
 1

Improvement to Quick Processor-demand Analysis for

 EDF-Scheduled Real-Time Systems

Fengxiang Zhang and Alan Burns

Real-Time Systems Research Group,
Department of Computer Science, University of York, UK

{zhangfx, burns}@cs.york.ac.uk

Abstract

 Earliest Deadline First (EDF) is an optimal scheduling
algorithm for uniprocessor real-time systems. Quick
Processor-demand Analysis (QPA) provides efficient and
exact schedulability tests for EDF scheduling with arbitrary
relative deadline. In this paper, we propose Improved Quick
Processor-demand Analysis (QPA*) which is based on QPA.
By extensive experiments, we show that QPA* can
significantly reduce the required calculations to perform an
exact test for unschedulable systems. We prove that the
computation time for testing schedulable systems is hardly
affected. Hence the required calculations for general
systems can be significantly decreased.

1. Introduction

 The most important attribute of real-time systems is that
the correctness of such systems depends on not only the
running results but also on the time at which results are
produced. Real-time systems have to guarantee that all the
strict timing requirements must be satisfied. In other words,
real-time systems have timing requirements that must be
guaranteed. Scheduling and schedulability analysis enables
these guarantees to be provided.
 A real-time system comprises a set of real-time tasks;
each task consists of an infinite or finite stream of jobs. The
task set can be scheduled by a number of policies including
fixed priority or dynamic algorithms. The success of a real-
time system depends on whether all the jobs of all the tasks
can be guaranteed to complete their executions before their
timing deadlines. If they can then we say the task set is
schedulable.

The most common dynamic scheduling scheme for real-
time systems is Earliest Deadline First (EDF) which was
introduced by Liu and Layland [10] in 1973. According to
the EDF algorithm, an arrived job with the earliest absolute
deadline is executed first. The EDF algorithm has been

proven [6] to be optimal among all scheduling algorithms
on a uniprocessor, in the sense that if a real-time task set
cannot be scheduled by EDF, then this task set cannot be
scheduled by any algorithm.

Schedulability tests for general EDF systems with
arbitrary relative deadlines can be sufficient or exact
(necessary and sufficient). Sufficient tests are usually
efficient but they are not powerful, many schedulable task
sets are not judged to be schedulable. The simplest
sufficient tests are utilization based and they have
polynomial complexity, however we observed that nearly
all the task sets which are randomly generated in our
experiments [14] cannot be correctly evaluated by such
tests. Exact tests can be performed by processor demand
analysis, which calculates the processor demand of a task
set at every absolute deadline to check if there is an
overflow in a specified time interval. In such an interval,
there could be a very large number of deadlines that need to
be verified. The significant effort required to perform the
exact test severely restricts the use of EDF in practice.

Quick Processor-demand Analysis (QPA) [16] provides
fast and exact schedulability tests for general EDF systems.
By extensive experiments [14, 16], we showed that QPA
decreases the required calculations exponentially compared
with previous results on exact schedulability tests; the
required calculation load for QPA is stable for all kinds of
task sets.

The motivation for providing faster exact schedulability
analysis for general EDF systems is two-fold. As part of the
design process many different parameter profiles may need
to be checked. An automated search may even be
undertaken as part of the architectural definition of the
system. An efficient but accurate schedulability scheme is
therefore needed. The second requirement comes from
online systems. During the run-time of a system there could
be new tasks arrive that need (if possible) to be added to the
task set. The system must recalculate schedulability online
to decide whether to allow the new tasks to enter into the

 2

system. Such online admission control gives a much higher
requirement for the performance of the schedulability test
as the decisions have to be made in a very short time and
should not occupy too much system resource.

In this paper we propose Improved Quick Processor-
demand Analysis (QPA*) which is based on QPA. We show
that QPA* can significantly reduce the required calculations
to perform an exact test for unschedulable systems, and we
prove that the computation required by QPA* for
schedulable systems is nearly the same as QPA. Hence the
required calculations for general EDF systems can be
significantly decreased by QPA*.

The rest of the paper is organized as follows. Section 2
describes the system model and notations used in this paper.
Section 3 describes the existing results on exact
schedulability analysis for EDF systems with arbitrary
relative deadlines. Section 4 describes QPA which was
proposed in [16]. Section 5 gives the motivation to the
improvement. In section 6, we propose the QPA* algorithm,
and prove some properties of QPA*. In Section 7, by
intensive experiments on a large number of randomly
generated task sets, we show that QPA* can significantly
reduce the required calculations for an exact schedulability
test. Conclusions are provided in Section 8.

