
Model-based Verification of a Framework for Flexible
Scheduling in the Real-Time Specification for Java

Alexandros Zerzelidis
Department of Computer Science

University of York, U.K.
YO10 5DD

alex@cs.york.ac.uk

Andy Wellings
Department of Computer Science

University of York, U.K.
YO10 5DD

andy@cs.york.ac.uk

ABSTRACT
This paper describes a framework for achieving flexible
scheduling in the Real-Time Specification for Java (RTSJ), and
provides verification of its operation by modelling it as a system
of timed automata in the UPPAAL model checker. The proposed
approach is a two-level scheduling mechanism where the first
level is the RTSJ priority scheduler and the second level is under
application control. Minimum, backward-compatible changes to
the RTSJ specification are discussed. The only assumptions made
are that the RTSJ implementation supports pre-emptive priority-
based dispatching of threads, with changes to priorities having
immediate effect. The framework model is described and its
correctness checked.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management---Scheduling,
Synchronization;

D.4.7 [Operating Systems]: Organization and Design---Real-time
systems and embedded systems

General Terms
Algorithms, Design, Verification.

Keywords
scheduling framework, flexible scheduling, RTSJ, model
checking

1. INTRODUCTION
The RTSJ ([1],[2]) provides a framework from within which real-
time scheduling can be performed for single-processor systems.
The intention is to support a range of schedulers, all of them
conforming to the abstract Scheduler class. However, the
current specification defines only a base scheduler, the
PriorityScheduler. So, whilst it is clear that the RTSJ’s
intention is to support different (and possibly multiple)
schedulers, it is far from clear that the provided framework is
adequate for this purpose.

In [3] we argued that the RTSJ should define a pre-emptive
priority based dispatching model and that it should provide a
framework within which multiple application-defined schedulers
can be implemented. We proceeded with presenting such a
framework, including a technique for sharing resources between
threads controlled by different schedulers. In this paper we build
on our previous work by providing verification of the
framework’s operation, by modelling it as a system of timed
automata in UPPAAL [4].

Section 2 recapitulates the framework to give a basic
understanding of its mechanism. Section 3 presents the main parts
of the framework model. Section 4 provides a formal analysis of
the model. Section 5 briefly touches upon related work, while
Section 6 gives the conclusions.

2. FLEXIBLE SCHEDULING FOR RTSJ
Most real-time operating systems today support pre-emptive
priority-based dispatching. Consequently, we have argued that the
RTSJ should define this as the base scheduling mechanism.
However, many modern applications require more flexible
scheduling mechanisms [5], [6]. Furthermore, some applications
may need to be scheduled by one policy while others may need a
different policy; e.g. fixed priority for hard real-time threads and
EDF for soft real-time threads. Hence, state-of-the-art real-time
OSs nowadays support hierarchical scheduling [9], [10].
Therefore, we have presented in [3] a two-level scheduling
scheme, with the RTSJ’s priority scheduler at the top level and
the second level under application control, which supports
hierarchical scheduling within a fixed-priority framework.

In our approach we have tried to keep changes to the API as small
as possible by keeping the scheduling mechanism invisible to
applications and relying instead on the priority-based dispatching
to carry out application-defined scheduling policy decisions. An
application-defined scheduler is assigned four priority queues of
the PriorityScheduler. We name these high, medium,
medium-lock, and low. This set of priority queues is called a
scheduling band. We identify a band by the value of its low
queue, so for example band 5 is a band that extends from priority
level 5 to 8 (low=5, medium_lock=6, medium=7, high=8). These
priorities are used in the following manner:

• When schedulable objects are released (or become
unblocked), they are released at the high priority level. This
priority is where all scheduling decisions are carried out.
• The application-defined scheduler keeps track of the thread
with the highest execution eligibility. This object has its priority
set to the medium level.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

JTRES '06, October 11-13, 2006 Paris, France
Copyright 2006 ACM 1-59593-544-4/06/10...$5.00

• Queue low is where all the application scheduler’s threads
usually reside when they are not running.
• Finally, priority medium_lock is associated with object
locking and will be discussed later in this section.

To be able to enforce scheduling decisions we need to determine
the scheduling points in an application. We identify a scheduling
point as either i) the release of thread1, ii) the end of a thread’s
execution, or iii) a piece of code in a thread that is about to cause
a context switch by making a potentially blocking OS or JVM
routine call. We encapsulate every scheduling point with two calls
to the priority scheduler. For this reason we add four new methods
to PriorityScheduler:

package javax.realtime;
public class PriorityScheduler extends Scheduler {
 protected static final void prepareToSuspend(
 Schedulable sched, int reason);
 protected static final void prepareToSuspend(
 Schedulable sched, Object lock,
 MonitorControl monitor);
 protected static final void reschedule(
 Schedulable sched, Object lock,
 MonitorControl monitor, int state);
 protected static final void reschedule(
 Schedulable sched);
...
}

The goal is to give control to the base scheduler
(PriorityScheduler) just before the schedulable object calls a
potentially suspending call and right after it returns from such a
call. We consider prepareToSuspend() and reschedule() to
be called from within RTSJ library code, and therefore execute as
part of the thread’s execution at the priority of the thread (i.e.
there is no special scheduler thread in the system and no new calls
in the application). Within these methods the priority scheduler
calls the application scheduler, through a one-way API defined in
the ApplicationDefinedScheduler class, to provide its most
eligible thread. The API is:

package javax.realtime;
public abstract class ApplicationDefinedScheduler
 extends Scheduler {
 public ApplicationDefinedScheduler(int low, int
 medium_lock, int medium, int high,
 ProcessingGroupParameters cap, int preLevels);
 protected abstract void released(
 Schedulable sched, boolean running);
 protected abstract void preempted(
 Schedulable current, Schedulable newcomer);
 protected abstract void lockedObject(
 Schedulable sched, int objectCeiling);
 protected abstract void unlockedObject(
 Schedulable sched, int objectCeiling);
 protected abstract void suspended(
 Schedulable sched, int reason);
 protected abstract Schedulable getMostEligible();
 protected abstract Schedulable
 compareEligibility(Schedulable sched1,
 Schedulable sched2);
 protected abstract boolean setScheduler(
 Schedulable sched);
...
}

1 In this paper we use the term thread to mean any RTSJ

schedulable object or Java thread.

