
A Generic and Accurate RTOS-centric Embedded System Modelling and Simulation
Framework

Ke Yu, Neil C. Audsley
Dept. of Computer Science, University of York

York, UK
Email: {ke, neil}@cs.york.ac.uk

Abstract— Real-time Operating System (RTOS) modelling and
SystemC-based system-level hardware/software co-simulation
have become important issues for early design space explora-
tion in the development of real-time embedded systems. This
paper presents a generic and accurate RTOS-centric embed-
ded system modelling and simulation framework. It allows
modelling and simulating applications, the RTOS, the CPU
processing element and hardware components in a unified
SystemC-based framework. Compared with previous system-
level RTOS modelling works, this framework (1) enhances
modelling flexibility by supporting hybrid simulation of ab-
stract software models and delay-annotated native application
codes, (2) improves functionality of the RTOS model by pro-
viding generic and POSIX-like services, and (3) achieves
accurate simulation in terms of both timing accuracy and the
simulation flow. Experimental results show the high accuracy
and fast performance of our simulation, with small accuracy
loss compared with cycle-accurate instruction set simulation.

I. INTRODUCTION
In recent years, with embedded systems moving toward

System-on-Chip (SoC) platforms, the complexity of embed-
ded software (SW) is also increasing rapidly. The Real-Time
Operating System (RTOS) has become an essential compo-
nent in many real-time embedded systems. It provides
efficient controlling facilities as well as guaranteed services
for upper-layer application software and underlying hard-
ware (HW) resources. The traditional SW simulation
approach, which executes a real RTOS and applications in an
instruction set simulator, appears to be time consuming and
available too late when confronting ever-increasing design
complexity. To cope with the design challenge, system-level
RTOS modelling and simulation have been proposed as ena-
bling techniques, to simulate and evaluate different
embedded SW (including both applications and the OS) de-
sign alternatives at early design phases. By means of System
Level Design Languages (SLDL) (e.g., SystemC and SpecC),
these methods usually build a generic RTOS model that dy-
namically simulates abstract SW models or native
application codes on a host machine, in order to mimic SW
timing and functional behaviour on the target machine. They
are used to evaluate system-wide dynamic SW functional
and timing properties, such as scheduling policies and appli-
cations execution times.

However, there still exist some problems in this area,
which affect the functional and timing accuracy of models,
as well as their simulation performance. For example, from

the perspective of maximising flexibility of system-level
design, designers may want to simulate multiple abstraction-
level SW models together. However, current RTOS model-
ling research is incapable of integrating coarse-timed abstract
task models (i.e., associated with best-case and worst-case
execution times) and fine-timed native application codes (i.e.,
associated with line-by-line delay annotations) in one simu-
lator. Besides, from the perspective of RTOS engineering,
some RTOS models provide simplistic task management and
limited synchronisation services, which are inadequate to
imitate behaviour of a real multitasking RTOS. Furthermore,
the low timing accuracy is a common, yet critical, problem
borne by many RTOS modelling approaches. On one hand,
this is due to the lack of RTOS services’ timing overheads in
modelling. On the other hand, many methods rely exces-
sively on the un-interruptible SLDL “wait-for-delay” time
advance mechanism [1] [2], consequently task switches and
HW/SW synchronisation only happen at limited pre-defined
pre-emption points.

In this paper, we present a system-level SystemC-based
RTOS-centric modelling framework. Its main objective is to
fast simulate and evaluate behaviour of real-time embedded
software with good accuracy in early design phases. The
simulated target system’s dynamic execution scenarios can
be exposed by tracing diverse system events and values, e.g.,
RTOS kernel calls, RTOS runtime overheads, task execution
times, dynamic scheduling decisions, task synchronisation
and communication activities, interrupt handling latencies,
context switch times, and other user concerned properties. It
does so by integrating multiple-level applications, RTOS,
processing element and hardware component models in a
unified SystemC prototyping environment. The core is a
generic RTOS simulation model, which supplies a set of
fundamental services including thread management, schedul-
ing services, synchronisation and inter-task communication
mechanisms, clock services, context switch and interrupt
handling services, etc. These services partially conform to
POSIX Dedicated Real-time System Profile (PSE53) specifi-
cation [3] in order to supply standardised functions. To build
a predictable RTOS timing model, timing overheads of vari-
ous RTOS services are considered in models. This
simulation framework includes the previously developed
“Live CPU Model” [4], which supports SW timing simula-
tion as well as guarantees good HW/SW synchronisation
timing accuracy.

Our work also remedies current SystemC language’s
(v2.2) deficient capability on real-time software modelling,

i.e., there is neither the priority concept nor pre-emptive
scheduling. All models in the modelling framework are built
on the top of SystemC library (Refer to Figure 2). We use
both basic SystemC core language and its simulation kernel,
without modifying the library at all. This is helpful to popu-
larise our model to the emerging SystemC-based embedded
system design world.