2. System Model

 A hard real-time system comprises a set of n real-time
tasks 1 2{ , ,..., }nτ τ τ , each task consists of an infinite or
finite stream of jobs or requests which must be completed
before their deadlines. Let iτ indicate any given task of
the system. Each task can be periodic or sporadic.
 Periodic tasks. All jobs of a periodic task iτ have a
regular interarrival time iT , we call iT the period of the
periodic task iτ . If a job for a periodic task iτ arrives at
time ,t then the next job of task iτ must arrive at it T+ .
 Sporadic tasks. The jobs of a sporadic task iτ arrive
irregularly, but they have a minimum interarrival time iT ,
we call iT the period of the sporadic task iτ . If a job of a
sporadic task iτ arrives at ,t then the next job of task iτ
can arrival at any time at or after it T+ .
 If there are periodic tasks in the system, since in
realistic situations it is difficult to forecast or to handle the
exact starting time of all tasks when a system starts up, the
first job of each periodic task is assumed to arrive at the
same time. Each job of task iτ requires up to the same
worst-case execution time which equals the task iτ ’s worst-
case execution time iC , and each job of task iτ has the
same relative deadline which equals the task iτ ’s relative
deadline iD . If a job of task iτ arrives at time t , the
required worst-case execution time iC must be completed
in iD time units, and the absolute deadline of this job is

it D+ .
 At any time, an arrived job with a higher priority can
preempt a lower priority job's execution. When a job
completes its execution, the system chooses the pending job

with the highest priority to execute. According to the EDF
algorithm, the released job with the earliest absolute
deadline is assigned the highest priority.
 The following notation is used throughout the paper.
 iC —the worst-case execution time of task iτ
 iD —the relative deadline of task iτ
 iT —the period of task iτ
 n —the number of tasks in the system or the task set
 id —an absolute deadline of a job of task iτ
 iU —the utilization of task iτ , and /i i iU C T= .
 U —the total utilization of the task set, and

1
/n

i ii
U C T

=
= ∑ .

3. Previous Results on Exact Schedulability Analysis

 This section describes the previous research results on
exact schedulability analysis for EDF scheduling with
arbitrary relative deadlines (i.e. iD not necessarily equal
to iT). In 1980, Leung and Merrill [9] noted that a set of
periodic tasks is schedulable if and only if all absolute
deadlines in the period [0,max{ } 2]is H+ are met, where

is is the start time of task iτ , and min{ } 0is = . In 1990,
Baruah et al. [1, 2] extended this condition for sporadic
tasks system, and showed the task set is schedulable if and
only if: 0t∀ > , ()h t t≤ , where ()h t is the processor
demand function given by:

1

() max{0,1 }
n

i
i

i i

t D
h t C

T=

⎢ ⎥−
= + ⎢ ⎥

⎣ ⎦
∑ . (1)

 Baruah et al. [1, 2, 3] showed that using the above
necessary and sufficient schedulability test, the value of t
can be bound by a certain value.

Theorem 1 [1, 2, 3] A general task set (iT and iD are
not related) is schedulable if and only if 1U ≤ and
 1

at L∀ < , ()h t t≤
where 1

aL is defined as follows:

 1
1 1max{ ,..., , max { } }

1a n i n i i
UL D D T D

U≤ ≤= −
−

. (2)

 In 1996, Ripoll et al. [12] gave a tighter upper bound for
the schedulability test under the assumption that i iD T≤
for all tasks, the upper bound is:

 2 1

()

1

n

i i i
i

a

T D U
L

U
=

−
=

−

∑

Note
1

1 1
() max { }

1 1

n n

i i i i n i i i
i i

T D U T D U

U U

≤ ≤
= =

− −
≤

− −

∑ ∑

 1max { }
1i n i i

UT D
U≤ ≤≤ −

−

 3

 However for the general task set in which iD could be
greater than iT , the maximum relative deadline

1max { }i n iD≤ ≤ must be reconsidered. Therefore the
necessary and sufficient condition for schedulability
becomes:

Theorem 2 [5, 7, 8] A general task set is schedulable if
and only if 1U ≤ and
 at L∀ < , ()h t t≤ ,
where aL is defined as:

 1
1

()
max{ ,..., , }

1

n

i i i
i

a n

T D U
L D D

U
=

−
=

−

∑
. (3)

 In 1996, Spuri [13] and Ripoll et al. [12] derived
another upper bound for the time interval which guarantees
we can find an overflow if the task set is not schedulable.
This interval is called the synchronous busy period (the
length of the first processor busy period of the synchronous
arrival pattern). However Ripoll et al. [12] only considered
the situation of i iD T≤ .

Definition 1 [12, 13] A synchronous busy period is a
processor busy period in which all tasks are released
simultaneously at the beginning of the processor busy
period and then at their maximum rate, and ended by the
first processor idle period (the length of such a period can
be zero).

 The length of the synchronous busy period bL can be
computed by the following process [12, 13]:

 0

1

n

i
i

w C
=

= ∑ , (4)

 1

1

mn
m

i
i i

ww C
T

+

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥
∑ , (5)

the recurrence stops when 1m mw w+ = , and then 1m
bL w += .

Lemma 1 [13] The length of the synchronous busy period
is the maximum length of any possible busy processor
period in any schedule.

Theorem 3 [13] A general task set is schedulable if and
only if 1U ≤ and

bt L∀ ≤ , ()h t t≤ ,
where bL is the length of the synchronous busy period of
the task set.

Lemma 2 [16] ()b bh L L≤ .

 Since there is no direct relationship between aL and

bL , the time interval that needs to be checked can be bound
to the value min(,)a bL L .

 As the processor demand ()h t could only be changed
at the absolute deadlines of the system's jobs, the
schedulability test becomes:

Theorem 4 [3, 5, 7, 8, 13] A task set is schedulable if and
only if 1U ≤ and
 t P∀ ∈ , ()h t t≤ ,
where
 { | min(,), }k k i i k a bP d d kT D d L L k N= = + ∧ < ∈ .