In order to create an application-defined scheduler we must
inherit from this class and implement all abstract methods. With
this approach, multiple user-defined schedulers can coexist in the
system, if they are allocated non-overlapping bands in the RTSJ
priority range. Hence, the proposal supports two-level scheduling.
Here, we have to point out that our paper focuses on the
scheduling aspect of the approach rather than on how to support
feasibility analysis. For the latter we assume server-based
analysis, as in [8], where each scheduler is in effect a processing
group, specified by associating a
ProcessingGroupParameters object with each application
thread.

Under our framework we allow resources to be shared between
threads in different bands and also regular fixed-priority threads.
To enforce priority inversion avoidance we use Baker’s protocol
known as the Stack Resource Policy (SRP) [7]. The SRP is an
extension of the Priority Ceiling Protocol (PCP) [16]. Baker uses
the notion of preemption levels to introduce execution eligibility
inversion control to scheduling algorithms with different notions
of execution eligibility. The protocol states that a schedulable
object can start execution only if it has the highest execution
eligibility and its preemption level is higher than the ceiling of
each locked resource. To make this check easier, the notion of the
system ceiling is introduced, which is the highest ceiling amongst
the locked resources. Preemption levels are ideal in helping us
control resource sharing between scheduling bands. When
constructing an application scheduler we assign it a number of
preemption levels. From this range, we assign each thread a
relative preemption level (rpl). However, to be able to compare
preemption levels from different bands we need the notion of an
absolute preemption level (apl). Given that each band is allocated
l number of preemption levels (l>=4), a thread’s absolute
preemption level is given by the following Equation 1:

14mod)1
4

(−++×−⎥⎥
⎤

⎢⎢
⎡= rpliliapl , when 04mod ≠i

14)1
4

(−++×−⎥⎥
⎤

⎢⎢
⎡= rplliapl , when 04mod =i

For threads within a band we consider i=low, while for a fixed-
priority thread τ we consider)(τpi = and rpl=1. In essence,
the absolute preemption level is known if we know the pair (i,
rpl). Therefore, we define a resource ceiling to be a pair (i, rpl)
such that the apl that it yields is the highest amongst the threads
accessing the resource2. To extend the RTSJ to support
preemption levels, two new classes are introduced:

package javax.realtime;
public class PreemptionLevelParameters
 extends PriorityParameters {...}
public class StackResourcePolicy
 extends MonitorControl {...}

Implementation of the priority inversion control algorithm is done
at the middleware layer and is transparent to the OS. The OS can
still enforce its own priority inheritance algorithm, which will be
transparent to the middleware. Every application thread is

2 This rule is for single unit resources; we will not deal with

multi-unit resources here.

assigned an rpl within its band. Every resource, which is accessed
by threads running under an application-defined scheduler, should
be governed by a MonitorControl object of type
StackResourcePolicy. In light of locking, a thread’s current
band (the band it is currently executing in) can be either its own
(original) band or a higher band. Before a thread enters a
synchronized region, prepareToSuspend(sched, lock,
monitor) is called, raising the thread to the high priority of its
current band, or maintaining the same priority if not in a band.
Because of the SRP, the thread is guaranteed not to block, so no
checking is needed. The method just sets the thread’s priority to
the appropriate level: if locking takes place outside the current
band then the thread is moved to the high priority of the higher
band or to a fixed-priority level, depending on the resource
ceiling. Next the synchronized call takes place (notice that, if
within a band, a thread’s priority when making the synchronized
call is always high, irrespective of the band it is in). Immediately
after, reschedule(sched, lock, monitor, LOCK) is called,
which, depending on whether or not the thread is in its own band,
it takes the thread to a medium, medium_lock or normal priority
level.

After unlocking we call reschedule(sched, lock,
monitor, UNLOCK), which raises the thread to the high priority
of the current band (if within one, otherwise priority stays the
same) and checks to see if there is a thread eligible to run in the
current band (it could be the case that a thread was released while
the calling thread was holding the lock, but couldn’t run because
of the system ceiling). At this point there are two things to
consider: i) “is the current band the calling thread’s own band?”,
and if not, ii) “is the thread returning to its own band?” If the
answer to the first question is yes, then reschedule() calls
getMostEligible(), calls compareEligibility() between
the returned and the calling thread and places the most eligible at
the middle queue. If this thread is different from the calling
thread, it places the calling thread at the low queue. If the answer
to the first question is no, then reschedule() calls
getMostEligible() and places the returned thread (if eligible)
at the middle queue of the current band, and, depending on
whether the calling thread is returning to its own or to a higher-
than-its-own band, it places it on the middle queue of its own
band, or on a middle_lock queue, or at a fixed-priority level.
Finally, if the thread was not locking within a band then
reschedule() either keeps the thread at the same priority level,
or moves it lower to another fixed-priority level, or to a
medium_lock priority, or to its own band’s medium priority. Note
that the scheme can cope with nested locking. However, there is
one condition that needs to hold: the locking thread must never
suspend itself. In fact, the locking thread must not block under
any circumstances. Effectively, every possibly suspending
operation must be modelled as a shared resource. As a final note
here we point out that coding practices with the SRP are the same
as with the PCP, e.g. use of library code is treated as accessing a
resource (in case it makes undocumented use of resources) and is
assigned the highest absolute preemption level.

3. MODELLING THE FRAMEWORK
3.1 The UPPAAL tool
In this section we will give a brief introduction to the modelling
tool UPPAAL. This is a model checker based on the theory of
timed automata. It defines a modelling language that extends

timed automata with, amongst others: constants; bounded
integer variables with which we can perform arithmetic
operations; binary synchronization channels, where a transition
labelled with c! synchronizes with only one (out of possibly
multiple) transition labelled c?; broadcast channels, where one
sender c! can synchronize with an arbitrary number of receivers
c?; urgent locations, where time is not allowed to pass when the
system is in such a location; committed locations, where time is
not allowed to pass and the next transition in the system must
involve an outgoing transition from one of the committed
locations; arrays. To express requirement specifications,
UPPAAL has a query language that consists of state formulae
and path formulae. A state formula translates to an individual
state, a state being the set of the locations of all automata, all
clock values and the values of all discrete variables. A path
formula quantifies over paths in the model. Path formulae are
classified into reachability (“can a particular state be reached?”),
safety (“something will never happen”) and liveness (“something
will eventually happen”). To express path formulae we use the
syntax [A|E] [“[]”|”<>”] ϕ , where ϕ is a state formula. A
denotes that a given property should hold for all paths in the
system. E denotes that there should be at least one path. “[]”
denotes that all states in the path should satisfy the property,
while “<>” denotes that at least one state in the path satisfies the
property. So, for example, A[]ϕ means that invariantly ϕ
should hold. UPPAAL offers the keyword deadlock to describe
the state where no outgoing transitions are possible. The reader is
referred to [4], [11] for more information on UPPAAL and timed
automata in general.