II. RELATED WORK
RTOS modelling has been an important topic in embed-

ded systems simulation-based design. Various RTOS models
have been developed in the context of high-level abstract SW
simulation [5] [6] [7], delay-annotated native SW simulation
[8] [9], HW/SW co-simulation [10] [11] and system-level
design refinement research [12] [13]. These models can be
categorised depending on their locations in the top-down
embedded systems design flow, and with regard to their tim-
ing accuracy levels (Refer to Figure 1).

Abstract RTOS modelling is applicable to early system
design phases, such as specification, system analysis, and
SW/HW partitioning stages, when the target platform is un-
determined and SW codes are not implemented. In this
approach, applications are normally organised into some
abstract task models associated with coarse-grained temporal
estimates, e.g., period, deadline, and execution times. An
RTOS model provides basic primitives to control “start” and
“termination” of a task, between which there is a time inter-
val representing the task’s execution cost. Inter-task
synchronisation/IPC services and interrupt handling are usu-
ally not considered in this kind of model. A SpecC-based
abstract RTOS model for system-level design is presented in
[12] [13]. It provides sixteen basic primitives to support task
management and scheduling. Its subsequent work in [1] re-
solves the initial HW/SW synchronisation problem by using
an improved “wait-for-delay” method named “Result-
oriented Modelling”. In [5] the authors present an abstract
SystemC-based RTOS model and extend its use for MPSoC
design space exploration [14]. This work decomposes a real-
time embedded system into three compact submodels: the
task graph model, the scheduler model, and the link commu-
nication model. Real-time scheduling assessments have
been addressed in [6] [7], in which different scheduling poli-
cies are evaluated through abstract RTOS simulation. In
most models, overheads of RTOS services are not adequately
considered, but [15] has the advantage of taking three ser-
vices’ overheads into account in a generic RTOS model.

Delay-annotated native-application RTOS modelling
aims to simulate SW in the system implementation phase,
when the target platform is in the process of being selected
and application codes are being developed. SW execution
delays are measured and annotated in models at some finer
granularities (e.g., function level, block level, and line level),
so timing accuracy becomes a major focus point in this ap-
proach. The RTOS model often supplies comprehensive and
specific services, and contains more timing information. In
[9], a SystemC-based Texas Instrument DSP/BIOS RTOS
simulation tool is presented. It comprises detailed OS timing
information, which is derived from benchmark tests. It pro-
poses a time-stamp prediction technique in order to solve
HW/SW synchronisation problems, but it has a tight re-
quirement that applications should report their interrupt
times to the RTOS kernel. The TIMA laboratory presents
some results on native SW simulation for SoC HW/SW co-
simulation research in [11] [16]. In [11] they propose a
“variable timing granularities” method to solve HW/SW
synchronisation problems by trading off the simulation per-
formance with the timing accuracy; to further tackle this
problem, in [16] they present a different method by using a
“simulation environment abstraction layer” to synchronise
HW and SW simulation clock. In [8] a POSIX compliant
RTOS model is developed on top of SystemC. It applies a
dynamic delay annotation method by assigning each C++
operator with a corresponding target-platform execution cost.
However, the interrupt handling problem is not explicitly
solved.

Instruction set simulation (ISS) is conventionally used for
SW simulation at the final system integration phase. Finished
SW codes are cross-compiled and simulated in a cycle-
accurate instruction set simulator that represents the target
processor’s behaviour. The high accuracy and low simula-
tion performance are its two contradictory characteristics. In
this approach, a real RTOS (e.g., μC/OS-II in [17] and
μClinux in [18]) is usually ported in the ISS to manage ap-
plications execution. To speed up simulation, some variation
approaches propose to build an RTOS model on top of
SLDL [2] [10], and combine it with an ISS which is still
used to simulate applications.

Our RTOS model combines many features of both “ab-
stract RTOS modelling” and “native-application RTOS
modelling”. It applies to the conjunction area of system
analysis and implementation design phases. Compared with
existing works, we improve the RTOS model’s functionality
to supply realistic SW simulation for. It can integrate hybrid
abstract task models and native-code task models in a single
simulator to enhance modelling flexibility. The high simula-
tion performance and good timing accuracy are preserved at
the same time in our simulator because of the use of the
“Live CPU Model”.

III. SOFTWARE SYSTEM MODELLING
As shown in Figure 2, a real-time embedded system can

be generally decomposed into three layers: the application
layer, the RTOS layer and the hardware layer. Figure 1. RTOS models in embedded systems design

In our previous work, we developed a hardware layer
model whose core is a “Live CPU Model”. Its main purpose
is to support and improve system-level SW simulation from
the perspective of hardware platform. In conventional sys-
tem-level SW simulation (e.g., the left two models in Figure
1), the application model and the RTOS model construct a
processing element, and in fact there is not a hardware CPU
model. Unlike them, the “Live CPU Model” executes SW
delay annotations in a way comparable to the way a real
CPU executes instructions. The “Live CPU Model” also
monitors external interrupts and can start, stop, and resume a
SW delay process without any undesired latency. This hard-
ware layer model is then combined to construct a whole
embedded system simulation framework in this paper. In the
following, we describe software layers modelling in detail.