Theorem 5 [16] A general task set is schedulable if and
only if 1U ≤ and
 t P∀ ∈ , ()h t t≤ ,
where
 *{ | , }k k i i k aP d d kT D d L k N= = + ∧ < ∈　 ,
and where

 1
1 1

*
()

max{(),..., (), }
1

n

i i i
i

a n n

T D U
L D T D T

U
=

−
= − −

−

∑
　 . (6)

 Clearly *
a aL L<　 . Also in extensive simulation studies

[14] it was nearly always the case that *
a bL L<　 .

 In a given interval (i.e. between 0 and *min{ , }a bL L　),
there can be a very large number of absolute deadlines that
need to be checked. This level of computation has been a
serious disincentive to the adoption of EDF scheduling in
practice. Fortunately, a new much less intensive test known
as Quick convergence Processor-demand Analysis (QPA)
has been proposed [16]. QPA works by starting with a value
of t close to L and then iterating back through a simple
expression toward 0 or the largest failure point in (0,)L . It
jumps over deadlines that can safely be ignored and hence
only a small number of points require to be checked.

4. Quick convergence Processor-demand Analysis
(QPA)

 This section describes some work that has been reported
in [14, 16], as a foundation of Section 5.

Let id be an absolute deadline of a job for task iτ , then
i i id kT D= + for some k , k N∈ . Let L be the

minimum value of *
aL and bL . Considering that the upper

bound *
aL is not well defined (divide by 0) when the

utilization of the task U is equal to 1, let L be defined
as:

*min(,) 1

1
a b

b

L L U
L

L U
⎧ <⎪= ⎨

=⎪⎩

　

　
　

　　　　
,

when a system is unschedulable, define d Δ to be the
largest 'failing' deadline less than L , that is:

max{ | 0 () }i i i id d d L h d dΔ = < < ∧ > .

Lemma 3 [16] For a unschedulable system, let

max{ | }.m i id d d L= < If () ,m mh d d≤ then:
() 'd h d dΔ Δ< < , where 'd is the closest deadline of d Δ ,

 4

and ' min{ | }i id d d d Δ= > .

Lemma 4 [16] For a unschedulable system, let

max{ | }.m i id d d L= < If () ,m mh d d≤ then we have
[(),),mt h d dΔ∀ ∈ () () .h d h t tΔ ≤ ≤

Theorem 6 [16] A general task set is schedulable if and
only if 1U ≤ , and the result of the following iterative
algorithm is min() ,h t d≤ where min min{ }id D= .

max{ | }i it d d L← < ;
while (()h t t≤ ∧ min()h t d>)
 {if (()h t t<) ()t h t← ;
 else max{ | }i it d d t← < ;
 }
if (min()h t d≤) the task set is schedulable;
else the task set is not schedulable;

In the iterative process of Theorem 6, t takes the
value ()h t ; when ()h t t< progress towards zero is made.
Only when ()h t t= do we need to force the process to
take a value less than ()h t . This is when we need to
compute max{ | }i id d t< to let the iteration continue;
max{ | }i id d t< can be calculated by the following
approach.

For a single task jτ with jD t< , the last arrived job
of task jτ with jd t≤ is released at:

 j
j

j

t D
T

T
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

,

the absolute deadline of this job is:

 j
j j j

j

t D
d T D

T
⎢ ⎥−

= +⎢ ⎥
⎢ ⎥⎣ ⎦

. (7)

If jd t= , we let jd move to the previous deadline
j j jd d T= − . For the task set, max{ | }i id d t≤ is the

largest such jd for each task.
Let the initial value of max 0td = , the value of

max{ | }i id d t≤ can be obtained by:

for (1j = ; j n≤ ; j + +)
 {if (jD t<)

{ () /j j j j jd t D T T D⎢ ⎥← − +⎣ ⎦ ;
 if (jd t=) j j jd d T← − ;
 if (max

t
jd d>) max

t
jd d← ;

 } }
After the recurrence, max max{ | }t

i id d d t= ≤ .

 The following graph shows an experimental comparison

between processor demand analysis (PDA) and QPA. Each
point on the diagram is the average of 6,000 randomly
generated schedulable task sets, for each task set 0.9U =
and the periods range is 1 ~ 1000 .
 The figure is derived from the results presented in [14,
16] where the details of the experiments are given. Note the
logarithmic scale in the diagram.

1

10

100

1000

10000

100000

10 20 40 80 160 320 640 1280

Number of Tasks
N

um
be

r o
f h

(t)
 C

al
cu

la
tio

ns

PDA with min{La*,Lb}
QPA

Figure 1. Improvement of QPA

 An alternative algorithm which further improves QPA is
provided in the appendix of this paper.

5. QPA Test for Unschedulable Systems

 QPA is a process for finding the largest failure point for
a unschedulable system. Here we give an example to
illustrate this.

Task Execution
Time

Relative
Deadline Period

1τ 6000 18000 31000
2τ 2000 9000 9800
3τ 1000 12000 17000
4τ 90 3000 4200
5τ 8 10 96
6τ 2 16 12
7τ 10 19 280
8τ 26 160 660

The schedulability is tested by the following steps:
Step 1. Calculate the utilization of the task set,

0.803U ≅ 1≤ .
Step 2. Calculate upper bound *

aL　 by equation (6),
* 15404aL =　 .

Step 3. Calculate upper bound bL by equations (4)(5),
16984bL = .

