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Abstract— Real-time Operating System (RTOS) modelling and 
SystemC-based system-level hardware/software co-simulation 
have become important issues for early design space explora-
tion in the development of real-time embedded systems. This 
paper presents a generic and accurate RTOS-centric embed-
ded system modelling and simulation framework. It allows 
modelling and simulating applications, the RTOS, the CPU 
processing element and hardware components in a unified 
SystemC-based framework. Compared with previous system-
level RTOS modelling works, this framework (1) enhances 
modelling flexibility by supporting hybrid simulation of ab-
stract software models and delay-annotated native application 
codes, (2) improves functionality of the RTOS model by pro-
viding generic and POSIX-like services, and (3) achieves 
accurate simulation in terms of both timing accuracy and the 
simulation flow. Experimental results show the high accuracy 
and fast performance of our simulation, with small accuracy 
loss compared with cycle-accurate instruction set simulation. 

I. INTRODUCTION 
In recent years, with embedded systems moving toward 

System-on-Chip (SoC) platforms, the complexity of embed-
ded software (SW) is also increasing rapidly. The Real-Time 
Operating System (RTOS) has become an essential compo-
nent in many real-time embedded systems. It provides 
efficient controlling facilities as well as guaranteed services 
for upper-layer application software and underlying hard-
ware (HW) resources. The traditional SW simulation 
approach, which executes a real RTOS and applications in an 
instruction set simulator, appears to be time consuming and 
available too late when confronting ever-increasing design 
complexity. To cope with the design challenge, system-level 
RTOS modelling and simulation have been proposed as ena-
bling techniques, to simulate and evaluate different 
embedded SW (including both applications and the OS) de-
sign alternatives at early design phases. By means of System 
Level Design Languages (SLDL) (e.g., SystemC and SpecC), 
these methods usually build a generic RTOS model that dy-
namically simulates abstract SW models or native 
application codes on a host machine, in order to mimic SW 
timing and functional behaviour on the target machine. They 
are used to evaluate system-wide dynamic SW functional 
and timing properties, such as scheduling policies and appli-
cations execution times. 

However, there still exist some problems in this area, 
which affect the functional and timing accuracy of models, 
as well as their simulation performance. For example, from 

the perspective of maximising flexibility of system-level 
design, designers may want to simulate multiple abstraction-
level SW models together. However, current RTOS model-
ling research is incapable of integrating coarse-timed abstract 
task models (i.e., associated with best-case and worst-case 
execution times) and fine-timed native application codes (i.e., 
associated with line-by-line delay annotations) in one simu-
lator. Besides, from the perspective of RTOS engineering, 
some RTOS models provide simplistic task management and 
limited synchronisation services, which are inadequate to 
imitate behaviour of a real multitasking RTOS. Furthermore, 
the low timing accuracy is a common, yet critical, problem 
borne by many RTOS modelling approaches. On one hand, 
this is due to the lack of RTOS services’ timing overheads in 
modelling. On the other hand, many methods rely exces-
sively on the un-interruptible SLDL “wait-for-delay” time 
advance mechanism [1] [2], consequently task switches and 
HW/SW synchronisation only happen at limited pre-defined 
pre-emption points. 

In this paper, we present a system-level SystemC-based 
RTOS-centric modelling framework. Its main objective is to 
fast simulate and evaluate behaviour of real-time embedded 
software with good accuracy in early design phases. The 
simulated target system’s dynamic execution scenarios can 
be exposed by tracing diverse system events and values, e.g., 
RTOS kernel calls, RTOS runtime overheads, task execution 
times, dynamic scheduling decisions, task synchronisation 
and communication activities, interrupt handling latencies, 
context switch times, and other user concerned properties. It 
does so by integrating multiple-level applications, RTOS, 
processing element and hardware component models in a 
unified SystemC prototyping environment. The core is a 
generic RTOS simulation model, which supplies a set of 
fundamental services including thread management, schedul-
ing services, synchronisation and inter-task communication 
mechanisms, clock services, context switch and interrupt 
handling services, etc. These services partially conform to 
POSIX Dedicated Real-time System Profile (PSE53) specifi-
cation [3] in order to supply standardised functions. To build 
a predictable RTOS timing model, timing overheads of vari-
ous RTOS services are considered in models. This 
simulation framework includes the previously developed 
“Live CPU Model” [4], which supports SW timing simula-
tion as well as guarantees good HW/SW synchronisation 
timing accuracy. 