A. Applications Modelling
In embedded software development, applications are

usually subdivided into a set of concurrent and cooperating
units. These concurrent units are commonly implemented in
three concepts: the task model, the thread model and the
process model. In simple systems, there is only one kind of
unit, so people may synonymously use three concepts. Many
RTOS models are implemented in this way as well. However,
in some complex RTOSs (e.g., QNX, LynxOS and other
POSIX-compliant ones), applications are managed in both

the process (i.e., an application) model and the thread (i.e., a
task) model. This is mainly for such a consideration that the
threads’ context-switch overheads are lower than processes’,
because threads share some contexts within a process. This
two-level structure can also better utilise the high-
performance parallel multi-threading HW architecture and
flexible multi-level real-time scheduling policies. Our appli-
cation model conforms to the Real-time POSIX PSE53
specification, so it assumes a single processor computing
system consisting of multiple processes and threads
(pthread). The pthread is the only SW functional execution
unit scheduled for the CPU resource.

According to our hybrid application model concept, an
application thread can be modelled as an abstract model, or
as a native-code model.

The first case applies to situations when application
codes have not been finished for modelling, or the simulation
user does not have interests in functional simulation. In
Figure 3(a), the behaviour of an abstract thread model is
characterised by a set of timing parameters, e.g., best-case
execution time (bcet), worst-case execution time (wcet),
deadline, release time, and period, etc. These temporal pa-
rameters, along with thread identity information (e.g.,
process ID (pid), thread ID (tid) and the thread type), are
defined in a structure variable, namely a temporary thread
control block argument, which will be passed to the RTOS
during thread creation. The thread’s function body usually
contains nothing functional codes. Possibly, the simulation
user can also appoint a probabilistic function in order to gen-
erate random execution times for every job, like the idea in
[6].

If applications come with functional codes and corre-
sponding delay estimations, then we can build a native-code
thread model. In Figure 3(b), a structure variable still defines
a thread’s identity information, but it no longer contains tim-
ing properties. A RTOS object is passed to the function body,
in order to let a thread use RTOS services. Timing delay
information interleaves with code blocks in the function
body. The delay annotation granularity depends on the simu-

Figure 3. Two types of application models

Figure 2. Layerd system model

Programming language C++

Application
Written by the end user

Methodology and technology specific libraries
SystemC verification library, bus models, TLM interfaces

Core language
Modules
Ports
Exports
Processes
Interfaces
Channels
Events

Predefined channels

signal, clock, FIFO,
mutex, semaphore

Data types

4‐valued logic type
4‐valued logic vectors

Bit vectors
Finite‐precision integers

Limited‐precision integers
Fixed‐point types

Utilities

Report handling,
tracing

RTOS Kernel
Services Model

Live CPU Model

irq_ctrl cpu_sim_engine

pid: 1

tid: 1 tid: 2

pid: n

Process/
Thread

Management

Scheduling
Services

API Interface

...

Native codes/
Abstract Tasks

Process model

POSIX/Generic

RTOS
layer

Applications
layer

Time
Services

Synchronization
/IPC Services

Low‐level primitives:
contex_switch,
irq_enter/exit,
delay advance..

Hardware
layer

tid: m tid: n Pthread model

func() func()
period,
wcet,
bcet

period,
wcet,
bcet

ISR ISR
Tick

Timer ISR

Other HW
modules

Sy
st

em
C

la
ng

ua
ge

 a
rc

hi
te

ct
ur

e

lation user’s choice, such as source code line level, function
level, and task level. A delay annotation and time advance
process includes three steps:

1) Adding the delay to thread’s current delay value
(Figure 3(b) line4);

2) Using the RTOS function write_block_delay_time() to
inject the latest thread’s delay value into the Live CPU
Model (line5);

3) Waiting for a SystemC sc_event (exclusive to
each thread) that will be released by the Live CPU Model
after the thread’s delay is consumed totally (line7).

This native-code simulation method has a significant dif-
ference from other similar methods. Unlike [6] [11], delay
annotation statements in our model are not used to define
explicit pre-emption points for HW/SW synchronisation. The
main purpose is to notify the processing element (the Live
CPU Model) as to how much computing resource a code
block needs, and then to wait for simulation time advance.
Interruption and pre-emption can happen at any necessary
(i.e., there is an interrupt) and possible (i.e., interrupts are
enabled) time points during a delay.

B. RTOS modelling
An RTOS usually consists of a kernel to provide minimal

services that enable concurrent threads to utilise hardware
resources efficiently and predictably. Figure 2 depicts the
block diagram of the RTOS kernel model. It is dedicated to
the following services: thread/process management, schedul-
ing services, synchronisation/IPC services, time/clock
services and interrupt handling services. An application
thread can access these services via the Application Program
Interface (API) layer, which is implemented with real-time
POSIX standard.