As * ,a bL L<　 * 15404;aL L= =　 mind =10 and
max{ | }i id d L< =15400.
Step 4. Verify schedulability by the QPA algorithm given

in Theorem 6:
1) 15400t = , ()h t =8298,
2) 8298t = , ()h t =2896,
3) 2896t = , ()h t =970,

 5

4) 970t = , ()h t =340,
5) 340t = , ()h t =134,
6) 134t = , ()h t =46,
7) 46t = , ()h t =24;
8) 24t = , ()h t =20;
9) 20t = , ()h t =20;
10) 19t = , ()h t =20;

 Since ()h t t> , the task set is unschedulable.
 In the above example, the largest failure point in (0,)L
(i.e. (0,15404)) is 19t = which is very close to 0.
 The following experiment investigates the distance from
the largest failure point to 0 based on 10,000 unschedulable
task sets which are randomly generated.
 Let xd be the largest failure point where the QPA test
stops, and

max{ | 0 () }x i i i id d d L h d d= < < ∧ > .
Then the value of /xd L presents the position of xd

in (0,)L .
From Figure 2, we can see that the values of most xd s

are close to 0.

Figure 2. Frequency distribution of xd based on
10,000 unschedulable task sets, for each task set, U=0.9,

n=30 and Tmax/Tmin=1000.

6. Improvement to Quick Processor-demand
Analysis (QPA*)

 Motivated by the observations of the previous section,
we divide the interval (0,)L into two subintervals (0,)xL
and (,)xL L where xL is much closer to 0 than L . QPA*
starts by checking the first interval, if a failure is found the
system is unschedulable. If no failure is found in the first
interval then the second is checked. In both intervals the
algorithm starts with the value t (max{ |i i xt d d L= < or

id L< }). A failure may be found in the second interval or
the schedulability of system may be proven. Figure 3
illustrates two of the possible situations.

dξ

Figure 3. QPA* with one Lx

Theorem 7 Let (0,)xL L∈ . A general task set is
schedulable if and only if 1U ≤ , and the result of the
following algorithm is find = false.

find ← false;
max{ | };i i xt d d L← <

while (min()h t d find> ∧ = false)
{ if (()h t t<) ()t h t← ;
 else if (()h t t>) find ← true;

 else max{ | };i it d d t← <
 }
if (find = false)
 { max{ | };i it d d L← <
 while (() xh t L find> ∧ = false)

{ if (()h t t<) ()t h t← ;
 else if (()h t t>) find ← true;

 else max{ | };i it d d t← <
 }

if (find = false) the system is schedulable;
else the system is unschedulable;
Proof. Let max{ | 0 () }i i x i id d d L h d dλ = < < ∧ > if there
dλ exists. Lemma 3 and Lemma 4 still hold when L is
substitute by xL , then we can apply the same discussion of
Theorem 6’s proof [16] to prove that during the iterative
process, the value of t is always greater than or equal to

,dλ and min() ()h t h d d dλ λ≥ > ≥ . So when min()h t d≤ ,
there is no failure point in (0,)xL .
 Let max{ | () }i x i i id d L d L h d dγ = ≤ < ∧ > if it exists,
after max{ | },i it d d L← < the value of t is always
greater than or equal to ,dγ and we have

() () xh t h d d Lγ γ≥ > ≥ . Therefore when () xh t L≤ , there is
no failure point in [,)xL L .
 From the above discussion, if no missed deadline can be
found during the whole iterative process, the task set is

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The value of dx/L

P
er

ce
nt

ag
e

of
 T

as
k

S
et

s

percentage

 6

schedulable, otherwise it is unschedulable. □

 As the largest failure point in the interval (0,)L is
often close to 0, the QPA* algorithm which is described in
Theorem 7 can reduce the calculations for unschedulable
systems. For a schedulable system, since QPA* divides
(0,)L into two intervals, each interval has to be checked,
so the required calculations by QPA* could be more than
QPA. However we can prove that for a schedulable system,
the required calculation by QPA* is nearly the same as QPA,
and at most one more ()h t calculation is required for the
whole test.

Lemma 5 During the iterations of QPA or QPA*, when

()h t t= , if t is not an absolute deadline of any task, then
the system is unschedulable.
Proof. Let (),t h tκ κ= and .it dκ ≠ Let

max{ | },i id d d tψ κ= < then () () ,h d h t dψ κ ψ= > the
system is unschedulable. □

 Lemma 5 can be used as an end condition for the QPA*
iterations. When ()h t t= , if it d≠ , then the iterations can
be stopped. But with this condition, we have to judge
whether t is an absolute deadline every time when

()h t t= , if t is not an absolute deadline, then we still
have to find max{ | }i id d t< and let max{ | }i it d d t← < ,
hence the complexity is increased.

