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Abstract 

   Earliest Deadline First (EDF) is an optimal scheduling 
algorithm for uniprocessor real-time systems. Quick 
Processor-demand Analysis (QPA) provides efficient and 
exact schedulability tests for EDF scheduling with arbitrary 
relative deadline. In this paper, we propose Improved Quick 
Processor-demand Analysis (QPA*) which is based on QPA. 
By extensive experiments, we show that QPA* can 
significantly reduce the required calculations to perform an 
exact test for unschedulable systems. We prove that the 
computation time for testing schedulable systems is hardly 
affected. Hence the required calculations for general 
systems can be significantly decreased. 
 
 
1.  Introduction 

   The most important attribute of real-time systems is that 
the correctness of such systems depends on not only the 
running results but also on the time at which results are 
produced. Real-time systems have to guarantee that all the 
strict timing requirements must be satisfied. In other words, 
real-time systems have timing requirements that must be 
guaranteed. Scheduling and schedulability analysis enables 
these guarantees to be provided. 
   A real-time system comprises a set of real-time tasks; 
each task consists of an infinite or finite stream of jobs. The 
task set can be scheduled by a number of policies including 
fixed priority or dynamic algorithms. The success of a real-
time system depends on whether all the jobs of all the tasks 
can be guaranteed to complete their executions before their 
timing deadlines. If they can then we say the task set is 
schedulable. 

The most common dynamic scheduling scheme for real-
time systems is Earliest Deadline First (EDF) which was 
introduced by Liu and Layland [10] in 1973. According to 
the EDF algorithm, an arrived job with the earliest absolute 
deadline is executed first. The EDF algorithm has been 

proven [6] to be optimal among all scheduling algorithms 
on a uniprocessor, in the sense that if a real-time task set 
cannot be scheduled by EDF, then this task set cannot be 
scheduled by any algorithm. 

Schedulability tests for general EDF systems with 
arbitrary relative deadlines can be sufficient or exact 
(necessary and sufficient). Sufficient tests are usually 
efficient but they are not powerful, many schedulable task 
sets are not judged to be schedulable. The simplest 
sufficient tests are utilization based and they have 
polynomial complexity, however we observed that nearly 
all the task sets which are randomly generated in our 
experiments [14] cannot be correctly evaluated by such 
tests. Exact tests can be performed by processor demand 
analysis, which calculates the processor demand of a task 
set at every absolute deadline to check if there is an 
overflow in a specified time interval. In such an interval, 
there could be a very large number of deadlines that need to 
be verified. The significant effort required to perform the 
exact test severely restricts the use of EDF in practice. 

Quick Processor-demand Analysis (QPA) [16] provides 
fast and exact schedulability tests for general EDF systems. 
By extensive experiments [14, 16], we showed that QPA 
decreases the required calculations exponentially compared 
with previous results on exact schedulability tests; the 
required calculation load for QPA is stable for all kinds of 
task sets.  

The motivation for providing faster exact schedulability 
analysis for general EDF systems is two-fold. As part of the 
design process many different parameter profiles may need 
to be checked. An automated search may even be 
undertaken as part of the architectural definition of the 
system. An efficient but accurate schedulability scheme is 
therefore needed. The second requirement comes from 
online systems. During the run-time of a system there could 
be new tasks arrive that need (if possible) to be added to the 
task set. The system must recalculate schedulability online 
to decide whether to allow the new tasks to enter into the 
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system. Such online admission control gives a much higher 
requirement for the performance of the schedulability test 
as the decisions have to be made in a very short time and 
should not occupy too much system resource.  

In this paper we propose Improved Quick Processor-
demand Analysis (QPA*) which is based on QPA. We show 
that QPA* can significantly reduce the required calculations 
to perform an exact test for unschedulable systems, and we 
prove that the computation required by QPA* for 
schedulable systems is nearly the same as QPA. Hence the 
required calculations for general EDF systems can be 
significantly decreased by QPA*.  

The rest of the paper is organized as follows. Section 2 
describes the system model and notations used in this paper. 
Section 3 describes the existing results on exact 
schedulability analysis for EDF systems with arbitrary 
relative deadlines. Section 4 describes QPA which was 
proposed in [16]. Section 5 gives the motivation to the 
improvement. In section 6, we propose the QPA* algorithm, 
and prove some properties of QPA*. In Section 7, by 
intensive experiments on a large number of randomly 
generated task sets, we show that QPA* can significantly 
reduce the required calculations for an exact schedulability 
test. Conclusions are provided in Section 8. 
 