1) Thread and Process Management
The RTOS kernel model provides direct support for

pthread management. A pre-defined number of processes
and threads are created during the RTOS initialisation, and
are put in two pools “rtos_pcb_array[]” and
“rtos_tcb_array[]”. Figure 4 illustrates how to create a
pthread in modelling. We implement the standard POSIX
pthread_create() function on top of SystemC. Calling this
function will create a SystemC module that includes two
SystemC processes: create_thread_routine() and
run_thread_routine(). As we have discussed before, a thread

is defined by both a structure variable with some identity
attributes and a function body. The structure variable is proc-
essed in the create_thread_routine() to generate an
associated thread control block (tcb), whilst the function
body is wrapped in the run_thread_routine() for timing
simulation. Similarly, a process is created by a function
spawn() and a process control block (pcb) contains its attrib-
utes.

The thread control block comprises all information re-
quired by the RTOS kernel about a thread, for example the
unique thread ID (tid), the belonged process ID (pid), the
base priority, the effective priority, timing attributes, pointers
to synchronisation events, pointers to other tcbs etc. More
importantly, a delay context of a thread is also kept in the tcb.
The concept delay context refers to a thread’s temporal in-
formation that is useful for timing simulation on the Live
CPU Model. It is similar to the thread context about CPU
registers’ values (e.g., the program counter and the status
register) in a real computer. Table I shows six members of a
delay context. At simulation runtime, the delay context
changes continuously. When a thread is simulating (i.e., oc-
cupying the CPU), its delay context is loaded into the Live
CPU Model. When a thread stops simulating (i.e., releasing
the CPU), the latest delay context is saved back to the
thread’s tcb. These “load” and “save” primitives constitute
the RTOS context switch function in modelling.

In order to accommodate novel hybrid hard/soft/non real-

time embedded applications, our RTOS model supports real-
time periodic, aperiodic, sporadic and non real-time threads.
We notice that many RTOSs (e.g., μC/OS-II, RTEMS, QNX,
and VxWorks) do not have special system service to support
periodic threads. The periodic execution is realised by using
time functions at the user level, whereas some other RTOSs
(e.g., RTLinux, RTAI) and most abstract RTOS models pro-
vide direct system primitives to support periodic threads. Our
RTOS model implements both approaches. The periodic
execution related information, such as thread type, relative
deadline, and next release time etc. can be stored in the
thread tcb. The RTOS kernel can track and update them for a
periodic execution. As well, the POSIX sleep() function is
implemented in our model to implement user-manipulated
periodic execution. Aperiodic and sporadic threads with
critical deadlines are triggered by external interrupts through
interrupt service routines. Non real-time threads are usually
given the lowest priorities.

TABLE I. DELAY CONTEXT OF A THREAD

Figure 4. Pthread creation in SystemC

2) Scheduling services modelling
Task state machine is the basis of thread scheduling ser-

vices. The state machine models in [14] and [19] have a
similar structure, including four states: idle, ready, running,
and preempted. However, their ready and preempted states
in fact represent the same ready state in a classical RTOS
structure; namely, this task state machine is lack of the wait-
ing state that is important for synchronisation services. The
model in [20] builds a seven-state traditional UNIX task
model, which is completed but is not very common in
RTOSs. The task state model in [15] implements a canonical
structure to support concurrent execution, which consists of
three basic states: ready, running, and waiting. Besides, we
observe that, in some real RTOSs, the task state machine
usually contains additional states to support specific kernel
services, such as a sleeping state for a timed suspension and
an explicit suspension state for an unlimited suspension.
With reference to μC/OS-II, μTRON4.0, QNX, RTEMS, and
classical RTOS models in [21], we apply a four-state exten-
sible task state machine: ready, running, waiting (with six
sub-states by default), and terminated (Figure 5). In addition
to three basic states, the terminated state means that a thread
has been deleted. This thread state machine is extensible
because the important waiting state can be specified into
different sub-states by just setting a wait_flag in the thread
tcb. For example, if we want to model the μTRON4.0 RTOS,
we just need to shrink the waiting state into three sub-states:
waiting, waiting-suspended, and suspended.

According to a thread’s state, its tcb is organised in sev-
eral priority-descending queues (e.g., ready_queue,
waiting_queue and terminated_queue) in the RTOS model.
In a uniprocessor system, only one thread can execute at any
time, so running state does not need a queue. Thread man-
agement, e.g., creation, suspension, dispatch, resumption,
and termination, is implemented by various RTOS system
calls through moving tcbs between these queues.

Like most RTOSs, we model a priority-based pre-
emptive scheduler in two ways: tick scheduling and event-
driven scheduling [22]. In tick scheduling, the tick timer In-
terrupt Service Routine (ISR) tick_isr() is periodically
triggered by a clock interrupt rtc_clk. The interval of this
clock interrupt is defined as the time resolution of the system,
the so-called system tick. The tick length is fully configur-

able in our model. The function tick_isr() takes charge of
updating threads’ timers, and invoking the priority-based
scheduler() to make a scheduling decision. In event-driven
scheduling, the scheduler() function is invoked by RTOS
services after they change any thread’s state, such as the
sleep service and the wait semaphore service.