Lemma 6 For a schedulable system, if there exists any
point with ()h t tξ ξ= in any checking interval, then during
the iterations of QPA or QPA*, t takes the value of tξ .
Proof. Let (0,)xL be any time interval, define

max{ | 0 () }xd t t L h t tλ = < < ∧ = , then at the beginning of
the QPA* iterations, t dλ≥ ; During the QPA* iterations,
when t dλ≥ , we have () ()h t d t dλ λ> = , hence the value
of t is always greater or equal to dλ , and t will take
the value of dλ . From Lemma 5, for a schedulable task set,
any { | () }t t h t t∈ = is an absolute deadline. So after t
takes the value of dλ , t moves backward to the previous
deadline, define max{ | 0 () }d t t d h t tβ λ= < < ∧ = , again
t will take the value of dβ , and no time t with ()h t t=
in the interval (0,)xL will be missing. □

Theorem 8 For a schedulable system, at most one more

()h t calculation is required by QPA* compared with QPA.
Proof. When [,),xt L L∈ the required ()h t calculations
by QPA* and QPA are the same. So we only need to focus
on the interval when (0,)xt L∈ . First we only consider the
situation that ()h t is always less than t during the
iterative process.
 Define 1 max{ | },i i xt d d L= < 2 1(),t h t= 3 2()t h t= ,…,

1()m mt h t −= , suppose 1 minmt d− > and minnt d≤ , therefore
QPA* needs 1m − jumps (()h t calculations) when

(0,)xt L∈ . For the QPA test, suppose 1 't be the last value
of t when ,xt L≥ then we have 1 1' xt L t≥ > . Let

2 1' (')t h t= , 3 2' (')t h t= , …, and 1' (')m mt h t −= . Since ()h t
is non-decreasing with t , we have 2 2't t≥ , 3 3't t≥ , …,

1 1 min'n nt t d− −≥ > . Therefore QPA needs at least 2m −
jumps when (0,)xt L∈ .

Then we consider the situation when there exists one or
more points ()h t t= during the interval (0,)xL . Define

max{ | () ^ 0 },k xt t h t t t L= = < < from Lemma 6, t takes
the value of kt for both of QPA* and QPA. Let

1 2 1... k kt t t t−> > > , and 1()k kt h t −= , then QPA* needs
1k − jumps before kt t= . We can apply the same

discussion to prove that during the iterative process of QPA,
2 2't t≥ ,…, 1 1'k kt t− −≥ , 'k kt t≥ , so QPA needs at least

2k − jumps before kt t= in the interval (0,)xL . After
kt t= , the required calculations by QPA* and QPA are the

same.
From the above discussions, at most one more ()h t

calculation is required by QPA* compared with QPA for a
schedulable system. □

Property 1 Let (0,)Lζ be any checking interval, and

max{ | }m i id d d Lζ= < . For a unschedulable system, if
()m mh d d≤ , then during the iterations of QPA or QPA*,

before a missed deadline is found, ()h t t= .
Proof. Let max{ | 0 () },i i i id d d L h d dζ

Λ = < < ∧ > and
' min{ | }.i id d d d Λ= > There are two cases.

Case 1. If (') ';h d d≠ from Lemma 4, [(),)mt h d dΛ∀ ∈ ,
we have () ()h d h t tΛ ≤ ≤ . Since 'd is the only possible
point (when (') 'h d d=) in ((),)mh d dΛ to let the value of
t jump across the point ()h d Λ to d Λ , in this case, t is
always greater than or equal to ()h d Λ , and t will take
the value of ()h d Λ . So ()h t t= before t takes the value
of d Λ .
Case 2. If (') 'h d d= ; from Lemma 6, t takes the value
of 'd ; therefore ()h t t= before the missed deadline is
found. □

6.1 More Than One xL for QPA*.

 Before addressing the issue of obtaining an effective
value for xL , we observe that the interval (0,)L can be
divided into more than two intervals, and the schedulability
checked in each interval. If there exists a failure point in
(0,)L , it must be found by QPA* in a test interval.

Define 1 2{ , ,..., }x x xkL L L to be the dividing points for
QPA*, and 1 2{ , ,...}xi x xL L L∀ ∈ to be a dividing point, then
a system is schedulable if and only if QPA* cannot find any
failure point in these intervals. When there are k dividing
points for QPA*, the intervals are checked by

1(0,),xL 1 2(,)x xL L ,… (,),xkL L and the algorithm of
Theorem 7 is changed to:
find ← false; 1max{ | };i i xt d d L← <

while (min()h t d find> ∧ = false)
{ if (()h t t<) ()t h t← ;
 else if (()h t t>) find ← true;

 7

 else max{ | };i it d d t← <
 }
if (find = false)
 { 2max{ | };i i xt d d L← <
 while (1() xh t L find> ∧ = false)

{ if (()h t t<) ()t h t← ;
 else if (()h t t>) find ← true;

 else max{ | };i it d d t← <
 }}

else goto end;
……
if (find = false)
 { max{ | };i it d d L← <
 while (() xkh t L find> ∧ = false)

{ if (()h t t<) ()t h t← ;
 else if (()h t t>) find ← true;

 else max{ | };i it d d t← <
 }}

end:
if (find = false) the system is schedulable;
else the system is unschedulable;

 The above algorithm can be proved by the same process
of Theorem 7’s proof.