2.  System Model 

   A hard real-time system comprises a set of n  real-time 
tasks 1 2{ , ,..., }nτ τ τ , each task consists of an infinite or 
finite stream of jobs or requests which must be completed 
before their deadlines. Let iτ  indicate any given task of 
the system. Each task can be periodic or sporadic. 
   Periodic tasks.  All jobs of a periodic task iτ  have a 
regular interarrival time iT , we call iT  the period of the 
periodic task iτ . If a job for a periodic task iτ  arrives at 
time ,t  then the next job of task iτ  must arrive at it T+ .  
   Sporadic tasks. The jobs of a sporadic task iτ  arrive 
irregularly, but they have a minimum interarrival time iT , 
we call iT  the period of the sporadic task iτ . If a job of a 
sporadic task iτ  arrives at ,t  then the next job of task iτ  
can arrival at any time at or after it T+ . 
   If there are periodic tasks in the system, since in 
realistic situations it is difficult to forecast or to handle the 
exact starting time of all tasks when a system starts up, the 
first job of each periodic task is assumed to arrive at the 
same time. Each job of task iτ  requires up to the same 
worst-case execution time which equals the task iτ ’s worst-
case execution time iC , and each job of task iτ  has the 
same relative deadline which equals the task iτ ’s relative 
deadline iD . If a job of task iτ  arrives at time t , the 
required worst-case execution time iC  must be completed 
in iD  time units, and the absolute deadline of this job is 

it D+ .  
   At any time, an arrived job with a higher priority can 
preempt a lower priority job's execution. When a job 
completes its execution, the system chooses the pending job 

with the highest priority to execute. According to the EDF 
algorithm, the released job with the earliest absolute 
deadline is assigned the highest priority. 
   The following notation is used throughout the paper. 
   iC —the worst-case execution time of task iτ  
   iD —the relative deadline of task iτ  
   iT —the period of task iτ  
   n —the number of tasks in the system or the task set 
   id —an absolute deadline of a job of task iτ  
   iU —the utilization of task iτ , and /i i iU C T= . 
   U —the total utilization of the task set, and 

1
/n

i ii
U C T

=
= ∑ . 

 

3.  Previous Results on Exact Schedulability Analysis 

   This section describes the previous research results on 
exact schedulability analysis for EDF scheduling with 
arbitrary relative deadlines (i.e. iD  not necessarily equal 
to iT ). In 1980, Leung and Merrill [9] noted that a set of 
periodic tasks is schedulable if and only if all absolute 
deadlines in the period [0,max{ } 2 ]is H+  are met, where 

is  is the start time of task iτ , and min{ } 0is = . In 1990, 
Baruah et al. [1, 2] extended this condition for sporadic 
tasks system, and showed the task set is schedulable if and 
only if: 0t∀ > , ( )h t t≤ , where ( )h t  is the processor 
demand function given by: 

          
1

( ) max{0,1 }
n

i
i

i i

t D
h t C

T=

⎢ ⎥−
= + ⎢ ⎥

⎣ ⎦
∑ .       (1) 

   Baruah et al. [1, 2, 3] showed that using the above 
necessary and sufficient schedulability test, the value of t  
can be bound by a certain value. 
 
Theorem 1 [1, 2, 3]  A general task set ( iT  and iD  are 
not related) is schedulable if and only if 1U ≤  and 
              1

at L∀ < , ( )h t t≤  
where 1

aL  is defined as follows: 

    1
1 1max{ ,..., , max { } }

1a n i n i i
UL D D T D

U≤ ≤= −
−

.    (2) 

 
   In 1996, Ripoll et al. [12] gave a tighter upper bound for 
the schedulability test under the assumption that i iD T≤  
for all tasks, the upper bound is: 

           2 1
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   However for the general task set in which iD  could be 
greater than iT , the maximum relative deadline 

1max { }i n iD≤ ≤  must be reconsidered. Therefore the 
necessary and sufficient condition for schedulability 
becomes: 
 
Theorem 2 [5, 7, 8]  A general task set is schedulable if 
and only if 1U ≤  and 
               at L∀ < , ( )h t t≤ , 
where aL  is defined as: 

       1
1

( )
max{ ,..., , }

1

n

i i i
i

a n

T D U
L D D

U
=

−
=

−

∑
.       (3) 

 
   In 1996, Spuri [13] and Ripoll et al. [12] derived 
another upper bound for the time interval which guarantees 
we can find an overflow if the task set is not schedulable. 
This interval is called the synchronous busy period (the 
length of the first processor busy period of the synchronous 
arrival pattern). However Ripoll et al. [12] only considered 
the situation of i iD T≤ . 
 
Definition 1 [12, 13]  A synchronous busy period is a 
processor busy period in which all tasks are released 
simultaneously at the beginning of the processor busy 
period and then at their maximum rate, and ended by the 
first processor idle period (the length of such a period can 
be zero). 
 
   The length of the synchronous busy period bL  can be 
computed by the following process [12, 13]: 

               0

1

n

i
i

w C
=

= ∑ ,                (4) 

            1

1

mn
m

i
i i

ww C
T

+

=

⎡ ⎤
= ⎢ ⎥

⎢ ⎥
∑ ,             (5) 

the recurrence stops when 1m mw w+ = , and then 1m
bL w += . 

