tasks have completed execution, the lower priority tasks



are aborted and restarted. When a task has finished, the copy is re-
stored into the system as an atomic action. Although atomic, copy-
and-restore cannot be undertaken instantaneously. Hence a high
priority task cannot abort a lower priority task while it is restoring
state; the higher priority task must block leading to a blocking term
in the analysis. For ease of presentation this term is omitted from
the scheduling equations given in this paper.

2.3 Related Research
Ras and Cheng [3] state that the critical instant argument from

Liu and Layland [7] may not apply fully to the AR model. Table
1 and Figure 1 illustrate this if τ1 and τ2 are released together then
R2 = 7. Figure 1 shows clearly that R2 ≥ 10.

Ras and Cheng [9] also state that standard response time analysis
is not applicable for the AR model, and assert that the abort cost can
be computed by the following equations:

αi =

N∑
j=i+1

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (1)

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + αi (2)

In Section 3.2 we will derived an equivalent but more intuitive
schedulability test for the AR model. Belwal and Cheng [2] noted
that Rate Monotonic (RM) priority assignment is not optimal in the
AR model. They introduced an alternative policy called Utilisation
Monotonic (UM) priority assignment in which a higher priority is
assigned to a task which has higher utilisation, and showed that it
provides better schedulability than RM. They also note that when
RM and UM give the same ordering of priorities then that order is
optimal (for their analysis).

3 New Analysis

In this section we derive a new sufficient test of schedulability
for the AR model. But first we explain why the method cannot be
exact.

3.1 Critical Instant for the AR model
First we consider periodic tasks and then sporadic. In the AR

model, a critical instant occurs when a higher priority task aborts a
lower priority task, because the abort cost is added to the response
time. For a 2-task task-set, only the highest priority task aborts the
lowest priority task as illustrated in Table 1 and Figure 1. For a
3-task task-set, there are two cases as the highest priority task can
abort either of the two lower priority tasks. To generalise:

Lemma 3.1. A task-set with N periodic tasks under the AR model
has at least (N-1)! abort combinations.

Proof. Consider a pure periodic task-set ΓN = {τ1, τ2, ..., τn} and
all tasks only released once. The highest priority task is τ1 and the
lowest priority task is τn. Each task τi has N − i choices of lower
priority tasks to abort. When higher priority tasks are released more
than once, the number of choices for those tasks are increased. The
number of abort combinations is therefore at least (N − 1) ∗ (N −
2) ∗ ... ∗ 1, which is (N-1)!.

As there is no information within the task set that would indicate
which set of abort combination could give rise to the worst-case
response times, they all need to be checked for exact analysis.

For sporadic tasks:

Lemma 3.2. A sporadic task with a later release may bring a
longer response time.

Proof. In general, a sporadic task with its maximum arrival rate
delivers the worst-case response time. Lemma 3.2 can be proved
by showing a counter example. In Table 2, there is a three task
task-set. Task τ1 is a sporadic task and has the highest priority. It
has a minimum inter-arrival time, 8. Other tasks are periodic tasks.

Table 2. A task-set with a sporadic task.
Task Period WCET Priority
τ1 8 1 1
τ2 20 2 2
τ3 40 4 3

In Figure 2, the response time of τ3 is 16 when the second job of
τ1 is released with the minimum inter-arrival time, 8.

Figure 2. A time chart.

If, however, the second job of τ1 is released 1 tick later, the
response time of τ3 will be 17. In this case, a sporadic task with a
later release may result in a longer response time.

For a set of sporadic tasks exact analysis would require all pos-
sible release times to be checked.

Theorem 3.3. Finding the critical instant for the AR model with
periodic and sporadic tasks is intractable.

Proof. Lemma 3.1 shows that there is at least (N − 1)! abort com-
binations for N periodic tasks, all of which must be checked for
the worst-case to be found. For sporadic tasks all possible release
times over a series of releases must be checked to determinate the
worst-case impact of the sporadic task. These two properties in iso-
lation and together show that this is an intractable number of release
conditions to check in order to define the critical instant.

A exact schedulability test cannot be tractable if the critical in-
stant cannot be found in polynomial time.

3.2 New Formulation for schedulability tests
In this section we derive a sufficient test that is tractable. Hence

we have traded necessity for tractability. We believe this new test
is more intuitive than those previously published.

Given a priority assignment, the worst-case response time of task
τn (priority Pn) will depend only on the behaviour of tasks of pri-
ority greater than Pn. Consider the interference caused by a single
release of task τi (Pi > Pn). In the worst-case τi will abort, just
before it completes, a task with a lower priority than τi but with the
maximum execution time of all lower priority tasks. Let the aborted
task be τa, so Pi > Pa ≥ Pn and Ca = max

∀j∈hepn

⋂
lpi

Cj .