Theorem 9 For a schedulable system, when there are k
(k is a positive integer number) dividing points for QPA*,
if QPA needs m times ()h t calculations to complete a
test, then QPA* needs at most m k+ times.
Proof. From Theorem 8’s proof, each dividing point
requires at most one more ()h t calculation, hence at most
k more ()h t calculations are required when there are k
dividing points. □

7. Experimental Evaluations

 This section evaluates the performance of QPA* by
intensive experiments on a large number of randomly
generated task sets. Before the evaluations, the values and
the number of dividing points is an issue for the efficiency
of QPA*. We provide an empirical approach [15] based on
the distribution of the largest failure point to find a suitable
value of xL for QPA*. From the experimental
investigation of [15], the best value of xL is changed
according to variable conditions, and hence there is no
single optimal value of xL . In order to get the best
performance of QPA*, we may need to change the values of
dividing points and the number of dividing points according
to the task sets under study.
 However most of the time we do not know the
properties of a task set before we test it. The process to

decide the best value of xL for each task set involves an
extensive amount of simulation and is unnecessary due to
the high efficiency of QPA. What we need to do is to
choose a fixed value of xL and a fixed number of dividing
points for all kinds of task sets.
 According to the empirical investigation [15] and
Theorem 9, we conclude that 2 dividing points is better for
QPA*, with 1 0.12xL L= and 2 0.36xL L= . Most (60%>)
unschedulable task sets can find xd in those two intervals,
and from Theorem 9, at most two extra ()h t calculations
are needed for a schedulable system.
 We compare the number of calculations required by
QPA* with one or two dividing points. From the
experiments of [15], when there is one dividing point for
QPA*, we set a number of typical values for xL , and when
there are two dividing points for QPA*, we set 1 0.12xL L=
and 2 0.36xL L= . Since more dividing points can increase
the calculations for schedulable systems, we do not
compare the performance of QPA* with more than two
dividing points. As the values of the dividing points are
fixed for all kinds of task sets, there is no additional
calculation needed by QPA* compared with QPA. Hence a
reasonable metric to compare the results is to measure the
number of times ()h t has to be calculated.
 In the experiments, the task sets are automatically
generated by the following policies [16].
Utilizations generation policy.
 In order to get a uniform distributed task utilizations in
the range 0-1, we use the UUniFast algorithm [4] to
generate the task utilizations. Bini and Buttazzo [4] showed
that the UUniFast algorithm can efficiently generate task
utilizations with uniform distributions.
Periods generation policy.
 If we want to explore say 6 orders of magnitude (e.g. 1 -
1,000,000), then a set of random choices within this range
will result in 99% of values being in the range 10,000-
1,000,000 (only 3 orders of magnitude are actually explored
in the expected 6 orders). Hence the task periods are
generated according to an exponent distribution which is
similar to the policy used in [11].
 Let max 1max { }i n iT T≤ ≤= , and min 1min { }i n iT T≤ ≤= . In
order to make sure the periods are uniformly distributed in
the given range (the maximum value of max min/T T), the
range of the periods are divided into the intervals 1~oe e ,

1 2~e e , 2 3~e e , ..., if there are k intervals, then
(1) /n k−⎢ ⎥⎣ ⎦ task periods are randomly generated in each

interval, and one of the rest ((1) modn k−) task periods is
generated randomly from each intervals.
Relative deadlines generation policy.
 The relative deadline of each task iD is generated
randomly from [,]a b , where a is the lower bound value
of iD , and b is the upper bound value of iD . In our
default generation policy, the value of each a : when

10,iC < ;ia C= when 10 100,iC≤ < 2 ia C= × ; when
100 1000iC≤ < , 3 ia C= × ; when 1000iC ≥ , 4 ia C= × .

 8

The default value 1.2 ib T= × .

7.1 Evaluations for Unschedulable Task Sets

 As QPA* is aimed at reducing the required calculations
for unschedulable task sets, in this section, we compare the
performance of QPA* for unschedulable task sets only.
 In Figure 4-6, we compare the original QPA scheme
with QPA* when different values of dividing points are
used. Each point on the result diagrams are the average of
8,000 randomly generated unschedulable task sets.

Impact of the tasks number.

6

12

18

24

30

36

42

48

10 20 30 40 50 60 70 80 90 100
Number of Tasks

N
um

be
r

of
 h

(t)
 C

al
cu

la
tio

ns

QPA
QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Figure 4. Impact of the tasks number for

unschedulable task sets when U=0.96 and

Tmax/Tmin=100.

Impact of the task periods range.

6

12

18

24

30

36

42

48

10 100 1000 10000 100000 1000000

Maximum Value of Tmax/Tmin

N
um

be
r o

f h
(t)

 C
al

cu
la

tio
ns

QPA
QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Figure 5. Impact of the task periods range for

unschedulable task sets when U=0.96, n=60.

Impact of the task set’s utilization.

0
10
20
30
40
50
60
70
80
90

100
110
120

0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Utilization

N
um

be
r o

f h
(t)

 C
al

cu
la

tio
ns QPA

QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Figure 6. Impact of the processor utilization for

unschedulable task sets when n=60, Tmax/Tmin=100.

 From Figure 4-6, we can see that QPA* with two
dividing points is nearly always the best and in general
reduces the required calculations for schedulability.

7.2 Evaluations for General Task Sets

 This section compares the performance of QPA* for
general systems which contain schedulable and
unschedulable task sets. All the task sets are automatically
generated according to the default policies introduced at the
beginning of this section. Each point on the result diagrams
are the average of 8,000 randomly generated task sets.

Impact of the number of tasks.

8

14

20

26

32

38

44

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Nu
m

be
r

of
 h

(t)
 C

al
cu

la
tio

ns

QPA
QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Figure 7. Impact of the number of tasks for general

task sets when U=0.96, Tmax/Tmin=100.