Two priority-based scheduling mechanisms are sup-
ported: Fixed-priority Scheduling (FPS) and Dynamic-
priority EDF scheduling. The Deadline Monotonic (DM)
algorithm and the Rate Monotonic (RM) algorithm can be
applied for FPS. In EDF scheduling mode, the tcb member
“effective_priority” and the delay context member
“thread_abs_dln” are dynamically updated in simulation.
For ready threads possessing the same priority, POSIX First-
In-First-Out (SCHED_FIFO) and Round-robin (SCHED_RR)
algorithms are applied. If there is no ready thread after
scheduling, an idle thread with the lowest priority is dis-
patched to run, which indicates the processor’s idle state.
Some POSIX functions about pthread scheduling, such as
pthread_setschedparam(), pthread_getschedparam(), and
pthread_setschedprio(), are implemented in our model to
control and change the scheduling policy and parameters.

3) Thread Synchronisation and Communication
modelling

In a multithreading RTOS environment, application
threads need to access shared resources and exchange infor-
mation and data with each other to cooperate properly. There
is a rich variety of RTOS synchronisation and communica-
tion mechanisms, such as semaphores, mutexes, conditional
variables, events, signals, message queues, etc. We notice
that SystemC language also provides three built-in synchro-
nisation primitive channels, e.g., sc_semaphore, sc_mutex,
and sc_fifo. However, they are improper to use in an RTOS
model directly, since they do not support the priority-based
pre-emptive scheduling, but rely on the non-deterministic
and non-preemptive SystemC kernel scheduler. For instance,
if several threads are waiting for a semaphore, it is unsure
which thread will be activated after a post semaphore opera-

Figure 5. Task state transitions diagram

Figure 6. Synchronisation services

tion. In the RTOS model, we realise three real-time POSIX
synchronisation and communication methods: semaphores,
mutexes and message queues. The Priority Ceiling Protocol
(PCP) (so-called priority protection protocol in POSIX) is
applied for mutexes to avoid the priority inversion problem.

We use the Event Control Block concept, which is simi-
lar to the mechanism in μC/OS-II, to allocate an rtos_ecb
control block (See Figure 6) to each semaphore, mutex, and
message queue object. Five primitives are responsible for
managing these rtos_ecbs. Real-time POSIX synchronisation
services are implemented by using these primitives. When
the primitive sync_create() is called to create a synchronisa-
tion relationship, the related thread’s tcb stores a pointer to
an rtos_ecb object, at the same time, the rtos_ecb also stores
the threads’ tid and priority in its rtos_ecb_thread_list. In
contrast, the sync_del() primitive destroys the link between
an rtos_ecb and the tcb. The sync_wait() primitive performs
the P operation to make the running thread go to waiting
state. The sync_signal() primitive executes the V operation
to let the highest-priority waiting thread enter ready state.
The sync_timeout() is used to make a waiting thread ready
when time is out.

4) Interrupt handling modelling
Interrupt handling is a crucial mission of the RTOS to

service interrupt requests (IRQ) generated by external pe-
ripheral devices. Our RTOS model provides a configurable
interrupt handling model. As shown in Figure 7, this model
is constructed with three layers: HW interrupt controller1
(irq_ctrl), RTOS-kernel handler, and ISRs. Once the irq_ctrl
catches an IRQ, the Live CPU Model will stop current SW
simulation and branch to a SW handler. There are a number
of different SW interrupt handling schemes regarding vari-
ous experimental or commercial RTOSs and processors. Our
model carries out two main schemes: RTOS-assisted inter-
rupt handling and HW vector interrupt handing. It is worth
noting that, no matter in which scheme, nested, prioritised,
and maskable interrupt handling is supported.

Figure 7(A) depicts the process of RTOS-assisted inter-
rupt handling. In this scheme, an RTOS-kernel handler
interrupt_handler_enter() is the entry point for all IRQs
(Step1.1). This interrupt_handler_enter() is implemented as
a SystemC process, so it can be aware of a related SystemC
sc_event sent by the HW interrupt controller. After this entry
handler identifies the external interrupt source, it executes an
appropriate ISR in Step1.2. This ISR is programmed as a
high-priority (i.e. higher than any applications) thread, which
contains simple and non-blocking functions to serve an IRQ
quickly. Possibly, it could call a synchronisation function to
activate a waiting thread. When servicing is complete, con-
trol is passed to another kernel handler
interrupt_handler_exit() in Step1.3. This handler checks and
processes any possible nested IRQ firstly, and then it sched-
ules the highest-priority ready thread to run in Step1.4.

1 The HW interrupt controller model has been introduced in
our previous work; its main function is to monitor external
IRQ lines.

Figure 7(B) illustrates the HW vector interrupt handling
scheme. In this model, the interrupt source can be obtained
directly from the HW interrupt controller, so an ISR is
loaded from the vector table to execute promptly (Step2.1).
The ISR carries out servicing functions and invokes the
RTOS function interrupt_handler_enter(), which is a light-
weight function to increment system variables in this model
(Step2.2). In Step2.4, the RTOS function inter-
rupt_handler_exit() is called to schedule the new highest-
priority ready thread. In final Step2.5, the highest-priority
ready application thread is subsequently dispatched to run.