Our work also remedies current SystemC language’s 
(v2.2) deficient capability on real-time software modelling, 



i.e., there is neither the priority concept nor pre-emptive 
scheduling. All models in the modelling framework are built 
on the top of SystemC library (Refer to Figure 2). We use 
both basic SystemC core language and its simulation kernel, 
without modifying the library at all. This is helpful to popu-
larise our model to the emerging SystemC-based embedded 
system design world. 

II. RELATED WORK 
RTOS modelling has been an important topic in embed-

ded systems simulation-based design. Various RTOS models 
have been developed in the context of high-level abstract SW 
simulation [5] [6] [7], delay-annotated native SW simulation 
[8] [9], HW/SW co-simulation [10] [11] and system-level 
design refinement research [12] [13]. These models can be 
categorised depending on their locations in the top-down 
embedded systems design flow, and with regard to their tim-
ing accuracy levels (Refer to Figure 1). 

Abstract RTOS modelling is applicable to early system 
design phases, such as specification, system analysis, and 
SW/HW partitioning stages, when the target platform is un-
determined and SW codes are not implemented. In this 
approach, applications are normally organised into some 
abstract task models associated with coarse-grained temporal 
estimates, e.g., period, deadline, and execution times. An 
RTOS model provides basic primitives to control “start” and 
“termination” of a task, between which there is a time inter-
val representing the task’s execution cost. Inter-task 
synchronisation/IPC services and interrupt handling are usu-
ally not considered in this kind of model. A SpecC-based 
abstract RTOS model for system-level design is presented in 
[12] [13]. It provides sixteen basic primitives to support task 
management and scheduling. Its subsequent work in [1] re-
solves the initial HW/SW synchronisation problem by using 
an improved “wait-for-delay” method named “Result-
oriented Modelling”. In [5] the authors present an abstract 
SystemC-based RTOS model and extend its use for MPSoC 
design space exploration [14]. This work decomposes a real-
time embedded system into three compact submodels: the 
task graph model, the scheduler model, and the link commu-
nication model. Real-time scheduling  assessments have 
been addressed in [6] [7], in which different scheduling poli-
cies are evaluated through abstract RTOS simulation. In 
most models, overheads of RTOS services are not adequately 
considered, but [15] has the advantage of taking three ser-
vices’ overheads into account in a generic RTOS model. 

Delay-annotated native-application RTOS modelling 
aims to simulate SW in the system implementation phase, 
when the target platform is in the process of being selected 
and application codes are being developed. SW execution 
delays are measured and annotated in models at some finer 
granularities (e.g., function level, block level, and line level), 
so timing accuracy becomes a major focus point in this ap-
proach. The RTOS model often supplies comprehensive and 
specific services, and contains more timing information. In 
[9], a SystemC-based Texas Instrument DSP/BIOS RTOS 
simulation tool is presented. It comprises detailed OS timing 
information, which is derived from benchmark tests. It pro-
poses a time-stamp prediction technique in order to solve 
HW/SW synchronisation problems, but it has a tight re-
quirement that applications should report their interrupt 
times to the RTOS kernel. The TIMA laboratory presents 
some results on native SW simulation for SoC HW/SW co-
simulation research in [11] [16]. In [11] they propose a 
“variable timing granularities” method to solve HW/SW 
synchronisation problems by trading off the simulation per-
formance with the timing accuracy; to further tackle this 
problem, in [16] they present a different method by using a 
“simulation environment abstraction layer” to synchronise 
HW and SW simulation clock. In [8] a POSIX compliant 
RTOS model is developed on top of SystemC. It applies a 
dynamic delay annotation method by assigning each C++ 
operator with a corresponding target-platform execution cost. 
However, the interrupt handling problem is not explicitly 
solved. 

Instruction set simulation (ISS) is conventionally used for 
SW simulation at the final system integration phase. Finished 
SW codes are cross-compiled and simulated in a cycle-
accurate instruction set simulator that represents the target 
processor’s behaviour. The high accuracy and low simula-
tion performance are its two contradictory characteristics. In 
this approach, a real RTOS (e.g., μC/OS-II in [17] and 
μClinux in [18]) is usually ported in the ISS to manage ap-
plications execution. To speed up simulation, some variation 
approaches propose to build an RTOS model on top of 
SLDL [2] [10], and combine it with an ISS which is still 
used to simulate applications. 