 The percentage of the schedulable task sets corresponds
to Figure 7 is shown as the following graph.

 9

30.00%

32.00%

34.00%

36.00%

38.00%

40.00%

10 20 30 40 50 60 70 80 90 100

Number of Tasks

Pe
rt

en
ta

ge
 o

f S
ch

ed
ul

ab
le

pecentage

Figure 8. Percentage of schedulable task sets when

U=0.96, Tmax/Tmin=1000.

Impact of the task periods range.

16
19
22
25
28

31
34
37
40
43

10 100 1000 10000 100000 1000000

Maximum Value of Tmax/Tmin

N
um

be
r o

f h
(t)

 C
al

cu
la

tio
ns

QPA
QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Fi

gure 9. Impact of the task periods range for general task

sets when U=0.96, n=60.

 The percentage of the schedulable task sets corresponds
to Figure 9 is shown as the follow graph.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

10 100 1000 10000 100000 1000000

Maximum Value of Tmax/Tmin

Pe
rt

en
ta

ge
 o

f S
ch

ed
ul

ab
le

pecentage

Figure 10. Percentage of the schedulable task sets when

U=0.96, n=60.

Impact of the task set’s utilization.

0
10
20
30
40
50
60
70
80
90

100
110

0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Utilization

N
um

be
r

of
 h

(t)
 C

al
cu

la
tio

ns

QPA
QPA* with Lx=0.06L
QPA* with Lx=0.12L
QPA* with Lx=0.36L
QPA* with Lx=0.46L
QPA* with two points

Fi

gure 11. Impact of the processor utilization for general

task sets when n=60, Tmax/Tmin=100.

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0.66 0.69 0.72 0.75 0.78 0.81 0.84 0.87 0.9 0.93 0.96 0.99

Utilization

Pe
rt

en
ta

ge
 o

f S
ch

ed
ul

ab
le

pecentage

Figure 12. Percentage of the schedulable task sets when

n=60, Tmax/Tmin=100.

 More experimental results can be found in [15].

7.3 Comparing Other Values for QPA*

 In order to observe how sensitive are the results for
QPA* with two dividing points, we compare three sets of
values. One set with 1 0.12xL L= , 2 0.36xL L= , one with

1 0.10xL L= and 2 0.40xL L= , and one set with
1 0.08xL L= and 2 0.30xL L= .

 From the experiments of [15], we observed that the
results are not sensitive to the dividing points’ values when
two points are employed for QPA*. The differences
between the experimental results on each level of task
parameters are less than one ()h t calculation in nearly all
situations.

7.4 Conclusion from the Experiments

 QPA* can significantly decreases the required
calculations to perform an exact schedulability test for
general systems. Based on a large number of randomly

 10

generated task sets, QPA* had 1/3 the computation effort
compared with QPA and at best reduced to 1/5 the effort
required. In more than 95% of all experiments QPA* was
better than QPA. Also QPA* with two dividing points had
better performance than QPA* with one dividing point in
almost all situations. The performance of QPA* is not
sensitive to the values of the dividing points when two
dividing points are set, 1 0.12xL L= and 2 0.36xL L= are
suitable values for QPA*.
 Although this paper has been concerned with
improvement to QPA, it is important not to forget that for a
typical task set that required, say 12 ()h t calculations, the
best non-QPA scheme is required to check all deadlines
needing some 858,000 ()h t calculations [14].

8. Conclusion

 In this paper, we propose Improved Quick Processor-
demand Analysis (QPA*) which builds on QPA. By
intensive experiments, we show that QPA* can significantly
decrease the required calculations for the schedulability test
of unschedulable systems. A typical improvement of QPA*
is 1/3 of the previous effort. We prove that the computation
and load for schedulable systems remains nearly the same
as QPA. Hence the required calculations for general
systems can be significantly decreased.
 According to experiments of Section 7, Theorem 9, and
the empirical investigations [15], we suggest that two
dividing points are used in QPA*, the values are

1 0.12L L= and 2 0.36 .L L= From the experimental
results of Section 7, those two values significantly improve
the performance of the schedulability test for general
systems.

Appendix: Optimize the implementation of QPA*

 In the QPA and QPA* algorithms, when ()h t t= , we
need to find max{ | }i id d t< and give its value to t , to let
the iterative process continue. The calculation of
max{ | }i id d t< has the complex ()nΟ , this is not strictly
necessary for the QPA or QPA* test when implementing
QPA using integer arithmetric. We only need to let

1t t← − to substitute max{ | }i it d d t← < , then we can
get the same result for schedulability.
Theorem 10 In the QPA or QPA* algorithm,

max{ | }i it d d t← < can be substituted by 1t t← − ; and
max{ | }i it d d L← < can be substituted by 1Lt ← − .

Proof. When ()h t t= , if t is an absolute deadline, as
(1) (),m

ih t h d− = where max{ | },m
i i id d d t= < then

max{ | }i it d d t← < ; if t is not an absolute deadline, then
(1) () 1,h t h t t− = > − from Lemma 5, the system is

unschedulable, so 1t t← − has the same result as the
original algorithm.
 From Theorem 3 and Theorem 5, a missed deadline
must be found in (0,)L for a unschedulable system. Let

max{ | },m i id d d L= < since (1) (),mh L h d− = if
() ,m mh d d≤ then ();mt h d← if ()m mh d d> and
(1) 1h L L− ≤ − , then () ()mh t t h d= = , and 1t t← − , so
(1) 1h t t− > − ; if (1) 1h L L− > − , then the iteration stops.