Figure 7. Two IRQ handling models

interrupt_handler_enter()

ISR

Live CPU Model

cpu_sim_engine irq_ctrl

IRQ_line1

IRQ_line2

IRQ_line3

RTOS
layer

ISR

thread threadApplications
layer

interrupt_handler_exit()

Step2.1

Step2.2

Step2.3

Step2.4
Step2.5

(B) HW vector interrupt handling

ISR

Live CPU Model

cpu_sim_engine irq_ctrl

IRQ_line1

IRQ_line2

IRQ_line3

RTOS
layer

ISR

SystemC process
interrupt_handler_enter()

SystemC process
interrupt_handler_exit()

Step 1.1

Step1.2

Step1.3

thread thread

Step1.4

Applications
layer

(A) RTOS‐assisted interrupt handling

Figure 8. Simulation time advance methods for the RTOS service

IV. DISCUSSIONS ON MODEL IMPLEMENTATION IN
SYSTEMC

A. Building timed RTOS service models
A major advantage of our RTOS model, compared to

other works, is that we consider timing overheads of various
RTOS services. Building a timed simulation model for an
RTOS service includes two jobs: collecting delay estimation
and then annotating them into models. Regarding the first
job, we use the conventional ISS-based approach to measure
overheads of a specific RTOS on a target processor ISS. The
second job is more worthy of discussion. When we simulate
an application thread model, we can accurately begin, stop,
and resume its delay advance by recording its time delay
information in its tcb. Delay data in the tcb are elaborately
consumed and updated by the Live CPU model, which can
guarantee the timing accuracy of simulation. However, the
timing simulation of an RTOS service is not the case, be-
cause an RTOS service does not have a control block which
can store its delay information. We solve this problem by
dividing each RTOS service’s time delay into two parts: the
interruptible part and the un-interruptible part (Refer to
Figure 8).

The interruptible part means that interrupts are allowed
during this delay period. Consequently, we need to find a
method to “consume” this delay whilst ensure HW/SW syn-
chronisation accuracy in simulation. The use of the Live
CPU model is a good choice in simulation. Hence, we anno-
tate this interruptible delay part to the service’s calling
application thread and place it after the function call. For
example, in Figure 8 (A), a semaphore initialisation function
executes at line4. Subsequently, its interruptible delay is
written into its residing thread’s delay context at line5. Ac-
cordingly, the following delay advance process (line6 and
line7) is the same as a normal one.

The un-interruptible delay part relates to a critical section

concept in the RTOS, during which interrupts are disabled.
Hence, it is not necessary to worry about the HW/SW syn-
chronisation problem in this delay period. We hereby use a
simple wait-for-delay statement to advance the simulation
time (Figure 8 (B) line6). It is worthwhile to indicate that this
method also avoids invoking the Live CPU Model and de-
creases SystemC engine switches, which will necessarily
improve simulation speed.

The RTOS model only contains one essential (i.e.
rtos_init() to start simulation) and two optional (i.e. inter-
rupt_handler_enter() and interrupt_handler_exit() in case of
RTOS-assisted interrupt handling) SystemC processes. We
implement other RTOS services as normal C++ functions.
This is based on similar considerations to [15]: 1) such an
RTOS model is closer to a real RTOS implementation that
using procedure calls; 2) less SystemC processes imply less
simulation engine switches, therefore the simulation per-
formance is enhanced.

B. Simulation framework architecture
The mainframe of the simulator is constructed from three

types of SystemC modules (namely C++ classes): the
pthread_create module, the RTOS module, and the Live
CPU module, which represents applications, the RTOS and
the processor respectively (Figure 9). An object of a Live
CPU module is used as an argument by an RTOS object, in
order to let the RTOS use the CPU resource. As well, the
RTOS object is employed by a pthread_create object, which
means that a thread is within an RTOS. Normally, there are
several pthread_create objects in simulation standing for
several pthreads. In this way, applications, the RTOS and the
processing element are connected in a straight manner. This
modular architecture makes our simulation framework hier-
archical, low coupling and especially extensible. For
example, the RTOS bears the potential to simulate on a
multi-processor platform by accepting several CPU objects.

V. EXPERIMENTAL RESULTS
In order to demonstrate the functional and timing accu-

racy of the proposed RTOS-centric simulation, we test it
with an A/D data collection example (Figure 10). Three
threads take charge of watching the keyboard, collecting A/D
data and sending out results via the serial port. Tasks roughly
have periods as 90ms, 100ms and 510ms. According to the
RM algorithm, they are allocated descending priorities. A

Figure 9. Simulation framework architecture Figure 10. A/D data collection example

tick timer ISR is associated with a timer IRQ to drive tick
scheduling with a 5ms tick length. A semaphore and a mes-
sage queue provide synchronisation and communication
services between threads. Same applications and the μC/OS-
II RTOS are executed on the KEIL μVision ARM ISS,
which is seen as a cycle-accurate reference model in the ex-
periment. The target processor is configured as a 48MHz
NXP LPC2378 processor. The RTOS services’ timing over-
heads are measured based on the μC/OS-II with this ISS. All
tests are executed on an x86 PC at 1.86GHz.