The impact of τi will therefore be, in the worst-case, Ci at pri-
ority Pi and Ca at priority Pa. As Pa ≥ Pn this is equivalent (for
τn) to τi having an execution time of Ci + Ca at priority Pi. Let
C̃n

i = Ci +Ca. The original task-set with computation times Ci is



transposed into a task-set with C̃n
i . This is now a conventional task-

set, so the critical instant is when there is a synchronous release.
(The maximum interference on τn must occur when all higher pri-
ority tasks arrive at their maximum rate, initially at the same time,
and all have their maximum impact.)

The worst-case for the AR model is that any higher priority
task aborts a lower priority task which has the biggest possible
worst-case execution time, and that this abort occurs just before
the aborted task would actually complete. By this process, a new
value C̃i

j for τj is combined by Cj and Ck:

C̃i
j = Cj + max

∀k∈hepi

⋂
lpj

Ck (3)

where C̃i
j is the new value for the WCET of τj , Cj is the original

WCET of τj and Ck is the biggest execution time of a task with
priority between τi and τj but τj is not included. The response
time analysis applies to τi. Note that in general the C̃i

j values will
depend on the task under investigation.

In Table 3, there is an example implicit-deadline task-set. The
highest priority is 1. The response time of task τ4 is being com-
puted.

Table 3. An example with new WCET for 4-task task-set.
Task Period C C̃4

i Priority
τ1 28 2 7(2+5) 1
τ2 120 3 8(3+5) 2
τ3 140 4 9(4+5) 3
τ4 200 5 5(5+0) 4

The C̃4
i values are computed by Equation (3). In this example

we consider the response time for τ4 so i = 4. For C̃4
1 , j is 1 and

Ck is higher than or equal to τ4 but lower than τ1. The calculation
is C̃4

1 = C1 + C4, so the result of C̃4
1 is 2 + 5 = 7.

For C̃4
4 , i and j are 4. Ck is higher than or equal to τ4 but lower

than τ4 so no task is matched, so the result of C̃4
4 is 5+0 = 5. After

all the C̃4
i values have been calculated, we use C̃n

i instead of C in
the response time analysis; that is:

R4 = C̃4
4 +

∑
∀j∈hp4

⌈
R4

Tj

⌉
· C̃4

j (4)

This is solved in the usual way by forming a recurrence relation-
ship, the result is R4 = 36, which is the same as that obtained via
the equation of Ras and Cheng [9]. In fact, the test derived above,
i.e. (4), while more intuitive and more efficiently solved is never-
theless equivalent to that given in [9].

Theorem 3.4. Equations (2) and (4) are equivalent.

Proof. We rephrase (2) as follows:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑
∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (5)

Both
j−1
max
k=i

Ck and max
∀k∈hepi

⋂
lpj

Ck pick a bigger WCET task with

a priority that is higher or equal to τ(i) and lower than τj , so we
simply to obatin:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· (Cj + max

∀k∈hepi

⋂
lpj

Ck) (6)

Equation (3) replaces into (6) as follows:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· C̃n

j (7)

As (2) was previously proved to be sufficient for the AR model
[9] it follows that (4) is similarly sufficient.

Although the equations are equivalent, (4) is in the standard form
for response time analysis and is therefore amenable to the many
ways that have been found to efficiently solve this form of analysis
[5]. It is also in a form that allows the issue of priority assignment
to be addressed.

4 Priority assignment schemes

Here, we introduce a priority assignment policy called
Execution-time Monotonic (EM) which assigns a higher priority
to a task which has a bigger worst case execution time 1. An in-
spection of (3) shows that the minimum execution times (the C̃n

i

values) are obtained when priority is ordered by execution time.
Although this does not necessarily minimise utilisation, it may pro-
vide an effective priority assignment policy. Audsley’s Algorithm
provides optimal priority assignments[1] but it does not hold for the
AR model since the response time of a task depends not only on the
set of higher priority tasks but also on their relative order (which is
not permitted).

4.1 New Algorithm
Exhaustive Search (ES) of all possible priority assignments is

optimal for any model but it is not tractable. We used it to validate
other policies for small values of N. In a later section, the experi-
ments show that UM and EM have similar results, and they do not
dominate each other. If a new algorithm dominates both UM and
EM, it will offer a better schedulability rate.

We derive a new algorithm that starts with EM ordering and tests
the tasks in priority order starting with the highest priority task. If
any task can not be scheduled then try to find a higher priority task
which has less utilisation. The ordering begins from the failed task
to the top. If a task is found then shift down the higher priority task
below the lower priority task. If no task is found, the task-set is
deemed to be not schedulable.