Our RTOS model combines many features of both “ab-
stract RTOS modelling” and “native-application RTOS 
modelling”. It applies to the conjunction area of system 
analysis and implementation design phases. Compared with 
existing works, we improve the RTOS model’s functionality 
to supply realistic SW simulation for. It can integrate hybrid 
abstract task models and native-code task models in a single 
simulator to enhance modelling flexibility. The high simula-
tion performance and good timing accuracy are preserved at 
the same time in our simulator because of the use of the 
“Live CPU Model”. 

III. SOFTWARE SYSTEM MODELLING 
As shown in Figure 2, a real-time embedded system can 

be generally decomposed into three layers: the application 
layer, the RTOS layer and the hardware layer. Figure 1. RTOS models in embedded systems design 



In our previous work, we developed a hardware layer 
model whose core is a “Live CPU Model”. Its main purpose 
is to support and improve system-level SW simulation from 
the perspective of hardware platform. In conventional sys-
tem-level SW simulation (e.g., the left two models in Figure 
1), the application model and the RTOS model construct a 
processing element, and in fact there is not a hardware CPU 
model. Unlike them, the “Live CPU Model” executes SW 
delay annotations in a way comparable to the way a real 
CPU executes instructions. The “Live CPU Model” also 
monitors external interrupts and can start, stop, and resume a 
SW delay process without any undesired latency. This hard-
ware layer model is then combined to construct a whole 
embedded system simulation framework in this paper. In the 
following, we describe software layers modelling in detail. 

A. Applications Modelling 
In embedded software development, applications are 

usually subdivided into a set of concurrent and cooperating 
units. These concurrent units are commonly implemented in 
three concepts: the task model, the thread model and the 
process model. In simple systems, there is only one kind of 
unit, so people may synonymously use three concepts. Many 
RTOS models are implemented in this way as well. However, 
in some complex RTOSs (e.g., QNX, LynxOS and other 
POSIX-compliant ones), applications are managed in both 

the process (i.e., an application) model and the thread (i.e., a 
task) model. This is mainly for such a consideration that the 
threads’ context-switch overheads are lower than processes’, 
because threads share some contexts within a process. This 
two-level structure can also better utilise the high-
performance parallel multi-threading HW architecture and 
flexible multi-level real-time scheduling policies. Our appli-
cation model conforms to the Real-time POSIX PSE53 
specification, so it assumes a single processor computing 
system consisting of multiple processes and threads 
(pthread). The pthread is the only SW functional execution 
unit scheduled for the CPU resource. 

According to our hybrid application model concept, an 
application thread can be modelled as an abstract model, or 
as a native-code model. 

The first case applies to situations when application 
codes have not been finished for modelling, or the simulation 
user does not have interests in functional simulation. In 
Figure 3(a), the behaviour of an abstract thread model is 
characterised by a set of timing parameters, e.g., best-case 
execution time (bcet), worst-case execution time (wcet), 
deadline, release time, and period, etc. These temporal pa-
rameters, along with thread identity information (e.g., 
process ID (pid), thread ID (tid) and the thread type), are 
defined in a structure variable, namely a temporary thread 
control block argument, which will be passed to the RTOS 
during thread creation. The thread’s function body usually 
contains nothing functional codes. Possibly, the simulation 
user can also appoint a probabilistic function in order to gen-
erate random execution times for every job, like the idea in 
[6]. 

If applications come with functional codes and corre-
sponding delay estimations, then we can build a native-code 
thread model. In Figure 3(b), a structure variable still defines 
a thread’s identity information, but it no longer contains tim-
ing properties. A RTOS object is passed to the function body, 
in order to let a thread use RTOS services. Timing delay 
information interleaves with code blocks in the function 
body. The delay annotation granularity depends on the simu-

Figure 3. Two types of application models 
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lation user’s choice, such as source code line level, function 
level, and task level. A delay annotation and time advance 
process includes three steps:  

1) Adding the delay to thread’s current delay value 
(Figure 3(b) line4); 

2) Using the RTOS function write_block_delay_time() to 
inject the latest thread’s delay value into the Live CPU 
Model (line5); 

3) Waiting for a SystemC sc_event (exclusive to 
each thread) that will be released by the Live CPU Model 
after the thread’s delay is consumed totally (line7). 