3.2 Architecture Description
In order to test our framework and evaluate its behaviour we have

implemented it as a collection of
timed automata in UPPAAL. In
building our model we have
identified 5 basic automata and
named them as follows: Thread,
PriQueue, BaseScheduler,
Dispatcher, Time. The model can be

complemented with
one or more
application sche-
duler automata. To
demonstrate the
ability of our
framework to

accommodate
different application
level schedulers we

have constructed an EDFScheduler automaton. Our model’s
architecture can be seen in Figure 1. In all our automata we
simulate API calls (whether middleware or OS calls) with
synchronization channels between automata, which can be seen as
arrows in Figure 1, going from the automaton initiating the
synchronization to the one receiving it. The channels on the
arrows are just examples.

The Thread automaton represents a thread in the system. More
than one instance of Thread can be specified. PriQueue models
the functionality associated with an operating system FIFO
priority queue. In the view of our model an operating system

Figure 1: Model architecture

queue is a superset of the equivalent middleware queue in the
sense that all threads on the middleware queue exist on OS queues
but the inverse is not true. Naturally, there can be more than one
instance of PriQueue. The BaseScheduler automaton represents
both the middleware and the operating system priority scheduler.
This scheduler has the operating system priority levels under its
control and maps all application threads down to native threads.
In essence we consider every middleware scheduler operation on
a middleware priority queue to translate directly to the exact same
operation on the equivalent operating system queue. That is why
BaseScheduler has direct access to PriQueues. The Dispatcher
automaton models the operating system dispatching mechanism.
It also interacts with the PriQueues, and, in fact, is part of the
scheduler but we have modelled it separately for clarity. The Time
automaton increments a variable whenever a Thread is running,
thus emulating the passage of absolute time. Finally, the
EDFScheduler automaton we have constructed represents an
application-defined EDF scheduler and includes variables and
data structures (e.g. internal queues). It contains the part of the
application scheduler API that is necessary to our model. The
EDFScheduler automaton presents a special case since it is
“pluggable”. We can replace or combine it with other scheduler
automata, as long as we keep the same interface, i.e. the same
synchronization channels. This is shown in Figure 1 with a
ValueScheduler automaton. We can also have multiple instances
of each scheduler automaton.

Every transition in the model is triggered as part of a chain of
transitions that originate in the Thread automaton. In the figure we
can see that the BaseScheduler plays a central role in our model.
Its functionality is triggered by thread actions, e.g. start of a
thread, resource locking etc. It then manages thread execution. To
do so, it utilises the one-way API with the application defined
schedulers (the dashed lines between threads and application
schedulers demonstrating which scheduler each thread belongs to)
and the Dispatcher, and sets thread priorities. The Dispatcher then
sets the running thread.

In describing the automata it is useful to keep in mind that all the
code pertaining to a particular edge (transition) is usually situated
at some point above the transition line, with the guard expression
being first, followed by the synchronization channel and then the
update code. However, in this paper, due to space limitations, we
will only present the 3 major automata, namely Thread,
BaseScheduler and EDFScheduler. Full description of the model
will be published in a technical report that can be found at:
http://www.cs.york.ac.uk/ftpdir/reports/index.php

3.3 Global declarations
The global declarations section of the model contains elements
that can be used by any automaton. There are three main types of
declarations: constants, variables and synchronization channels.

The constants are further subdivided into two categories:
constants that specify maximum values (MAX_THREAD,
MAX_PRIORITY, MAX_PRELEVEL, MAX_RES, MAX_LOCK) and
constants that are used for indexing the thread[][] array
(PERIOD=0, RDEAD=1, ADEAD=2, LOCK_CALLED=3, RELEASED=4,
PRIORITY=5, BAND=6, PRELEVEL=7, APL=8, ITER=9, COST=10,
LAST_LOCKED=11). MAX_THREAD is the maximum possible
number of threads in the system, MAX_PRIORITY is the maximum
number of priorities, MAX_PRELEVEL the maximum number of

preemption levels per band, MAX_RES the maximum number of
resources in the system, and MAX_LOCK the maximum number
resources used by a thread.

The main global variable in the model is the thread[][] array,
which contains all thread parameters, e.g. row thread[1][]
contains all parameters of thread 1 etc. Using the indexing
constants we can access the different parameters for a thread. For
example, to get the relative preemption level for thread 1 we
access thread[1][PRELEVEL]. Cell thread[][PERIOD] is the
thread’s minimum interarrival time. A thread’s relative deadline is
stored in thread[][RDEAD], while the absolute deadline is
thread[][ADEAD]. To indicate that prepareToLock! has been
called thread[][LOCK_CALLED] is set to true. Analogously,
thread[][RELEASED] is a boolean indicating whether the thread
has just been released. thread[][PRIORITY] is the thread’s
priority. thread[][BAND] is the low priority of the thread’s
band. thread[][PRELEVEL] is the thread’s relative preemption
level. thread[][APL] is the thread’s absolute preemption level
and is set by BaseScheduler during a reschedule?
synchronization. thread[][ITER] is the number of times the
thread will execute. thread[][COST] is a thread’s execution
cost. thread[][LAST_LOCKED] is the ceiling of the latest
resource the thread has locked (zero if none).

Other global variables follow. gclock is an integer variable that
acts as the global system clock. It is incremented in the Time
automaton. The PL[] array contains pre-calculated values of the
absolute preemption level for each priority level in the system.
This is calculated according to Equation 1 for fixed-priority
threads, i.e. rpl=1. For example, for priority level i=5, given that
the number of preemption levels per band is l=100, cell PL[5]
equals 101. This makes calculations easier in the base scheduler,
for example an application thread in band low has an absolute
preemption level apl=PL[low]+rpl-1. The bands[] array has as
many cells as are priority levels and, if a priority level has been
assigned to a band, the corresponding cell contains the low
priority of the band; otherwise it is zero. run_thread holds the
thread that is currently running. It is set and unset by the
Dispatcher. cur_thread is used as a parameter between the
Thread and BaseScheduler automata to specify which thread
performed the last synchronization call to the BaseScheduler.
app_thread1 and app_thread2 are used between the
BaseScheduler and all application scheduler automata as
parameters to certain synchronization calls e.g.
compareEligibility!. cur_queue is used for synchronization
between the BaseScheduler and PriQueue to specify the target
queue. cur_band is used between the BaseScheduler and the
application scheduler automata to specify the target scheduler.
The system_ceiling[][] array keeps a stack of the system
ceiling in row 0 (system_ceiling[0][]), while in row 1 it
keeps the thread that has locked the corresponding resource.
mutex is used between the Thread and BaseScheduler automata
and contains the ceiling of the resource to be locked or unlocked
and the corresponding band for that ceiling, in the format xxxy,
where xxx is the ceiling and y is the low priority of the band (this
clearly only works for bands with a low priority of 1 to 9 but its
enough for the purposes of our model). The res[][] array
contains the resources available in the model. The first row
res[0][] contains the ceilings of the resources in the same
format as mutex. The second row res[1][] contains the locks of
each resource, e.g. res[1][3]=1 means that resource 3 is locked.