 
Lemma 1 [13]  The length of the synchronous busy period 
is the maximum length of any possible busy processor 
period in any schedule. 
 
Theorem 3 [13]  A general task set is schedulable if and 
only if 1U ≤  and 

bt L∀ ≤ , ( )h t t≤ , 
where bL  is the length of the synchronous busy period of 
the task set. 
 
Lemma 2 [16]  ( )b bh L L≤ . 
 
   Since there is no direct relationship between aL  and 

bL , the time interval that needs to be checked can be bound 
to the value min( , )a bL L .  

   As the processor demand ( )h t  could only be changed 
at the absolute deadlines of the system's jobs, the 
schedulability test becomes: 
 
Theorem 4 [3, 5, 7, 8, 13]  A task set is schedulable if and 
only if 1U ≤  and 
               t P∀ ∈ , ( )h t t≤ , 
where               
    { | min( , ), }k k i i k a bP d d kT D d L L k N= = + ∧ < ∈ . 
 
Theorem 5 [16]  A general task set is schedulable if and 
only if 1U ≤  and 
               t P∀ ∈ , ( )h t t≤ , 
where                     
     *{ | , }k k i i k aP d d kT D d L k N= = + ∧ < ∈　 , 
and where 

   1
1 1

*
( )

max{( ),..., ( ), }
1

n

i i i
i

a n n

T D U
L D T D T

U
=

−
= − −

−

∑
　 .   (6) 

   Clearly *
a aL L<　 . Also in extensive simulation studies 

[14] it was nearly always the case that *
a bL L<　 . 

   In a given interval (i.e. between 0 and *min{ , }a bL L　 ), 
there can be a very large number of absolute deadlines that 
need to be checked. This level of computation has been a 
serious disincentive to the adoption of EDF scheduling in 
practice. Fortunately, a new much less intensive test known 
as Quick convergence Processor-demand Analysis (QPA) 
has been proposed [16]. QPA works by starting with a value 
of t  close to L  and then iterating back through a simple 
expression toward 0 or the largest failure point in (0, )L . It 
jumps over deadlines that can safely be ignored and hence 
only a small number of points require to be checked. 
 
4.  Quick convergence Processor-demand Analysis 
(QPA) 

   This section describes some work that has been reported 
in [14, 16], as a foundation of Section 5. 

Let id  be an absolute deadline of a job for task iτ , then 
i i id kT D= +  for some k , k N∈ . Let L  be the 

minimum value of *
aL  and bL . Considering that the upper 

bound *
aL  is not well defined (divide by 0) when the 

utilization of the task U  is equal to 1, let L  be defined 
as: 

             
*min( , ) 1

1
a b

b

L L U
L

L U
⎧ <⎪= ⎨

=⎪⎩

　

  

　
　

　　　　
, 

when a system is unschedulable, define d Δ  to be the 
largest 'failing' deadline less than L , that is: 

max{ | 0 ( ) }i i i id d d L h d dΔ = < < ∧ > . 
 
Lemma 3 [16]  For a unschedulable system, let 

max{ | }.m i id d d L= <  If ( ) ,m mh d d≤ then: 
( ) 'd h d dΔ Δ< < , where 'd  is the closest deadline of d Δ , 
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and ' min{ | }i id d d d Δ= > . 
 
Lemma 4 [16]  For a unschedulable system, let 

max{ | }.m i id d d L= <  If ( ) ,m mh d d≤  then we have 
[ ( ), ),mt h d dΔ∀ ∈  ( ) ( ) .h d h t tΔ ≤ ≤  

 
Theorem 6 [16]  A general task set is schedulable if and 
only if 1U ≤ , and the result of the following iterative 
algorithm is min( ) ,h t d≤  where min min{ }id D= .  

max{ | }i it d d L← < ; 
while ( ( )h t t≤ ∧ min( )h t d> ) 
  {if ( ( )h t t< ) ( )t h t← ; 
   else max{ | }i it d d t← < ; 
  } 
if ( min( )h t d≤ )  the task set is schedulable; 
else  the task set is not schedulable; 
 

In the iterative process of Theorem 6, t  takes the 
value ( )h t ; when ( )h t t<  progress towards zero is made. 
Only when ( )h t t=  do we need to force the process to 
take a value less than ( )h t . This is when we need to 
compute max{ | }i id d t<  to let the iteration continue; 
max{ | }i id d t<  can be calculated by the following 
approach.  

For a single task jτ  with jD t< , the last arrived job 
of task jτ  with jd t≤  is released at: 

              j
j

j

t D
T

T
⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

the absolute deadline of this job is: 

             j
j j j

j

t D
d T D

T
⎢ ⎥−

= +⎢ ⎥
⎢ ⎥⎣ ⎦

.           (7) 

If jd t= , we let jd  move to the previous deadline 
j j jd d T= − . For the task set, max{ | }i id d t≤  is the 

largest such jd  for each task.  
Let the initial value of max 0td = , the value of 

max{ | }i id d t≤  can be obtained by: 

for ( 1j = ; j n≤ ; j + + ) 
  {if ( jD t< ) 

{ ( ) /j j j j jd t D T T D⎢ ⎥← − +⎣ ⎦ ; 
     if ( jd t= ) j j jd d T← − ; 
     if ( max

t
jd d> ) max

t
jd d← ; 

     } } 
After the recurrence, max max{ | }t

i id d d t= ≤ . 
 