This native-code simulation method has a significant dif-
ference from other similar methods. Unlike [6] [11], delay 
annotation statements in our model are not used to define 
explicit pre-emption points for HW/SW synchronisation. The 
main purpose is to notify the processing element (the Live 
CPU Model) as to how much computing resource a code 
block needs, and then to wait for simulation time advance. 
Interruption and pre-emption can happen at any necessary 
(i.e., there is an interrupt) and possible (i.e., interrupts are 
enabled) time points during a delay. 

B. RTOS modelling 
An RTOS usually consists of a kernel to provide minimal 

services that enable concurrent threads to utilise hardware 
resources efficiently and predictably. Figure 2 depicts the 
block diagram of the RTOS kernel model. It is dedicated to 
the following services: thread/process management, schedul-
ing services, synchronisation/IPC services, time/clock 
services and interrupt handling services. An application 
thread can access these services via the Application Program 
Interface (API) layer, which is implemented with real-time 
POSIX standard. 

1) Thread and Process Management 
The RTOS kernel model provides direct support for 

pthread management. A pre-defined number of processes 
and threads are created during the RTOS initialisation, and 
are put in two pools “rtos_pcb_array[]” and 
“rtos_tcb_array[]”. Figure 4 illustrates how to create a 
pthread in modelling. We implement the standard POSIX 
pthread_create() function on top of SystemC. Calling this 
function will create a SystemC module that includes two 
SystemC processes: create_thread_routine() and 
run_thread_routine(). As we have discussed before, a thread 

is defined by both a structure variable with some identity 
attributes and a function body. The structure variable is proc-
essed in the create_thread_routine() to generate an 
associated thread control block (tcb), whilst the function 
body is wrapped in the run_thread_routine() for timing 
simulation. Similarly, a process is created by a function 
spawn() and a process control block (pcb) contains its attrib-
utes. 

The thread control block comprises all information re-
quired by the RTOS kernel about a thread, for example the 
unique thread ID (tid), the belonged process ID (pid), the 
base priority, the effective priority, timing attributes, pointers 
to synchronisation events, pointers to other tcbs etc. More 
importantly, a delay context of a thread is also kept in the tcb. 
The concept delay context refers to a thread’s temporal in-
formation that is useful for timing simulation on the Live 
CPU Model. It is similar to the thread context about CPU 
registers’ values (e.g., the program counter and the status 
register) in a real computer. Table I shows six members of a 
delay context. At simulation runtime, the delay context 
changes continuously. When a thread is simulating (i.e., oc-
cupying the CPU), its delay context is loaded into the Live 
CPU Model. When a thread stops simulating (i.e., releasing 
the CPU), the latest delay context is saved back to the 
thread’s tcb. These “load” and “save” primitives constitute 
the RTOS context switch function in modelling. 

 

 
In order to accommodate novel hybrid hard/soft/non real-

time embedded applications, our RTOS model supports real-
time periodic, aperiodic, sporadic and non real-time threads. 
We notice that many RTOSs (e.g., μC/OS-II, RTEMS, QNX, 
and VxWorks) do not have special system service to support 
periodic threads. The periodic execution is realised by using 
time functions at the user level, whereas some other RTOSs 
(e.g., RTLinux, RTAI) and most abstract RTOS models pro-
vide direct system primitives to support periodic threads. Our 
RTOS model implements both approaches. The periodic 
execution related information, such as thread type, relative 
deadline, and next release time etc. can be stored in the 
thread tcb. The RTOS kernel can track and update them for a 
periodic execution. As well, the POSIX sleep() function is 
implemented in our model to implement user-manipulated 
periodic execution. Aperiodic and sporadic threads with 
critical deadlines are triggered by external interrupts through 
interrupt service routines. Non real-time threads are usually 
given the lowest priorities. 