S0 High

Low

Medium

S7

S8

S3

S6

S1

S13

S2

S12

S4

S14 Suspended

End

Medium_Lock

S9S10S11

Released
Running

S15

Fp

Blocked

S5

start!
ct:=id

low?
ct==id medium?

ct==id

low?
ct==id

high?

medium?
ct==id

rt==id,
locked<MAX_LOCK,
to_lock[locked]>0
ct:=id,
mutex:=res[0][to_lock[locked]]

prepareToLock!
thread[id][LOCK_CALLED]:=true,
res[1][to_lock[locked]]:=1,locked++

res[1][to_lock[locked]]==0

medium?
runtime:=0

ct==id

rt==id,
locked>0
mutex:=res[0][to_lock[locked-1]],
locked--, ct:=id,
res[1][to_lock[locked]]:=0,
to_lock[locked]:=0

thread[id][RELEASED]:=true
high?
thread[id][BAND]!=-1

prepareToSuspend!

high?

thread[id][RELEASED]:=true

reschedule!

runtime>=cost,
locked==0
ct:=id

rt==id

runtime++
time!

runtime<cost

suspended?start!

runtime>=period,
iterations<thread[id][ITER]

ct:=id, iterations++

time?
runtime++

iterations<thread[id][ITER] runtime<period,
iterations<thread[id][ITER]
runtime++

iterations>=thread[id][ITER]

ct==id
low?
ct==id
medium?

medium_lock?
ct==id

rt==id,
cost-runtime>1
time!
runtime++

rt==id, locked>0
mutex:=res[0][to_lock[locked-1]],
locked--, ct:=id,
res[1][to_lock[locked]]:=0,
to_lock[locked]:=0

ct==id
medium_lock?

rt==id,
locked<MAX_LOCK,
to_lock[locked]>0
ct:=id,
mutex:=res[0][to_lock[locked]]

locked>0
thread[id][LAST_LOCKED]:=res[0][to_lock[locked-1]]

locked==0
thread[id][LAST_LOCKED]:=0

high?

app_thread1:=id,
cur_band:=thread[id][BAND],
thread[id][RELEASED]:=false,
ct:=id

rt==id,
thread[id][RELEASED]==true

reschedule_unlock!
ct:=id

thread[id][BAND]==-1
fp?

rt==id

rt==id,
runtime>=cost
ct:=id

iterations>=thread[id][ITER]
prepareToSuspend!

iterations<thread[id][ITER]
prepareToSuspend!

rt==id, runtime<cost
time!
runtime++rt!=id

fp?
ct==id

rt==id,
cost-runtime>1
time!
runtime++rt==id,

locked<MAX_LOCK,
to_lock[locked]>0
ct:=id,
mutex:=res[0][to_lock[locked]]

rt==id,
locked>0
mutex:=res[0][to_lock[locked-1]],
locked--, ct:=id,
res[1][to_lock[locked]]:=0,
to_lock[locked]:=0

rt==id,
thread[id][LOCK_CALLED]==true

thread[id][LOCK_CALLED]:=false,
ct:=id,
mutex:=res[0][to_lock[locked-1]]

reschedule_lock!

ct==id
fp?

ct==id
medium?

ct==id
medium_lock?

ct==id
high?

ct==id,
thread[id][LOCK_CALLED]==true
fp?

ct==id
fp?

res[1][to_lock[locked]]!=0

rt==id,
thread[id][LOCK_CALLED]==true
reschedule_lock!
thread[id][LOCK_CALLED]:=false,
ct:=id,
mutex:=res[0][to_lock[locked-1]]

ct==id,
thread[id][LOCK_CALLED]!=true

fp?

The last variables are of the form threadx_resources[],
x=1,2… There is one such array for each thread in the system.
These arrays contain the indexes of the resources (as they are
allocated in the res[][] array) to be locked by each thread.
Apart from specifying the resources, though, they also provide a
schedule for locking the resources. That is,
threadx_resources[0] will be locked first, then
threadx_resources[1] will be locked in a nested way, and so
on. The number of resources actually locked in each run is
random, so we are not specifying one particular scenario through
the use of this array.

Finally, there are a number of
synchronization channels that
are used between automata
to guide the execution flow.
These are divided
according to the automaton
which acts upon them.
Unless stated otherwise, a
channel is not a broadcast
channel. As already
mentioned, we will
place our focus on the
three major automata.
For the rest of this paper
we will refer to a
synchronization
channel by writing its
name in italics
followed by a ‘!’ or
‘?’, depending on the
way it appears in the
automaton under
question.

Thread: high?,
medium?, medium_lock?
and low? tell Thread to go to the
respective location. time! is a broadcast channel that
marks the passage of “time”. The Time automaton
synchronizes on this and increases gclock.

BaseScheduler: start? is equivalent to a thread start() method;
reschedule? is the equivalent of our framework’s reschedule()
method; prepareToLock? is the equivalent of
prepareToSuspend(LOCK); reschedule_unlock? is the
equivalent of reschedule(UNLOCK); reschedule_lock? is the
equivalent of reschedule(LOCK); prepareToSuspend? is the
equivalent of prepareToSuspend(END).

EDFScheduler: With a suspended?, scheduled?, released?, or
preempted? synchronization the scheduler is informed that
app_thread1 has been respectively suspended, scheduled,
released or preempted, and takes appropriate action. suspended?
in particular is a broadcast channel that at the same time instructs
Thread to go to Suspended. compareEligibility? tells the scheduler
to compare two of its threads (app_thread1, app_thread2) and
returns the most eligible in app_thread1 and the other in
app_thread2. With getMostEligible? the scheduler places its
current most eligible thread in app_thread2. lockedObject? and
unlockedObject? inform the scheduler that one of its threads has

respectively locked or unlocked a resource, so that it can
appropriately adjust its internal queues.