   The following graph shows an experimental comparison 

between processor demand analysis (PDA) and QPA. Each 
point on the diagram is the average of 6,000 randomly 
generated schedulable task sets, for each task set 0.9U =  
and the periods range is 1 ~ 1000 .  
   The figure is derived from the results presented in [14, 
16] where the details of the experiments are given. Note the 
logarithmic scale in the diagram. 
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Figure 1. Improvement of QPA 

 
   An alternative algorithm which further improves QPA is 
provided in the appendix of this paper. 
 
5.  QPA Test for Unschedulable Systems 

   QPA is a process for finding the largest failure point for 
a unschedulable system. Here we give an example to 
illustrate this. 

Task Execution 
Time  

Relative 
Deadline Period 

1τ  6000 18000 31000 
2τ  2000 9000 9800 
3τ  1000 12000 17000 
4τ  90 3000 4200 
5τ  8 10 96 
6τ  2 16  12 
7τ  10 19 280 
8τ  26 160 660 

The schedulability is tested by the following steps: 
Step 1.  Calculate the utilization of the task set, 

0.803U ≅ 1≤ . 
Step 2.  Calculate upper bound *

aL　  by equation (6), 
* 15404aL =　 . 

Step 3.  Calculate upper bound bL  by equations (4)(5), 
16984bL = . 

As * ,a bL L<　  * 15404;aL L= =　  mind =10 and 
max{ | }i id d L< =15400. 
Step 4.  Verify schedulability by the QPA algorithm given 

in Theorem 6: 
1) 15400t = , ( )h t =8298, 
2) 8298t = , ( )h t =2896, 
3) 2896t = , ( )h t =970, 
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4) 970t = , ( )h t =340, 
5) 340t = , ( )h t =134, 
6) 134t = , ( )h t =46, 
7) 46t = , ( )h t =24; 
8) 24t = , ( )h t =20; 
9) 20t = , ( )h t =20; 
10) 19t = , ( )h t =20; 

   Since ( )h t t> , the task set is unschedulable. 
   In the above example, the largest failure point in (0, )L  
(i.e. (0,15404)) is 19t =  which is very close to 0.       
   The following experiment investigates the distance from 
the largest failure point to 0 based on 10,000 unschedulable 
task sets which are randomly generated. 
   Let xd  be the largest failure point where the QPA test 
stops, and 

max{ | 0 ( ) }x i i i id d d L h d d= < < ∧ > . 
Then the value of /xd L  presents the position of xd  

in (0, )L . 
From Figure 2, we can see that the values of most xd s 

are close to 0. 

Figure 2.  Frequency distribution of xd  based on 
10,000 unschedulable task sets, for each task set, U=0.9, 

n=30 and Tmax/Tmin=1000. 
 
6.  Improvement to Quick Processor-demand 
Analysis (QPA*) 

   Motivated by the observations of the previous section, 
we divide the interval (0, )L  into two subintervals (0, )xL  
and ( , )xL L  where xL  is much closer to 0 than L . QPA* 
starts by checking the first interval, if a failure is found the 
system is unschedulable. If no failure is found in the first 
interval then the second is checked. In both intervals the 
algorithm starts with the value t  ( max{ |i i xt d d L= <  or 

id L< }). A failure may be found in the second interval or 
the schedulability of system may be proven. Figure 3 
illustrates two of the possible situations. 

dξ

 
Figure 3. QPA* with one Lx 

 
Theorem 7  Let (0, )xL L∈ . A general task set is 
schedulable if and only if 1U ≤ , and the result of the 
following algorithm is find = false. 

find ← false; 
max{ | };i i xt d d L← <  

while ( min( )h t d find> ∧ = false) 
{ if ( ( )h t t< ) ( )t h t← ; 
 else if ( ( )h t t> ) find ← true; 

  else max{ | };i it d d t← <                          
 } 
if ( find = false) 
 { max{ | };i it d d L← <  
  while ( ( ) xh t L find> ∧ = false) 

{ if ( ( )h t t< ) ( )t h t← ; 
 else if ( ( )h t t> ) find ← true; 

    else max{ | };i it d d t← <                          
 } 

if ( find = false)  the system is schedulable; 
else  the system is unschedulable; 
Proof. Let max{ | 0 ( ) }i i x i id d d L h d dλ = < < ∧ >  if there 
dλ  exists. Lemma 3 and Lemma 4 still hold when L  is 
substitute by xL , then we can apply the same discussion of 
Theorem 6’s proof [16] to prove that during the iterative 
process, the value of t  is always greater than or equal to 