TABLE I. DELAY CONTEXT OF A THREAD

Figure 4. Pthread creation in SystemC 



2) Scheduling services modelling 
Task state machine is the basis of thread scheduling ser-

vices. The state machine models in [14] and [19] have a 
similar structure, including four states: idle, ready, running, 
and preempted. However, their ready and preempted states 
in fact represent the same ready state in a classical RTOS 
structure; namely, this task state machine is lack of the wait-
ing state that is important for synchronisation services. The 
model in [20] builds a seven-state traditional UNIX task 
model, which is completed but is not very common in 
RTOSs. The task state model in [15] implements a canonical 
structure to support concurrent execution, which consists of 
three basic states: ready, running, and waiting. Besides, we 
observe that, in some real RTOSs, the task state machine 
usually contains additional states to support specific kernel 
services, such as a sleeping state for a timed suspension and 
an explicit suspension state for an unlimited suspension. 
With reference to μC/OS-II, μTRON4.0, QNX, RTEMS, and 
classical RTOS models in [21], we apply a four-state exten-
sible task state machine: ready, running, waiting (with six 
sub-states by default), and terminated (Figure 5). In addition 
to three basic states, the terminated state means that a thread 
has been deleted. This thread state machine is extensible 
because the important waiting state can be specified into 
different sub-states by just setting a wait_flag in the thread 
tcb. For example, if we want to model the μTRON4.0 RTOS, 
we just need to shrink the waiting state into three sub-states: 
waiting, waiting-suspended, and suspended. 

According to a thread’s state, its tcb is organised in sev-
eral priority-descending queues (e.g., ready_queue, 
waiting_queue and terminated_queue) in the RTOS model. 
In a uniprocessor system, only one thread can execute at any 
time, so running state does not need a queue. Thread man-
agement, e.g., creation, suspension, dispatch, resumption, 
and termination, is implemented by various RTOS system 
calls through moving tcbs between these queues. 

Like most RTOSs, we model a priority-based pre-
emptive scheduler in two ways: tick scheduling and event-
driven scheduling [22]. In tick scheduling, the tick timer In-
terrupt Service Routine (ISR) tick_isr() is periodically 
triggered by a clock interrupt rtc_clk. The interval of this 
clock interrupt is defined as the time resolution of the system, 
the so-called system tick. The tick length is fully configur-

able in our model. The function tick_isr() takes charge of 
updating threads’ timers, and invoking the priority-based 
scheduler() to make a scheduling decision. In event-driven 
scheduling, the scheduler() function is invoked by RTOS 
services after they change any thread’s state, such as the 
sleep service and the wait semaphore service. 

Two priority-based scheduling mechanisms are sup-
ported: Fixed-priority Scheduling (FPS) and Dynamic-
priority EDF scheduling. The Deadline Monotonic (DM) 
algorithm and the Rate Monotonic (RM) algorithm can be 
applied for FPS. In EDF scheduling mode, the tcb member 
“effective_priority” and the delay context member 
“thread_abs_dln” are dynamically updated in simulation. 
For ready threads possessing the same priority, POSIX First-
In-First-Out (SCHED_FIFO) and Round-robin (SCHED_RR) 
algorithms are applied. If there is no ready thread after 
scheduling, an idle thread with the lowest priority is dis-
patched to run, which indicates the processor’s idle state. 
Some POSIX functions about pthread scheduling, such as 
pthread_setschedparam(), pthread_getschedparam(), and 
pthread_setschedprio(), are implemented in our model to 
control and change the scheduling policy and parameters. 

3) Thread Synchronisation and Communication 
modelling 

In a multithreading RTOS environment, application 
threads need to access shared resources and exchange infor-
mation and data with each other to cooperate properly. There 
is a rich variety of RTOS synchronisation and communica-
tion mechanisms, such as semaphores, mutexes, conditional 
variables, events, signals, message queues, etc. We notice 
that SystemC language also provides three built-in synchro-
nisation primitive channels, e.g., sc_semaphore, sc_mutex, 
and sc_fifo. However, they are improper to use in an RTOS 
model directly, since they do not support the priority-based 
pre-emptive scheduling, but rely on the non-deterministic 
and non-preemptive SystemC kernel scheduler. For instance, 
if several threads are waiting for a semaphore, it is unsure 
which thread will be activated after a post semaphore opera-

Figure 5. Task state transitions diagram 

Figure 6. Synchronisation services 



tion. In the RTOS model, we realise three real-time POSIX 
synchronisation and communication methods: semaphores, 
mutexes and message queues. The Priority Ceiling Protocol 
(PCP) (so-called priority protection protocol in POSIX) is 
applied for mutexes to avoid the priority inversion problem.  