3.4 Thread
Local declarations: cost is thread[][COST]; period is
thread[][PERIOD]; runtime is the amount of CPU time
consumed; iterations is the number of releases the thread has
had; locked counts the number of resources currently locked by
the thread and is also used as an index for the to_lock[] array
that contains the indexes of the resources to be locked. So when
locked is 0, meaning that no resources have been locked, it

points to the first cell of the array to_lock[0],
which contains the index

to the first resource to be locked. When locked is 1, it points to
the second resource to be locked, to_lock[1] etc.

Description: The Thread automaton describes a real-time thread,
both if it is under direct priority scheduler control and if it is an
application scheduler thread. The former case is comprised of two
main locations, Released and Running, which are self-
explanatory. The latter case comprises six main locations, High,
Medium, Low, Medium_Lock, Fp and Suspended. The first four
correspond to the four priority levels of a scheduling band. The
Fp location is reached when an application scheduler thread locks
a resource at a fixed-priority level (i.e. the resource is also used
by a fixed-priority thread). When at Suspended the thread lies
suspended outside the priority queues, waiting for its next release
– we exclude other reasons of suspension without loss of
generality. Being at High, Medium, Medium_Lock or Fp means
that the thread is either runnable or running. Being at Low means
that the thread is runnable but not running. Three other locations
complete the set of primary locations for a thread: S0 is the initial
location, where the thread has not been started yet; End is the

Figure 2: The Thread automaton

final location in a thread’s execution path, where the thread has
been completely de-allocated from the system; and Blocked,
which is where a thread would end up if it was to block on trying
to lock a resource. All primary locations, except for End and
Blocked, are urgent, which means that when a thread automaton is
in one of them it has to take a valid outgoing transition without
delay. This is to guarantee that the system will eventually
progress. There are also a number of secondary locations, when
moving between primary locations, which are transitory. Their
importance lies with the transitions between them rather than with
the locations themselves. All secondary locations are committed.
The automaton can be seen in Figure 2.

The first transition 10 SS → takes place when the thread is
started. At S1 we determine the type of thread. If it is a fixed-
priority thread (band=-1), it receives an fp? synchronization and is
taken to Released and rotates between Released and Running until
it has had a specified number of releases, at which point it goes to
End. If it is an application thread it is taken to priority high. From
there the thread takes transition 32 SSHigh →→ that calls for
a system reschedule. From S3 it is taken to either Medium or Low,
depending on whether the thread is the most eligible to run or not.
From Low the only possible transition is MediumLow → when
the thread is selected as the most eligible to run. While at Medium
three transitions are possible: i) the thread might be pre-empted
by a higher thread in the band and moved to Low, ii) the thread
might do normal execution, symbolized by transition

4SMedium → , during which time passes (indicated by a
broadcast time! synchronization) and its runtime local variable is
incremented by 1, or iii) it might try to lock a resource following
the HighSSMedium →→→ 87 path. When the thread tries
to lock, it never blocks, due to the SRP. To be able to test for this
property we have included the Blocked location, which is reached
if the resource has already been locked
(res[1][to_lock[locked]]==1). However, as we will see in
the next section, this is never the case and the thread is moved all
the way to High, in order for the locking call to take place at
priority high. Before moving to High,
thread[id][LOCKED_CALLED] is set to true in order to take the
right reschedule action, namely reschedule_lock!. So next we
have the transition 6SHigh → or 65 SSHigh →→ (for the
sake of clarity, we note that S5 is the location where a thread is
taken in order to call reschedule_lock!, when locking a resource at
a fixed-priority level). From S6 the thread is moved to either
Medium, Medium_Lock or Fp, depending on whether locking
takes place in the thread’s own band, in a higher band, or outside
bands.

When at Medium_Lock, a thread can do one of three things: i)
execute, represented by the

LockMediumLockMedium __ → transition, during
which its runtime is again incremented (time! is again
called); ii) the thread can perform a nested locking call,
represented by transition

HighSSLockMedium →→→ 87_ (same
principles apply as when locking at Medium); or iii) the
thread can unlock the latest locked resource, following the

HighSSSLockMedium →→→→ 11109_ path.
First, it sets the resource entry in the to_lock[] array to zero, so

that it will not be locked again; in transition 109 SS → it sets
the thread[id][LOCKED] variable to the latest locked resource;
then it calls reschedule_unlock!, which first puts the thread to the
high priority of the higher band it is in (thread goes to location
High) and then the thread is moved to either Low, Medium,
Medium_Lock or Fp, depending on the circumstances.

At Fp the thread has the same choices as at Medium_Lock. It can:
i) execute (FpFp →), ii) perform a nested lock call via

87 SSFp →→ and then move to either High or S5 to perform
a reschedule_lock! (depending on whether it is next locking
within or outside a band), or iii) unlock a resource
(11109 SSSFp →→→), ending up in either Medium_Lock,
Fp or Medium, depending on the circumstances.

In order to finish its release a thread must have relinquished all
resources and executed for more than or equal to its cost. So from
S4 a thread can either: i) go to Medium, if runtime is still less
than cost, ii) unlock a resource through transition

HighSSSS →→→→ 111094 , if it still holds one, or iii)
finish its release and suspend itself through transition

SuspendedSSS →→→ 13124 , only if it holds no locks and
has executed for (or more than) its cost.

While suspended the thread can increase its runtime through
SuspendedSuspended → in one of two ways: either on its

own or by accepting a time? synchronization (here we can see that
runtime is used as a more general variable of counting time and
not only for counting CPU execution time). If runtime equals or
exceeds the thread’s period parameter and if the number of
performed thread iterations is less than the number of maximum
thread invocations (iterations<thread[id][ITER]), the
thread is released again. Otherwise, if the number of maximum
invocations has been reached, the thread is moved to End and is
de-allocated from the system. When all threads reach End, the
system has finished execution.

3.5 BaseScheduler
Local variables: All
variables hold temporary
values to assist in setting up
transition guards etc. i is a
counter; ceil holds the
ceiling of a resource; res is
shorthand for
thread[cur_thread][LA
ST_LOCKED]; next_band

holds the calculated value of the band the thread is next going to,
after a lock or unlock.

S0

start? prepareToLock?

reschedule?

prepareToSuspend?

reschedule_lock?

reschedule_unlock?