,dλ  and min( ) ( )h t h d d dλ λ≥ > ≥ . So when min( )h t d≤ , 
there is no failure point in (0, )xL . 
   Let max{ | ( ) }i x i i id d L d L h d dγ = ≤ < ∧ >  if it exists, 
after max{ | },i it d d L← <  the value of t  is always 
greater than or equal to ,dγ  and we have 

( ) ( ) xh t h d d Lγ γ≥ > ≥ . Therefore when ( ) xh t L≤ , there is 
no failure point in [ , )xL L . 
   From the above discussion, if no missed deadline can be 
found during the whole iterative process, the task set is 
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schedulable, otherwise it is unschedulable.   □ 
 
   As the largest failure point in the interval (0, )L  is 
often close to 0, the QPA* algorithm which is described in 
Theorem 7 can reduce the calculations for unschedulable 
systems. For a schedulable system, since QPA* divides 
(0, )L  into two intervals, each interval has to be checked, 
so the required calculations by QPA* could be more than 
QPA. However we can prove that for a schedulable system, 
the required calculation by QPA* is nearly the same as QPA, 
and at most one more ( )h t  calculation is required for the 
whole test. 
 
Lemma 5  During the iterations of QPA or QPA*, when 

( )h t t= , if t  is not an absolute deadline of any task, then 
the system is unschedulable. 
Proof. Let ( ),t h tκ κ=  and .it dκ ≠  Let 

max{ | },i id d d tψ κ= <  then ( ) ( ) ,h d h t dψ κ ψ= >  the 
system is unschedulable.   □ 
 
   Lemma 5 can be used as an end condition for the QPA* 
iterations. When ( )h t t= , if it d≠ , then the iterations can 
be stopped. But with this condition, we have to judge 
whether t  is an absolute deadline every time when 

( )h t t= , if t  is not an absolute deadline, then we still 
have to find max{ | }i id d t<  and let max{ | }i it d d t← < , 
hence the complexity is increased. 
 
Lemma 6  For a schedulable system, if there exists any 
point with ( )h t tξ ξ=  in any checking interval, then during 
the iterations of QPA or QPA*, t  takes the value of tξ . 
Proof.  Let (0, )xL  be any time interval, define 

max{ | 0 ( ) }xd t t L h t tλ = < < ∧ = , then at the beginning of 
the QPA* iterations, t dλ≥ ; During the QPA* iterations, 
when t dλ≥ , we have ( ) ( )h t d t dλ λ> = , hence the value 
of t  is always greater or equal to dλ , and t  will take 
the value of dλ . From Lemma 5, for a schedulable task set, 
any { | ( ) }t t h t t∈ =  is an absolute deadline. So after t  
takes the value of dλ , t  moves backward to the previous 
deadline, define max{ | 0 ( ) }d t t d h t tβ λ= < < ∧ = , again 
t  will take the value of dβ , and no time t  with ( )h t t=  
in the interval (0, )xL  will be missing.    □ 
 
Theorem 8  For a schedulable system, at most one more 

( )h t  calculation is required by QPA* compared with QPA. 
Proof. When [ , ),xt L L∈  the required ( )h t  calculations 
by QPA* and QPA are the same. So we only need to focus 
on the interval when (0, )xt L∈ . First we only consider the 
situation that ( )h t  is always less than t  during the 
iterative process.  
   Define 1 max{ | },i i xt d d L= < 2 1( ),t h t= 3 2( )t h t= ,…, 

1( )m mt h t −= , suppose 1 minmt d− >  and minnt d≤ , therefore 
QPA* needs 1m −  jumps ( ( )h t  calculations) when 

(0, )xt L∈ . For the QPA test, suppose 1 't  be the last value 
of t  when ,xt L≥  then we have 1 1' xt L t≥ > . Let 

2 1' ( ')t h t= , 3 2' ( ')t h t= , …, and 1' ( ')m mt h t −= . Since ( )h t  
is non-decreasing with t , we have 2 2't t≥ , 3 3't t≥ , …, 

1 1 min'n nt t d− −≥ > . Therefore QPA needs at least 2m −  
jumps when (0, )xt L∈ . 

Then we consider the situation when there exists one or 
more points ( )h t t=  during the interval (0, )xL . Define 

max{ | ( ) ^ 0 },k xt t h t t t L= = < <  from Lemma 6, t  takes 
the value of kt  for both of QPA* and QPA. Let 

1 2 1... k kt t t t−> > > , and 1( )k kt h t −= , then QPA* needs 
1k −  jumps before kt t= . We can apply the same 

discussion to prove that during the iterative process of QPA, 
2 2't t≥ ,…, 1 1'k kt t− −≥ , 'k kt t≥ , so QPA needs at least 

2k −  jumps before kt t=  in the interval (0, )xL . After 
kt t= , the required calculations by QPA* and QPA are the 

same. 
From the above discussions, at most one more ( )h t  

calculation is required by QPA* compared with QPA for a 
schedulable system.   □ 
 
Property 1  Let (0, )Lζ  be any checking interval, and 

max{ | }m i id d d Lζ= < . For a unschedulable system, if 
( )m mh d d≤ , then during the iterations of QPA or QPA*, 

before a missed deadline is found, ( )h t t= . 
Proof. Let max{ | 0 ( ) },i i i id d d L h d dζ

Λ = < < ∧ >  and 
' min{ | }.i id d d d Λ= >  There are two cases.  