We use the Event Control Block concept, which is simi-
lar to the mechanism in μC/OS-II, to allocate an rtos_ecb 
control block (See Figure 6) to each semaphore, mutex, and 
message queue object. Five primitives are responsible for 
managing these rtos_ecbs. Real-time POSIX synchronisation 
services are implemented by using these primitives. When 
the primitive sync_create() is called to create a synchronisa-
tion relationship, the related thread’s tcb stores a pointer to 
an rtos_ecb object, at the same time, the rtos_ecb also stores 
the threads’ tid and priority in its rtos_ecb_thread_list. In 
contrast, the sync_del() primitive destroys the link between 
an rtos_ecb and the tcb. The sync_wait() primitive performs 
the P operation to make the running thread go to waiting 
state. The sync_signal() primitive executes the V operation 
to let the highest-priority waiting thread enter ready state. 
The sync_timeout() is used to make a waiting thread ready 
when time is out. 

4) Interrupt handling modelling 
Interrupt handling is a crucial mission of the RTOS to 

service interrupt requests (IRQ) generated by external pe-
ripheral devices. Our RTOS model provides a configurable 
interrupt handling model. As shown in Figure 7, this model 
is constructed with three layers: HW interrupt controller1 
(irq_ctrl), RTOS-kernel handler, and ISRs. Once the irq_ctrl 
catches an IRQ, the Live CPU Model will stop current SW 
simulation and branch to a SW handler. There are a number 
of different SW interrupt handling schemes regarding vari-
ous experimental or commercial RTOSs and processors. Our 
model carries out two main schemes: RTOS-assisted inter-
rupt handling and HW vector interrupt handing. It is worth 
noting that, no matter in which scheme, nested, prioritised, 
and maskable interrupt handling is supported. 

Figure 7(A) depicts the process of RTOS-assisted inter-
rupt handling. In this scheme, an RTOS-kernel handler 
interrupt_handler_enter() is the entry point for all IRQs 
(Step1.1). This interrupt_handler_enter() is implemented as 
a SystemC process, so it can be aware of a related SystemC 
sc_event sent by the HW interrupt controller. After this entry 
handler identifies the external interrupt source, it executes an 
appropriate ISR in Step1.2. This ISR is programmed as a 
high-priority (i.e. higher than any applications) thread, which 
contains simple and non-blocking functions to serve an IRQ 
quickly. Possibly, it could call a synchronisation function to 
activate a waiting thread. When servicing is complete, con-
trol is passed to another kernel handler 
interrupt_handler_exit() in Step1.3. This handler checks and 
processes any possible nested IRQ firstly, and then it sched-
ules the highest-priority ready thread to run in Step1.4. 
                                                           
1 The HW interrupt controller model has been introduced in 
our previous work; its main function is to monitor external 
IRQ lines. 

Figure 7(B) illustrates the HW vector interrupt handling 
scheme. In this model, the interrupt source can be obtained 
directly from the HW interrupt controller, so an ISR is 
loaded from the vector table to execute promptly (Step2.1). 
The ISR carries out servicing functions and invokes the 
RTOS function interrupt_handler_enter(), which is a light-
weight function to increment system variables in this model 
(Step2.2). In Step2.4, the RTOS function inter-
rupt_handler_exit() is called to schedule the new highest-
priority ready thread. In final Step2.5, the highest-priority 
ready application thread is subsequently dispatched to run. 

Figure 7. Two IRQ handling models 
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IV. DISCUSSIONS ON MODEL IMPLEMENTATION IN 
SYSTEMC 

A. Building timed RTOS service models 
A major advantage of our RTOS model, compared to 

other works, is that we consider timing overheads of various 
RTOS services. Building a timed simulation model for an 
RTOS service includes two jobs: collecting delay estimation 
and then annotating them into models. Regarding the first 
job, we use the conventional ISS-based approach to measure 
overheads of a specific RTOS on a target processor ISS. The 
second job is more worthy of discussion. When we simulate 
an application thread model, we can accurately begin, stop, 
and resume its delay advance by recording its time delay 
information in its tcb. Delay data in the tcb are elaborately 
consumed and updated by the Live CPU model, which can 
guarantee the timing accuracy of simulation. However, the 
timing simulation of an RTOS service is not the case, be-
cause an RTOS service does not have a control block which 
can store its delay information. We solve this problem by 
dividing each RTOS service’s time delay into two parts: the 
interruptible part and the un-interruptible part (Refer to 
Figure 8). 