We examine the RTOS-centric simulator in three aspects:
1) the simulation performance compared with ISS simulation;
2) the functional correctness of the simulation by examining
generated results; 3) the simulation timing accuracy of
RTOS-centric simulation compared with ISS simulation.

In order to compare the speed of RTOS-centric simula-
tion with the standard ISS simulation, we let each simulator
simulate 500ms, 1000ms, 2000ms, 5000ms and 10000ms
target time. Even during the shortest 500ms simulation, three
tasks can repeat at lease 55, 50 and 10 jobs. Not surprisingly,
as a system-level SW simulator, RTOS-centric simulator
gains much faster speed than ISS simulation. The Figure 11
reveals the impressed simulation performance of RTOS-
centric simulation. Its simulation speed is about 500 times
faster than the ISS simulator.

S
im

ul
at

io
n

tim
e

(m
s)

Figure 11. Simulation speed comparison

If a simulator performs correct functions, it should be
able to generate similar simulation sequences and results at
right time compared with real execution. In the experiment,
we input same stimuli, e.g., keyboard signals and voltages,
into both μVision ARM ISS and the RTOS-centric simula-
tor. We observe A/D converting results, which are generated
after multitasking interactions between applications and the
RTOS. The Figure 12(Left) shows the screen shots of the
ISS simulator’s serial port output. The texts in the box show
the time stamp of a corresponding A/D output. The Figure
12(Right) is a trace file of the RTOS-centric simulator and
bold texts show time stamps of corresponding results. We
can observe that the RTOS-centric simulator produces simi-
lar A/D results at very close times to the ISS simulator,
which demonstrates its functional correctness.

Conventionally, people examine the timing accuracy of

simulation by comparing its simulated clock cycles of task
completion with a more accurate standard simulator’s. If
both simulators run same applications and they consume
similar numbers of cycles (or simulated target time) upon
completion, then their timing accuracy is believed to be
close. In order to make a more accurate comparison, we im-
prove this approach by inserting more observation
(comparison) points in the simulation flow, instead of only
comparing total numbers. These observation points are se-
lected to cover all three threads’ codes. The Figure 13 shows
timing accuracy comparison between the ISS simulator and
the RTOS-centric simulator. The X-axis is 22 observation
points in simulation flow and the Y-axis is the simulated
target time at each observation point, which ranges from 0 to
600ms. In the figure, two simulator flows’ curves are in close
accordance, which reveals the good accuracy intuitively.

Ta
rg

et
 s

im
ul

at
io

n
tim

e
(u

s)

Figure 13. Simulation timing accuracy comparison

The Table II is the exact timing accuracy loss of the
RTOS-centric simulation compared with ISS simulation at
22 comparison points. The accuracy loss is defined as:

%100
_

__
×

−
= −

ISS

ISScentricRTOS

timeSimulated
timeSimulatedtimeSimulated

loss

The table shows that the accuracy loss is marginal in this
experiment. The main reason is the elaborate structure of the
whole simulation framework. It is also because that delay
information of both applications and RTOS services is care-
fully measured on the ISS before use in RTOS-centric
simulation. If we cannot acquire accurate delay estimations,

Figure 12. Simulation results comparison: ISS results (Left) and RTOS-
centric simulator results (Right)

then the timing accuracy of RTOS-centric simulation is nec-
essarily affected.

TABLE II. ACCURACY LOSS OF THE RTOS-CENTRIC SIMULATION
COMPARED WITH ISS

Comparison
point #1 #2 #3 #4 #5 #6

Accuracy loss
0.34% 0.34% 0.34% 0.68% 0.64% 0.61%

Comparison
point #7 #8 #9 #10 #11 #12

Accuracy loss 0.59% 0.57% 0.56% 4.44% 3.76% 3.76%
Comparison

point #13 #14 #15 #16 #17 #18
Accuracy loss 3.50% 3.51% 0.13% 0.03% 2.20% 1.49%
Comparison

point #19 #20 #21 #22
Accuracy loss 2.52% 0.08% 0.09% 0.22%

VI. CONCLUSION AND FUTURE WORK
This paper presents a generic and accurate system-level

RTOS-centric embedded software simulation framework.
The framework supports simulation of abstract application
models, native application codes, the configurable RTOS
model, the processing element mode, and various hardware
models in a unified SystemC environment. It can help de-
signers to evaluate both functional and timing effects of the
projected real-time embedded software design fast and early.
Its speedup and accuracy have been demonstrated by a com-
parison experiment with an ISS simulator.

Future work is towards a multiprocessor RTOS model, in
which we will integrate multiple Live CPU Models and
multi-level scheduling policies.

REFERENCES

[1] G. Schirner and R. Domer, "Introducing Preemptive Scheduling in
Abstract RTOS Models using Result Oriented Modeling," Design,
Automation and Test in Europe, 2008. DATE'08, pp. 122-127, 2008.