Figure 3: BaseScheduler
abstract automaton

Figure 4: The start! synchronization

S0

S16 S17

S10 S11

S15

S7 S8

S12

S22

S9

S4

S5

S6

S13

S14

S23

S26

S2

S24

S25

S27

S3

S18
S19

S20

S1

S21

compareEligibility?
cur_band==band

thread[app_thread2][ADEAD]>thread[app_thread1][ADEAD]

thread[app_thread2][ADEAD]<=thread[app_thread1][ADEAD]
temp:=app_thread2,
app_thread2:=app_thread1,
app_thread1:=temp

scheduled?
me:=app_thread1

cur_band==band

return_as!

getMostEligible?
cur_band==band

suspended?
cur_band==band app_thread1==me

me:=0

return_as!

return_as!

released?
cur_band==band

q:=MAX_PRELEVEL

thread[app_thread1][ADEAD]>=thread[app_queue[q][i]][ADEAD],
i>1 i--

(thread[app_thread1][ADEAD]<thread[app_queue[q][i]][ADEAD])||
(i==1)
j:=MAX_THREAD, i++

j>i
app_queue[q][j]:=app_queue[q][j-1],
j--

app_queue[q][i]:=app_thread1
j==i

me!=0
app_thread2:=me

me==0
q:=MAX_PRELEVELreturn_as!

return_as!
q:=0,i:=0,
j:=0

cur_band==band
preempted?

((thread[app_thread1][PRELEVEL]<=q)||
(thread[app_thread1][ADEAD]>=app_queue[q][0]))&&
(q>0)
q--

((thread[app_thread1][PRELEVEL]>q)&&
(thread[app_thread1][ADEAD]<app_queue[q][0]))||
(q==0)

q==0
i:=0

q>0
i:=MAX_THREAD

thread[app_thread1][ADEAD]>=thread[app_queue[q][i]][ADEAD],
i<MAX_THREAD, thread[app_queue[q][i]][ADEAD]!=-1
i++

((thread[app_thread1][ADEAD]<thread[app_queue[q][i]][ADEAD])||
(thread[app_queue[q][i]][ADEAD]==-1))&&
(i<=MAX_THREAD)
j:=MAX_THREAD

q>0,
app_queue[q][0]==0
q-- q>0,

app_queue[q][0]!=0
i:=MAX_THREAD

app_queue[q][i]==0,
i>1
i--

q==0,
app_queue[q][0]!=0
app_thread2:=app_queue[q][0]

app_thread2:=app_queue[q][i]

q==0,
app_queue[q][0]==0
app_thread2:=0

lockedObject?
cur_band==band

app_queue[mutex][0]:=thread[app_thread1][ADEAD],
i:=MAX_PRELEVEL-1

unlockedObject?
cur_band==bandapp_queue[mutex][0]:=0,

i:=0

i>0
app_threads[app_thread1][i]:=app_threads[app_thread1][i-1],
i--

i==0
app_threads[app_thread1][i]:=mutex return_as!

i:=0

i<MAX_PRELEVEL-1
app_threads[app_thread1][i]:=app_threads[app_thread1][i+1],
i++

i==MAX_PRELEVEL-1
return_as!
app_threads[app_thread1][i]:=0,
i:=0

app_threads[app_thread1][0]!=0
app_queue[app_threads[app_thread1][0]][1]:=app_thread1

app_threads[app_thread1][0]==0
q:=MAX_PRELEVEL

return_as!

q:=MAX_PRELEVEL

q==0
i:=0

i<MAX_THREAD
app_queue[q][i]:=app_queue[0][i+1],
i++

i==MAX_THREAD
app_queue[0][i]:=0

q>0,
app_queue[q][0]!=0
i:=MAX_THREAD

thread[app_thread1][ADEAD]:=gclock+thread[app_thread1][RDEAD]

q>0,
app_queue[q][0]==0
q--

i>1,app_queue[q][i]==0
i-- (i==1)||(app_queue[q][i]!=0)

app_queue[q][i]:=0

Description: The BaseScheduler automaton waits at the initial
location S0 for a Thread to synchronize on one of six channels.
This can be seen in Figure 3, which is an abstract depiction of the
automaton. Due to the size of the BaseScheduler automaton we
will not present all synchronizations but rather focus on the most

important ones. All locations in the automaton are specified as
committed so as to guarantee that the execution of the scheduler
will not be interrupted. In the synchronization diagrams
presented, those transitions cut at the edge of the diagram come

from or lead to the initial location S0.

 Initially, a thread calls start! (Figure 4). The new thread is placed
on its band’s high queue, if it is an application-scheduled thread,
or on its priority’s queue, if it is a normal thread
(321 SSS →→). Then, depending on whether its priority is
greater than the running thread’s priority or not, it either preempts

the running thread
(543 SSS →→) and a
reschedule is called

(765 SSS →→), or the
running thread continues to run
(73 SS →).

Following that, a thread will
call reschedule! (Figure 5).

The base scheduler first informs the
application scheduler of the release (2322 SS →) and then
calculates the absolute preemption level for the thread
(2625 SS →). If the calculated level is lower than the system
ceiling, the thread is put in the low queue
(030...26 SSS →→→); otherwise the application scheduler
is asked for its most eligible thread (3126 SS →). If
app_thread2 is a valid thread, it is compared to the new thread

Figure 5: The reschedule! synchronization

Figure 6: The prepareToLock! synchronization

Figure 7: The EDFScheduler automaton

(3433 SS →), and the most eligible of the two is placed in the
medium queue while the other in the low queue (transition

45...3935 SSS →→→ if the new thread is more eligible,
transition 5138...35 SSS →→→ if the previous one is).
Essentially the current most eligible thread (if any), is the
previously running thread, which the new thread preempts. So if it
is more eligible we do not have to do anything about it, since it
already is in the medium queue.

When a thread is running, it can synchronize on prepareToLock?.
This synchronization can be seen in Figure 6. At first, the thread,
if running within a band, is placed on its high queue
(109 SS →). Once the resource ceiling has been calculated, we
make sure it is greater or equal to the locking thread’s absolute
preemption level and also greater than the system ceiling
(13...10 SS →→). We then update the system ceiling stack,
saving also which thread performed the locking (1413 SS →).
Then the base scheduler moves the thread to the appropriate
priority before returning control to the thread. Depending on the
resource ceiling, the thread may remain at the same priority, or go
to the high priority of a higher band (1714 SS →). If locking
outside a band, the appropriate priority level is calculated with the
help of the PL[] array (171514 SSS →→).

After locking takes place a thread synchronizes on
reschedule_lock?. The base scheduler moves the thread to the
appropriate priority and informs its application scheduler of the
locking through lockedObject!. The thread is taken to a
medium_lock priority, if the thread is at a higher band than its
own, or its medium priority, if the thread is locking in its own
band. If the thread is locking outside a band then its priority
remains unaltered. At the end the Dispatcher is called to schedule
the system.