Case 1. If ( ') ';h d d≠  from Lemma 4, [ ( ), )mt h d dΛ∀ ∈ , 
we have ( ) ( )h d h t tΛ ≤ ≤ . Since 'd  is the only possible 
point (when ( ') 'h d d= ) in ( ( ), )mh d dΛ  to let the value of 
t  jump across the point ( )h d Λ  to d Λ , in this case, t  is 
always greater than or equal to ( )h d Λ , and t  will take 
the value of ( )h d Λ . So ( )h t t=  before t  takes the value 
of d Λ . 
Case 2. If ( ') 'h d d= ; from Lemma 6, t  takes the value 
of 'd ; therefore ( )h t t=  before the missed deadline is 
found.   □ 
 
6.1  More Than One xL  for QPA*. 

   Before addressing the issue of obtaining an effective 
value for xL , we observe that the interval (0, )L  can be 
divided into more than two intervals, and the schedulability 
checked in each interval. If there exists a failure point in 
(0, )L , it must be found by QPA* in a test interval.  

Define 1 2{ , ,..., }x x xkL L L  to be the dividing points for 
QPA*, and 1 2{ , ,...}xi x xL L L∀ ∈  to be a dividing point, then 
a system is schedulable if and only if QPA* cannot find any 
failure point in these intervals. When there are k  dividing 
points for QPA*, the intervals are checked by 

1(0, ),xL 1 2( , )x xL L ,… ( , ),xkL L  and the algorithm of 
Theorem 7 is changed to:  
find ← false; 1max{ | };i i xt d d L← <  

while ( min( )h t d find> ∧ = false) 
{ if ( ( )h t t< ) ( )t h t← ; 
 else if ( ( )h t t> ) find ← true; 



 7

  else max{ | };i it d d t← <   
  }                         
if ( find = false) 
 { 2max{ | };i i xt d d L← <  
  while ( 1( ) xh t L find> ∧ = false) 

{ if ( ( )h t t< ) ( )t h t← ; 
 else if ( ( )h t t> ) find ← true; 

    else max{ | };i it d d t← <                          
  }} 

else goto end;     
…… 
if ( find = false) 
 { max{ | };i it d d L← <  
  while ( ( ) xkh t L find> ∧ = false) 

{ if ( ( )h t t< ) ( )t h t← ; 
 else if ( ( )h t t> ) find ← true; 

    else max{ | };i it d d t← <                          
  }} 

end: 
if ( find = false)  the system is schedulable; 
else  the system is unschedulable; 

   The above algorithm can be proved by the same process 
of Theorem 7’s proof. 
 
Theorem 9  For a schedulable system, when there are k  
( k  is a positive integer number) dividing points for QPA*, 
if QPA needs m  times ( )h t  calculations to complete a 
test, then QPA* needs at most m k+  times. 
Proof.  From Theorem 8’s proof, each dividing point 
requires at most one more ( )h t  calculation, hence at most 
k  more ( )h t  calculations are required when there are k  
dividing points.   □ 
 
7.  Experimental Evaluations 

   This section evaluates the performance of QPA* by 
intensive experiments on a large number of randomly 
generated task sets. Before the evaluations, the values and 
the number of dividing points is an issue for the efficiency 
of QPA*. We provide an empirical approach [15] based on 
the distribution of the largest failure point to find a suitable 
value of xL  for QPA*. From the experimental 
investigation of [15], the best value of xL  is changed 
according to variable conditions, and hence there is no 
single optimal value of xL . In order to get the best 
performance of QPA*, we may need to change the values of 
dividing points and the number of dividing points according 
to the task sets under study. 
   However most of the time we do not know the 
properties of a task set before we test it. The process to 