The interruptible part means that interrupts are allowed 
during this delay period. Consequently, we need to find a 
method to “consume” this delay whilst ensure HW/SW syn-
chronisation accuracy in simulation. The use of the Live 
CPU model is a good choice in simulation. Hence, we anno-
tate this interruptible delay part to the service’s calling 
application thread and place it after the function call. For 
example, in Figure 8 (A), a semaphore initialisation function 
executes at line4. Subsequently, its interruptible delay is 
written into its residing thread’s delay context at line5. Ac-
cordingly, the following delay advance process (line6 and 
line7) is the same as a normal one. 

The un-interruptible delay part relates to a critical section 

concept in the RTOS, during which interrupts are disabled. 
Hence, it is not necessary to worry about the HW/SW syn-
chronisation problem in this delay period. We hereby use a 
simple wait-for-delay statement to advance the simulation 
time (Figure 8 (B) line6). It is worthwhile to indicate that this 
method also avoids invoking the Live CPU Model and de-
creases SystemC engine switches, which will necessarily 
improve simulation speed. 

The RTOS model only contains one essential (i.e. 
rtos_init() to start simulation) and two optional (i.e. inter-
rupt_handler_enter() and interrupt_handler_exit() in case of 
RTOS-assisted interrupt handling) SystemC processes. We 
implement other RTOS services as normal C++ functions. 
This is based on similar considerations to [15]: 1) such an 
RTOS model is closer to a real RTOS implementation that 
using procedure calls; 2) less SystemC processes imply less 
simulation engine switches, therefore the simulation per-
formance is enhanced. 

B. Simulation framework architecture 
The mainframe of the simulator is constructed from three 

types of SystemC modules (namely C++ classes): the 
pthread_create module, the RTOS module, and the Live 
CPU module, which represents applications, the RTOS and 
the processor respectively (Figure 9). An object of a Live 
CPU module is used as an argument by an RTOS object, in 
order to let the RTOS use the CPU resource. As well, the 
RTOS object is employed by a pthread_create object, which 
means that a thread is within an RTOS. Normally, there are 
several pthread_create objects in simulation standing for 
several pthreads. In this way, applications, the RTOS and the 
processing element are connected in a straight manner. This 
modular architecture makes our simulation framework hier-
archical, low coupling and especially extensible. For 
example, the RTOS bears the potential to simulate on a 
multi-processor platform by accepting several CPU objects.  

V. EXPERIMENTAL RESULTS 
In order to demonstrate the functional and timing accu-

racy of the proposed RTOS-centric simulation, we test it 
with an A/D data collection example (Figure 10). Three 
threads take charge of watching the keyboard, collecting A/D 
data and sending out results via the serial port. Tasks roughly 
have periods as 90ms, 100ms and 510ms. According to the 
RM algorithm, they are allocated descending priorities. A 

Figure 9. Simulation framework architecture Figure 10. A/D data collection example 



tick timer ISR is associated with a timer IRQ to drive tick 
scheduling with a 5ms tick length. A semaphore and a mes-
sage queue provide synchronisation and communication 
services between threads. Same applications and the μC/OS-
II RTOS are executed on the KEIL μVision ARM ISS, 
which is seen as a cycle-accurate reference model in the ex-
periment. The target processor is configured as a 48MHz 
NXP LPC2378 processor. The RTOS services’ timing over-
heads are measured based on the μC/OS-II with this ISS. All 
tests are executed on an x86 PC at 1.86GHz. 

We examine the RTOS-centric simulator in three aspects: 
1) the simulation performance compared with ISS simulation; 
2) the functional correctness of the simulation by examining 
generated results; 3) the simulation timing accuracy of 
RTOS-centric simulation compared with ISS simulation. 