When unlocking a thread synchronizes on reschedule_unlock?.
This puts the thread on the correct priority queue and checks
whether another more eligible thread became available while the
current was locking the resource, but was unable to preempt due
to the system ceiling. The most important part of this is
synchronizing on getMostEligible! with the current band, if the
thread is in one. If the returned thread is more eligible, it is placed
on its middle queue. At the end, the unlocking thread is
appropriately placed on a medium_lock, medium, low, or fixed-
priority queue, and a system schedule is called.

The final part of the BaseScheduler automaton is the
prepareToSuspend? synchronization. If the suspended thread is a
simple fixed-priority thread, then the base scheduler just tells the
Dispatcher to schedule!. If the thread belongs to a band, the base
scheduler initially informs the thread’s scheduler, through
suspended!, that its thread has been suspended. Then that
scheduler is asked, through getMostEligible!, to provide its next
most eligible thread. If that thread is null, or if it is a thread with a
preemption level lower than the system ceiling, then again the
base scheduler just calls for a system schedule. Finally, if the
application scheduler returns a thread with higher preemption
level than the system ceiling, then that thread is scheduled, moved
to medium priority, and a system schedule is called.

3.6 EDFScheduler
Local variables: The app_queue[][] array is the scheduler’s
internal EDF queues, which follow the model found in [12]; the

app_threads[][] array holds each EDF thread’s locking
history; me is the current most eligible thread; i, j, q and temp
are helper variables.

Description: The EDFScheduler automaton (Figure 7) is the only
one in the model that is pluggable. That is, we can substitute it
with a different scheduler automaton. We can also have many
instances of scheduler automata, each one constituting a different
scheduling band. As we have previously seen, when a thread is
released, its scheduler is informed via the released? channel. This
causes the scheduler to calculate the thread’s absolute deadline
(41 SS →) and insert it into its scheduling queues
(app_queue[][]), according to the rules found in [12]
(9...4 SS →→). When a thread is preempted while holding a
lock, the scheduler puts it directly in the appropriate queue
(32 SS →), according to the resource ceiling that is stored in
the app_threads[][] array. If not holding a lock when
preempted, the exact same steps as released? are taken to place
the thread on the queues. Conversely, if a thread is scheduled? it
is removed from the queues and it is set as the band’s most
eligible thread (me) (22...18 SS →→). If the scheduler is
asked for its most eligible thread through getMostEligible?, it
returns me, if me!=0 (i.e. the thread that was running in the band),
or the first thread on the app_queue, if me==0
(15...12 SS →→). If the scheduler is synchronized on
compareEligibility? to compare app_thread1 and
app_thread2, it places the one with the shorter absolute deadline
in app_thread1 and the other in app_thread2 (1716 SS →).
Finally, if a thread is suspended the scheduler just resets the me
variable to 0 (1110 SS →).

4. FORMAL ANALYSIS OF THE MODEL
In this section we specify certain properties both to evaluate the
correctness of our model and to explore its behaviour. To test

these properties we have defined a system
with 10 priority levels (i.e. 10 PriQueue
automata) and two EDF bands with

11 =EDFlow and 62 =EDFlow (Figure 8).
It follows that priority levels 5 and 10 are left
under direct priority scheduler control. In
order to keep our system analysable we have
only 3 threads (3 Thread automata). Based on

this we have specified a
number of scenarios to test
against, which can be seen in

Table 1.

Table 1: Number of threads per band

Test case EDF1 Priority 5 EDF2 Priority 10
A 1 1 1 0
B 1 1 0 1
C 1 0 1 1
D 2 1 0 0
E 0 1 2 0
F 2 0 1 0

We also specify 5 resources. The rule is that an application thread
in any scenario uses one resource in its own band and one in each
band/priority above its band that has a thread, e.g. in case A the
thread in EDF1 locks one resource within EDF1, one at priority
level 5 and one in EDF2.

Figure 8: The test system

Model Consistency First we specify three properties to check the
correctness of our model.

Property 1: Throughout its execution a thread will only be placed
on either its own band’s low, medium or high queue, or on a
higher band’s medium_lock or high queue, or on a normal
priority queue above its band.
We specify a safety property for each thread. For the above-
mentioned thread in case A the property is written: A[]
((thread[3][PRIORITY]!=2) && (thread[3][PRIORITY]!=6) &&
(thread[3][PRIORITY]!=8) && (thread[3][PRIORITY]!=10)
&&(thread[3][PRIORITY]<11)&&(thread[3][PRIORITY]>=0)). As we
have seen, thread[][5] is a thread’s priority, so we check that it
never takes an invalid value. The property is satisfied for all
threads.

Property 2: No thread can block due to locking after it starts.
We specify the safety property A[] !((Thread2.Blocked) ||
(Thread3.Blocked) || (Thread4.Blocked)), which checks that under
no circumstances does a Thread go to the Blocked location. This
property is also satisfied.

Property 3: The system will always select a thread to run with
higher absolute preemption level (apl) than the system ceiling,
unless the selected thread is currently locking a resource with
higher ceiling than its apl, or is a thread that has just been
released.
This property is expressed as follows: A[] (Dispatcher.S10 &&
run_thread>0 && thread[run_thread][APL]>0 &&
thread[run_thread][RELEASED]!=true) imply
((thread[run_thread][APL]>system_ceiling[0][0]) ||
((thread[run_thread][APL]<=system_ceiling[0][0]) &&
(system_ceiling[1][0]==run_thread)))

Dispatcher.S10 is the location where the dispatcher has picked the
next thread to run and assigned it to run_thread. So at that
point, if we have a run_thread and if its apl has been calculated
and if it hasn’t just been released, then it will either have an apl
greater than the system ceiling or it will be holding the lock to the
resource that set the ceiling. This property is satisfied.

Exploring the behaviour The next two properties guarantee the
unhindered progress of the system.

Property 4: The system is livelock free.
This property checks to see whether all threads reach the end of
their execution. It is written as a liveness property: A<>
((Thread2.End)&&(Thread3.End)&&(Thread4.End)). This is
satisfied.

Property 5: The system can never deadlock.
This safety property can be expressed as A[] (not deadlock), using
the UPPAAL built-in keyword deadlock. This property is not
satisfied. However, if we ask UPPAAL for the shortest trace to a
deadlock, we get the state where all threads are at the End
location. This state is the final state after all thread executions.
Since the End location has no outgoing transitions, it follows that
this is the only deadlock in the system. This essentially means that
the system is deadlock-free. This can also be demonstrated with a
positive example, if we add a loop transition EndEnd → . With
this loop the “not deadlock” property is satisfied.