decide the best value of xL  for each task set involves an 
extensive amount of simulation and is unnecessary due to 
the high efficiency of QPA. What we need to do is to 
choose a fixed value of xL  and a fixed number of dividing 
points for all kinds of task sets. 
   According to the empirical investigation [15] and 
Theorem 9, we conclude that 2 dividing points is better for 
QPA*, with 1 0.12xL L=  and 2 0.36xL L= . Most ( 60%> ) 
unschedulable task sets can find xd  in those two intervals, 
and from Theorem 9, at most two extra ( )h t  calculations 
are needed for a schedulable system. 
   We compare the number of calculations required by 
QPA* with one or two dividing points. From the 
experiments of [15], when there is one dividing point for 
QPA*, we set a number of typical values for xL , and when 
there are two dividing points for QPA*, we set 1 0.12xL L=  
and 2 0.36xL L= . Since more dividing points can increase 
the calculations for schedulable systems, we do not 
compare the performance of QPA* with more than two 
dividing points. As the values of the dividing points are 
fixed for all kinds of task sets, there is no additional 
calculation needed by QPA* compared with QPA. Hence a 
reasonable metric to compare the results is to measure the 
number of times ( )h t  has to be calculated. 
   In the experiments, the task sets are automatically 
generated by the following policies [16].  
Utilizations generation policy. 
   In order to get a uniform distributed task utilizations in 
the range 0-1, we use the UUniFast algorithm [4] to 
generate the task utilizations. Bini and Buttazzo [4] showed 
that the UUniFast algorithm can efficiently generate task 
utilizations with uniform distributions.  
Periods generation policy.  
   If we want to explore say 6 orders of magnitude (e.g. 1 - 
1,000,000), then a set of random choices within this range 
will result in 99% of values being in the range 10,000-
1,000,000 (only 3 orders of magnitude are actually explored 
in the expected 6 orders). Hence the task periods are 
generated according to an exponent distribution which is 
similar to the policy used in [11].  
   Let max 1max { }i n iT T≤ ≤= , and min 1min { }i n iT T≤ ≤= . In 
order to make sure the periods are uniformly distributed in 
the given range (the maximum value of max min/T T ), the 
range of the periods are divided into the intervals 1~oe e , 

1 2~e e , 2 3~e e , ..., if there are k  intervals, then 
( 1) /n k−⎢ ⎥⎣ ⎦  task periods are randomly generated in each 

interval, and one of the rest ( ( 1) modn k− ) task periods is 
generated randomly from each intervals.  
Relative deadlines generation policy. 
   The relative deadline of each task iD  is generated 
randomly from [ , ]a b , where a  is the lower bound value 
of iD , and b  is the upper bound value of iD . In our 
default generation policy, the value of each a : when 

10,iC <  ;ia C=  when 10 100,iC≤ <  2 ia C= × ; when 
100 1000iC≤ < , 3 ia C= × ; when 1000iC ≥ , 4 ia C= × . 
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The default value 1.2 ib T= × . 
 
7.1  Evaluations for Unschedulable Task Sets 

   As QPA* is aimed at reducing the required calculations 
for unschedulable task sets, in this section, we compare the 
performance of QPA* for unschedulable task sets only.  
   In Figure 4-6, we compare the original QPA scheme 
with QPA* when different values of dividing points are 
used. Each point on the result diagrams are the average of 
8,000 randomly generated unschedulable task sets. 
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Figure 4. Impact of the tasks number for 

unschedulable task sets when U=0.96 and 

Tmax/Tmin=100. 
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Figure 5.  Impact of the task periods range for 

unschedulable task sets when U=0.96, n=60. 
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Figure 6. Impact of the processor utilization for 

unschedulable task sets when n=60, Tmax/Tmin=100. 
 
   From Figure 4-6, we can see that QPA* with two 
dividing points is nearly always the best and in general 
reduces the required calculations for schedulability. 
 
7.2  Evaluations for General Task Sets 

   This section compares the performance of QPA* for 
general systems which contain schedulable and 
unschedulable task sets. All the task sets are automatically 
generated according to the default policies introduced at the 
beginning of this section. Each point on the result diagrams 
are the average of 8,000 randomly generated task sets. 
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Figure 7.  Impact of the number of tasks for general 

task sets when U=0.96, Tmax/Tmin=100. 
 
   The percentage of the schedulable task sets corresponds 
to Figure 7 is shown as the following graph. 
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Figure 8. Percentage of schedulable task sets when 

U=0.96, Tmax/Tmin=1000. 
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gure 9. Impact of the task periods range for general task 

sets when U=0.96, n=60. 
 
   The percentage of the schedulable task sets corresponds 
to Figure 9 is shown as the follow graph. 
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Figure 10. Percentage of the schedulable task sets when 

U=0.96, n=60. 
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gure 11. Impact of the processor utilization for general 

task sets when n=60, Tmax/Tmin=100. 
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Figure 12. Percentage of the schedulable task sets when 

n=60, Tmax/Tmin=100. 
 
   More experimental results can be found in [15]. 
 
7.3  Comparing Other Values for QPA* 

   In order to observe how sensitive are the results for 
QPA* with two dividing points, we compare three sets of 
values. One set with 1 0.12xL L= , 2 0.36xL L= , one with 

1 0.10xL L=  and 2 0.40xL L= , and one set with 
1 0.08xL L=  and 2 0.30xL L= . 