□

Theorem 11 For a schedulable system, QPA* with the
optimization of Theorem 10 is always better than the
original algorithm.
Proof. Let max{ | }m

i i id d d t= < . For a schedulable system,
since (1) () ,m m

i ih t h d d− = ≤ then ()m m
i ih d dt ← ≤ for

both the algorithms. □

 The calculation for max{ | }i id d t< has the same
complex with ()h t , if we regard the computation for
max{ | }i id d t< as one ()h t calculation, then we can
prove that for the (1)h t − algorithm, at most one more

()h t calculation is required for unschedulable system; this
situation could only happen when a missed deadline is
found immediately before a deadline satisfying ()i ih d d= .

Theorem 12 For a unschedulable system, when only

()i ih d d= followed by a missed deadline, the QPA*
algorithm with Theorem 10 require one more ()h t
calculation.
Proof. When ()h t t= is not an absolute deadline, then

(1) () 1h t h t t− = > − , so the required calculation is less than
the original QPA* algorithm.
 When ()h t t= is an absolute deadline, and
max{ | }i id d t< is not a missed deadline, then

(1) () ,m m
i it h t h d d← − = ≤ where max{ | }m

i i id d d t= < ,
hence this is equivalent to the original algorithm.
 When ()h t t= is a deadline, and m

id is a missed
deadline, then (1) ()m

it h t h d← − = , and () ()m
ih t t h d= = ,

then we have 1 (1)t h t− < − , so 3 ()h t calculations
required compared only 2 with the previous

max{ | }i it d d t← < . □

 Since the situation described in Theorem 12 happens
rarely, the optimized QPA* with Theorem 10 can decrease
the required calculations for the vast majority of
unschedulable systems and all schedulable systems, and at
most one more ()h t calculation is required by a
unschedulable system in a particular case.

9. Acknowledgements

 This work was funded in part by the EU FRESCOR and
ArtistDesign projects. The authors would like to thank
Sanjoy Baruah for his helpful discussion on an initial phase
of this work.

10. References

[1] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively
Scheduling Hard-Real-Time Sporadic Tasks on One Processor. In

 11

Proceedings 11th IEEE Real-Time System Symposium, pp.182-190,
1990.
[2] S.K. Baruah, L.E. Rosier, and R.R. Howell. Algorithms and
Complexity Concerning the Preemptive Scheduling of Periodic
Real-Time Tasks on One Processor. Journal of Real-Time Systems,
4(2):301-324, 1990.
[3] S.K. Baruah, R.R. Howell, and L.E. Rosier. Feasibility
Problems for Recurring Tasks on One Processor. Theoretical
Computer Science, 118(1):3-20, 1993.
[4] E. Bini and G.C. Buttazzo. Measuring the Performance of
Schedulability Tests. Journal of Real-Time Systems, 30(1-2):129-
154, 2005.
[5] G.C. Buttazzo. Real-Time Scheduling and Resource
Management, In Handbook of Real-Time and Embedded Systems.
2008, Chapman & Hall/CRC.
[6] M.L. Dertouzos. Control Robotics: The Procedural Control of
Physical Processes. In Proceedings of the IFIP Congress, pp.807-
813, 1974.
[7] L. George, N. Rivierre, and M. Spuri. Preemptive and non-
preemptive Real-Time uniprocessor Scheduling. Technical Report
2966, INRIA, France, 1996.
[8] H. Hoang, G. Buttazzo, M. Jonsson, and S. Karlsson.
Computing the Minimum EDF Feasible Deadline in Periodic
Systems. In Proceedings 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications,
pp.125-134, 2006.
[9] J.Y.-T. Leung and M.L. Merrill. A Note on Preemptive
Scheduling of Periodic, Real-Time Tasks. Information Processing
Letters, pp.115-118, 1980.
[10] C.L. Liu and J.W. Layland. Scheduling Algorithm for
Multiprogramming in a Hard Real-Time Environment. Journal of
the ACM, 20(1):40-61, 1973.
[11] R.I.Davis, A. Zabos, and A.Burns. Efficient Exact
Schedulability Tests for Fixed Priority Real-Time Systems. IEEE
Transactions on Computers, 57(9):1261-1276, 2008.
[12] I. Ripoll, A. Crespo, and A.K. Mok. Improvement in
Feasibility Testing for Real-Time Tasks. Journal of Real-Time
Systems, 11(1):19-39, 1996.
[13] M. Spuri. Analysis of Deadline Schedule Real-time Systems.
Technical Report 2772, INRIA, France, 1996.
[14] F. Zhang and A. Burns. Schedulability Analysis for Real-
Time Systems with EDF Scheduling. Technical Report YCS-426-
2008, Dept. of Computer Science, University of York, UK, 2008.
[15] F. Zhang and A. Burns. Improvement to Quick Processor-
demand Analysis for EDF-Scheduled Real-Time Systems.
Technical Report YCS-433-2008, Dept. of Computer Science,
University of York, UK, 2008.
[16] F. Zhang and A. Burns. Schedulability Analysis for Real-
Time Systems with EDF Scheduling. IEEE Transactions on
Computers, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