Table 4 shows that the task-set is not schedulable at τ4. Again
deadline is equal to period; RT is response time. Note onlyC values
are given in the table, the necessary C̃n

i values are dependent on
which task is actually being tested, they must be re-computed for
each task.

Table 4. An example task-set fails in EM ordering.
Task Period C U Priority RT
τ1 60 6 0.1 1 6
τ2 50 5 0.1 2 16
τ3 32 4 0.125 3 24
τ4 25 3 0.12 4 30 (X)
τ5 100 2 0.02 5

τ2 has less utilisation than τ4 so we shift τ2 down below τ4. The
new ordering is τ1,τ3,τ4,τ2 and τ5, then the task-set is schedulable.
We call this policy Execution-time-toward-Utilisation Monotonic
(EUM) priority assignment.

1With ties broken arbitrarily



4.2 Time complexity
To analyse the complexity of the EUM policy, we count each

single task schedulability test required (each test is itself of pseudo-
polynomial complexity). In the worst-case, an N-task task-set starts
with EM ordering and the task-set is only scheduled by UM order-
ing which is the completely opposite to EM. It is easy to see that in
this case, 2N − 1 schedulability tests are required before the task
that starts out at priority N is placed at priority 1, and that a further
2(N − 1) − 1 tests are needed before the next task (that started at
priority N − 1) is placed at priority 2. Overall, the number of sin-
gle task schedulability tests required to transform EM ordering into
UM ordering is given by:

N−1∑
k=1

(2k − 1) = N2 (8)

So the complexity of EUM priority assignment is O(N2) single
task schedulability tests. EUM dominates EM and UM because the
EUM algorithm starts with EM ordering and ends at UM ordering
in the worst-case; however, unlike Exhaustive Search (ES) it is a
tractable priority assignment policy.

5 Experimental Evaluation

The experiments compare different priority assignments (DM,
UM, EM, ES and EUM) for the AR model. The parameters are:
Deadline is equal to period. All tasks are periodic. A set of N
utilisation values Ui was generated by the UUniFast Algorithm [4].
Task periods were generated between 500 and 5000 according to
a log-uniform distribution2. Task execution times are: Ci = Ui ·
Ti Utilisation for task-sets are ranged between 20% and 60% in
steps of 1%. 10000 task-sets were generated for each utilisation
level. The number of tasks in each task-set was 8, as this is the
maximum that could be handled by Exhaustive Search (ES). Other
experiments were also performed for larger task sets (up to 20 tasks)
for the heuristic policies, but are not shown due to space limitations.

In Figure 3 the X-axis is Utilisation and the Y-axis is the Schedu-
lability rate, i.e. the percentage of task sets that were deemed
schedulable. DM has the worst schedulability, UM and EM are
quite similar, while EUM is the best of the heuristics and very close
to optimal for task sets of size 8. Indeed it is impossible to distin-
guish between them. Nevertheless EUM is not optimal, the figure
contains in total 410,000 task sets of which ES deemed 137,366
schedulable and EUM (136,712), a difference of 654 (i.e. schedula-
ble by ES but not by EUM). Note that EUM explored a maximum of
N(N −1)/2 = 28 different priority orderings in this case, whereas
ES explored a maximum of N ! = 40320. Although not exact, the
performance of EUM for N = 8 leads to a reasonable conclusion
that EUM is an effective and near optimal priority ordering for the
AR model, at least for relatively small task sets.

6 Conclusion

The AR model has been proposed as a means of implementing
priority-based functional reactive programming. Any released task,
if it has a higher priority than the current running task, will abort
that task. It can therefore immediately make progress. As a conse-
quence the aborted task must re-start its execution when it is next
executed.

2The log-uniform distribution of a variable x is such that ln(x) has a uniform
distribution.

Figure 3. The number of tasks is 8.

We have confirmed that the AR model is intractable, in the sense
that exact analysis is not possible due to the number of cases that
need to be investigated in order to identify the worst-case release
conditions (the critical instant). Nevertheless a tractable sufficient
test has been developed that allows the issue of priority ordering to
be addressed.

Unfortunately optimal priority ordering is also problematic with
the AR model. Deadline (or Rate) monotonic ordering is demon-
strably not optimal. Also the optimal Audsley’s algorithm is not ap-
plicable. We have however developed a heuristic (called EUM) that
performs well and has O(N2) complexity in terms of the number
of single task schedulability tests required. On small sized systems
(N = 8) EUM performs almost identically to an optimal scheme
(using exhaustive search). For larger numbers of N (where exhaus-
tive search is infeasible) it performs better than previous published
approaches.
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