[2] M. Krause and O. Bringmann, "Combination of Instruction Set
Simulation and Abstract RTOS Model Execution for Fast and
Accurate Target Software Evaluation," in 6th IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and
System Synthesis: ACM New York, NY, USA, 2008, pp. 143-148.

[3] "IEEE Std 1003.13-2003, IEEE Standard for Information
Technology-Standardized Application Environment Profile (AEP)-
POSIX Realtime and Embedded Application Support," The Institute
of Electrical and Electronics Engineers.2004.

[4] K. Yu and N. C. Audsley, "A Mixed Timing System-level Embedded
Software Modelling and Simulation Approach," in International
Conference on Embedded Software and Systems 2009, (ICESS '09),
in press, 2009.

[5] J. Madsen and M. Gonzalez, "Abstract RTOS Modelling in
SystemC," in NORCHIP Conference, 2002.

[6] P. Hastono, S. Klaus, and S. A. Huss, "Real-Time Operating System
Services for Realistic SystemC Simulation Models of Embedded
Systems," in The International Forum on Specification & Design
Languages (FDL'04) Lille, France, 2004, pp. 380-391. .

[7] F. Hessel, V. M. d. Rosa, I. M. Reis, R. Planner, C. A. M. Marcon,
and A. A. Susin, "Abstract RTOS Modeling for Embedded Systems,"
in 15th IEEE International Workshop on Rapid System Prototyping
(RSP'04), 2004, pp. 210-216.

[8] H. Posadas, J. Ádamez, P. Sánchez, E. Villar, and F. Blasco, "POSIX
Modeling in SystemC," in 2006 conference on Asia South Pacific
design automation Yokohama, Japan: ACM Press, 2006.

[9] Z. He, A. Mok, and C. Peng, "Timed RTOS Modeling for Embedded
System Design," in 11th IEEE Real Time and Embedded Technology
and Applications Symposium (RTAS'05), 2005, p. 448.

[10] Y. Yi, D. Kim, and S. Ha, "Fast and Time-Accurate Cosimulation
with OS Scheduler Modeling," Design Automation for Embedded
Systems, vol. 8, pp. 211-228, June 2003.

[11] I. Bacivarov, S. Yoo, and A. A. Jerraya, "Timed HW-SW
cosimulation using native execution of OS and application SW," in
7th IEEE International High-Level Design Validation and Test
Workshop, 2002, pp. 51-56.

[12] A. Gerstlauer, H. Yu, and D. D. Gajski, "RTOS Modeling for System
Level Design," in Conference on Design, Automation and Test in
Europe - Volume 1: IEEE Computer Society, 2003.

[13] H. Yu, A. Gerstlauer, and D. Gajski, "RTOS Scheduling in
Transaction Level Models," in 1st IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis
Newport Beach, CA, USA: ACM Press, 2003.

[14] J. Madsen, K. Virk, and M. J. Gonzalez, "A SystemC-based Abstract
Real-Time Operating System for Multiprocessor Systems-on-Chips,"
in Multiprocessor Systems-on-Chips, A. A. Jerraya and W. Wolf,
Eds. San Francisco, CA: Morgan Kaufmann, 2005, pp. 284-311.

[15] R. L. Moigne, O. Pasquier, and J. P. Calvez, "A Generic RTOS
Model for Real-time Systems Simulation with SystemC," in
Conference on Design, automation and test in Europe - Volume 3:
IEEE Computer Society, 2004.

[16] A. Bouchhima, S. Yoo, and A. Jerraya, "Fast and Accurate Timed
Execution of High Level Embedded Software using HW/SW
Interface Simulation Model," in Asia and South Pacific Design
Automation Conference 2004 (ASP-DAC'04), 2004, pp. 469-474.

[17] J. Chevalier, O. Benny, M. Rondonneau, G. Bois, E. M. Aboulhamid,
and F.-R. Boyer, "Space: A Hardware/Software SystemC Modeling
Platform Including an RTOS," in Languages for System
Specification: Selected Contributions on UML, SystemC, System
Verilog, Mixed-Signal Systems, and Property Specification from
FDL'03: Kluwer Academic Publishers, 2004, pp. 91-104.

[18] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,
"MPARM: Exploring the Multi-Processor SoC Design Space with
SystemC," The Journal of VLSI Signal Processing, vol. 41, pp. 169-
182, 2005.

[19] F. Hessel, V. M. Da Rosa, C. E. Reif, C. Marcon, and T. G. S. Dos
Santos, "Scheduling refinement in abstract RTOS models," ACM
Transactions on Embedded Computing Systems (TECS), vol. 5, pp.
342-354, 2006.

[20] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder,
"RTOS modeling in SystemC for real-time embedded SW simulation:
A POSIX model," Design Automation for Embedded Systems, vol.
10, pp. 209-227, 2005.

[21] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications: Springer, 1997.

[22] J. W. S. Liu, Real-Time Systems: Prentice Hall, 2000.