In order to compare the speed of RTOS-centric simula-
tion with the standard ISS simulation, we let each simulator 
simulate 500ms, 1000ms, 2000ms, 5000ms and 10000ms 
target time. Even during the shortest 500ms simulation, three 
tasks can repeat at lease 55, 50 and 10 jobs. Not surprisingly, 
as a system-level SW simulator, RTOS-centric simulator 
gains much faster speed than ISS simulation. The Figure 11 
reveals the impressed simulation performance of RTOS-
centric simulation. Its simulation speed is about 500 times 
faster than the ISS simulator. 
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Figure 11. Simulation speed comparison 

If a simulator performs correct functions, it should be 
able to generate similar simulation sequences and results at 
right time compared with real execution. In the experiment, 
we input same stimuli, e.g., keyboard signals and voltages, 
into both μVision ARM ISS and the RTOS-centric simula-
tor. We observe A/D converting results, which are generated 
after multitasking interactions between applications and the 
RTOS. The Figure 12(Left) shows the screen shots of the 
ISS simulator’s serial port output. The texts in the box show 
the time stamp of a corresponding A/D output. The Figure 
12(Right) is a trace file of the RTOS-centric simulator and 
bold texts show time stamps of corresponding results. We 
can observe that the RTOS-centric simulator produces simi-
lar A/D results at very close times to the ISS simulator, 
which demonstrates its functional correctness. 

 
Conventionally, people examine the timing accuracy of 

simulation by comparing its simulated clock cycles of task 
completion with a more accurate standard simulator’s. If 
both simulators run same applications and they consume 
similar numbers of cycles (or simulated target time) upon 
completion, then their timing accuracy is believed to be 
close. In order to make a more accurate comparison, we im-
prove this approach by inserting more observation 
(comparison) points in the simulation flow, instead of only 
comparing total numbers. These observation points are se-
lected to cover all three threads’ codes. The Figure 13 shows 
timing accuracy comparison between the ISS simulator and 
the RTOS-centric simulator. The X-axis is 22 observation 
points in simulation flow and the Y-axis is the simulated 
target time at each observation point, which ranges from 0 to 
600ms. In the figure, two simulator flows’ curves are in close 
accordance, which reveals the good accuracy intuitively. 
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Figure 13. Simulation timing accuracy comparison 

The Table II is the exact timing accuracy loss of the 
RTOS-centric simulation compared with ISS simulation at 
22 comparison points. The accuracy loss is defined as:  

%100
_

__
×

−
= −

ISS

ISScentricRTOS

timeSimulated
timeSimulatedtimeSimulated

loss  

The table shows that the accuracy loss is marginal in this 
experiment. The main reason is the elaborate structure of the 
whole simulation framework. It is also because that delay 
information of both applications and RTOS services is care-
fully measured on the ISS before use in RTOS-centric 
simulation. If we cannot acquire accurate delay estimations, 

Figure 12. Simulation results comparison: ISS results (Left) and RTOS-
centric simulator results (Right) 



then the timing accuracy of RTOS-centric simulation is nec-
essarily affected. 

TABLE II. ACCURACY LOSS OF THE RTOS-CENTRIC SIMULATION 
COMPARED WITH ISS 

Comparison 
point #1 #2 #3 #4 #5 #6 

Accuracy loss 
0.34% 0.34% 0.34% 0.68% 0.64% 0.61% 

Comparison 
point #7 #8 #9 #10 #11 #12 

Accuracy loss 0.59% 0.57% 0.56% 4.44% 3.76% 3.76% 
Comparison 

point #13 #14 #15 #16 #17 #18 
Accuracy loss 3.50% 3.51% 0.13% 0.03% 2.20% 1.49% 
Comparison 

point #19 #20 #21 #22   
Accuracy loss 2.52% 0.08% 0.09% 0.22%   

VI. CONCLUSION AND FUTURE WORK 
This paper presents a generic and accurate system-level 

RTOS-centric embedded software simulation framework. 
The framework supports simulation of abstract application 
models, native application codes, the configurable RTOS 
model, the processing element mode, and various hardware 
models in a unified SystemC environment. It can help de-
signers to evaluate both functional and timing effects of the 
projected real-time embedded software design fast and early. 
Its speedup and accuracy have been demonstrated by a com-
parison experiment with an ISS simulator. 

Future work is towards a multiprocessor RTOS model, in 
which we will integrate multiple Live CPU Models and 
multi-level scheduling policies. 
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