Properties 2, 3 and 5 prove the following important property.

Corollary 1: The system implements the SRP correctly and
enforces its rules whenever resource locking takes place.

It is useful to note here that priority threads not belonging to a
band can still use other priority inheritance protocols when they
do not share resources with scheduling band threads. This is easy
to understand if we consider bands to be “black boxes” to any
thread outside them. A thread would have its priority elevated by
the priority inheritance algorithm, bypassing any bands situated
between its base and active priorities. The priority scheduler
would then, as normal, pick the next thread to run.

5. RELATED WORK
There are three approaches to achieve flexible scheduling (see
[3]):

 Pluggable schedulers – in this approach the system provides a
framework into which different schedulers can be plugged.
The CORBA Dynamic Scheduling [17] specification is an
example of this approach. Kernel loadable schedulers also fall
into this category, such as that used within the SHaRK kernel
[18].

Application-defined schedulers – in this approach, the system
notifies the application every time an event occurs that
requires a scheduling decision to be taken. The application
then informs the system which thread should execute next.
The proposed extensions to real-time POSIX support this
approach [19].

Implementation-defined schedulers – in this approach, an
implementation is allowed to define alternative schedulers.
Typically this would require the underlying operating system
(virtual machine, in the case of Java) to be modified. The Ada
95 language allows this approach.

Currently, the RTSJ adopts the implementation-defined scheduler
approach. Unfortunately, this is the least portable approach, as an
application cannot rely on any particular implementation-defined
scheduler being supported. The only scheduler an application can
rely on being present is the PriorityScheduler. The work
reported in this paper only assumes the presence of the priority
scheduler and that priority changes have an immediate effect. An
attempt has been made [13] to support a utility accrual scheduler
in the RTSJ but this required a non standard interface and was not
generalized. Similarly, although JTime supports multiple
schedulers, this has been achieved in an ad hoc manner [1]. The
use of dynamic priority changes to support alternative scheduling
policies is well established. The approach adopted here is based
on [14]. Li et al [15] have recently taken this approach and
provided a formalized POSIX framework, although they do not
support resource sharing between different schedulers.

6. CONCLUSIONS
In [3] we provided a backward compatible hierarchical approach
to introducing application-defined schedulers in the RTSJ. In this
paper we have presented a model of the proposed framework and
have proven its main properties, through the use of timed
automata in the UPPAAL modelling tool.

As future work it is our intention to extend our approach to cater
for the problem where a thread does suspend while holding a lock.

This is allowed in the RTSJ and therefore it is desirable to
account for such a scenario.

Acknowledgments
The authors would like to thank Osmar Marchi dos Santos for his
insightful comments on this work.

7. REFERENCES
[1] Dibble, P. and Wellings, A.J. (2004), “The Real-Time Specification
for Java: Current Status and Future Direction”, 7th International
Conference on Object-Oriented Real-Time Distributed Computing
(ISORC), pp. 71--77.

[2] Dibble, P. (Ed) (2005), “The Real-Time Specification for Java”,
Version 1.0.1, www.rtsj.org

[3] Zerzelidis, A. and Wellings, A.J. (2006), “Getting More Flexible
Scheduling in the RTSJ”, 9th International Symposium on Object-oriented
and distributed Real-time Computing (ISORC), pp. 3--10.

[4] Behrmann, G., David, A. and Larsen, K.G. (2004), “A Tutorial on
UPPAAL”, 4th International School on Formal Methods (SFM-RT 2004),
LNCS 3185, pp. 200--236.

[5] Brandt et al (2003), “Dynamic Integrated Scheduling of Hard Real-
Time, Soft Real-Time and Non-Real-Time Processes”, pp.396, 24th IEEE
RTSS.

[6] Regehr, J., Jones, M. B., and Stankovic, J. A. (2000), “Operating
System Support for Multimedia: The Programming Model Matters”,
Technical Report MSR-TR-2000-89,
http://research.microsoft.com/~mbj/papers/tr-2000-89.pdf

[7] Baker, T.P (1991) , “Stack-Based Scheduling of Real-Time
Processes”, Real-Time Systems, 3(1), pp. 57-99.

[8] Davis, R.I. and Burns, A. (2005), "Hierarchical Fixed Priority Pre-
Emptive Scheduling", 26th IEEE International Real-Time Systems
Symposium, pp. 389-398.

[9] Stankovic, John A. and Rajkumar, R. (2004), “Real-Time Operating
Systems”, Real-Time Systems, Volume 28, Issue 2 - 3, Nov 2004, Pages
237 - 253.

[10] Aldea, M. et al. (2006), "FSF: A Real-Time Scheduling
Architecture Framework", 12th IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 113-124.

[11] Bengtsson, J. and Yi, W. (2004), “Timed Automata: Semantics,
Algorithms and Tools”, in Lecture Notes on Concurrency and Petri Nets,
LNCS 3098, Springer-Verlag.

[12] Burns, A., Wellings, A.J. and Taft, T. (2004), “Supporting
Deadlines and EDF Scheduling in Ada”, LNCS 3063, Springer-Verlag,
Pages 156 – 165.

[13] Feizabadi et al (2003), “Utility Accrual Scheduling with Real-Time
Java”, JTRES 03, pp. 550-563, Lecture Notes in Computer Science,
Springer-Verlag Heidelberg, Vol. 2889/2003.

[14] Burns, A., and Wellings, A.J. (1995), "Concurrency in Ada, 2nd
Edition", Cambridge University Press.

[15] Li et al (2004), “A Formally Verified Application-Level Framework
for Real-Time Scheduling on POSIX Real-Time Operating Systems”,
IEEE Transactions on Software Engineering, 30(9), pp. 613-629.

[16] Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990), “Priority
Inheritance Protocols: An Approach to Real-Time Synchronization”, IEEE
Transactions on Computers, 39(9) (Sep. 1990), 1175-1185. DOI=
http://dx.doi.org/10.1109/12.57058

[17] OMG (2003), “Real-time Corba Version 2.0”, OMG Document
formal/03-11-01, http://www.omg.org/docs/formal/03-11-01.pdf

[18] Gai et al (2001), “A New Kernel Approach for Modular Real-Time
Systems Development”, p. 199, Proceedings of the 13th Euromicro
Conference on Real-Time Systems.

[19] Aldea Rivas, M., and González Harbour, M. (2002), “POSIX-
Compatible Application-Defined Scheduling in MaRTE OS”, 14th
Euromicro Conference on Real-Time Systems, IEEE Computer Society
Press, pp. 67–75.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /ENG ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