   From the experiments of [15], we observed that the 
results are not sensitive to the dividing points’ values when 
two points are employed for QPA*. The differences 
between the experimental results on each level of task 
parameters are less than one ( )h t  calculation in nearly all 
situations. 
 
7.4  Conclusion from the Experiments 

   QPA* can significantly decreases the required 
calculations to perform an exact schedulability test for 
general systems. Based on a large number of randomly 
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generated task sets, QPA* had 1/3 the computation effort 
compared with QPA and at best reduced to 1/5 the effort 
required. In more than 95% of all experiments QPA* was 
better than QPA. Also QPA* with two dividing points had 
better performance than QPA* with one dividing point in 
almost all situations. The performance of QPA* is not 
sensitive to the values of the dividing points when two 
dividing points are set, 1 0.12xL L=  and 2 0.36xL L=  are 
suitable values for QPA*. 
   Although this paper has been concerned with 
improvement to QPA, it is important not to forget that for a 
typical task set that required, say 12 ( )h t  calculations, the 
best non-QPA scheme is required to check all deadlines 
needing some 858,000 ( )h t  calculations [14]. 
 
8.  Conclusion 

   In this paper, we propose Improved Quick Processor-
demand Analysis (QPA*) which builds on QPA. By 
intensive experiments, we show that QPA* can significantly 
decrease the required calculations for the schedulability test 
of unschedulable systems. A typical improvement of QPA* 
is 1/3 of the previous effort. We prove that the computation 
and load for schedulable systems remains nearly the same 
as QPA. Hence the required calculations for general 
systems can be significantly decreased. 
   According to experiments of Section 7, Theorem 9, and 
the empirical investigations [15], we suggest that two 
dividing points are used in QPA*, the values are 

1 0.12L L=  and 2 0.36 .L L=  From the experimental 
results of Section 7, those two values significantly improve 
the performance of the schedulability test for general 
systems. 
 
Appendix: Optimize the implementation of QPA* 

   In the QPA and QPA* algorithms, when ( )h t t= , we 
need to find max{ | }i id d t<  and give its value to t , to let 
the iterative process continue. The calculation of 
max{ | }i id d t<  has the complex ( )nΟ , this is not strictly 
necessary for the QPA or QPA* test when implementing 
QPA using integer arithmetric. We only need to let 

1t t← −  to substitute max{ | }i it d d t← < , then we can 
get the same result for schedulability. 
Theorem 10  In the QPA or QPA* algorithm, 

max{ | }i it d d t← <  can be substituted by 1t t← − ; and 
max{ | }i it d d L← <  can be substituted by 1Lt ← − . 

Proof.  When ( )h t t= , if t  is an absolute deadline, as 
( 1) ( ),m

ih t h d− =  where max{ | },m
i i id d d t= <  then 

max{ | }i it d d t← < ; if t  is not an absolute deadline, then 
( 1) ( ) 1,h t h t t− = > −  from Lemma 5, the system is 

unschedulable, so 1t t← −  has the same result as the 
original algorithm. 
   From Theorem 3 and Theorem 5, a missed deadline 
must be found in (0, )L  for a unschedulable system. Let 

max{ | },m i id d d L= <  since ( 1) ( ),mh L h d− = if 
( ) ,m mh d d≤  then ( );mt h d←  if ( )m mh d d>  and  
( 1) 1h L L− ≤ − , then ( ) ( )mh t t h d= = , and 1t t← − , so 
( 1) 1h t t− > − ; if ( 1) 1h L L− > − , then the iteration stops.   

□ 
 
Theorem 11  For a schedulable system, QPA* with the 
optimization of Theorem 10 is always better than the 
original algorithm. 
Proof. Let max{ | }m

i i id d d t= < . For a schedulable system, 
since ( 1) ( ) ,m m

i ih t h d d− = ≤  then ( )m m
i ih d dt ← ≤  for 

both the algorithms.   □ 
 
   The calculation for max{ | }i id d t<  has the same 
complex with ( )h t , if we regard the computation for 
max{ | }i id d t<  as one ( )h t  calculation, then we can 
prove that for the ( 1)h t −  algorithm, at most one more 

( )h t  calculation is required for unschedulable system; this 
situation could only happen when a missed deadline is 
found immediately before a deadline satisfying ( )i ih d d= . 
 
Theorem 12  For a unschedulable system, when only 

( )i ih d d=  followed by a missed deadline, the QPA* 
algorithm with Theorem 10 require one more ( )h t  
calculation. 
Proof.  When ( )h t t=  is not an absolute deadline, then 

( 1) ( ) 1h t h t t− = > − , so the required calculation is less than 
the original QPA* algorithm.  
   When ( )h t t=  is an absolute deadline, and 
max{ | }i id d t<  is not a missed deadline, then 

( 1) ( ) ,m m
i it h t h d d← − = ≤ where max{ | }m

i i id d d t= < , 
hence this is equivalent to the original algorithm.  
   When ( )h t t=  is a deadline, and m

id  is a missed 
deadline, then ( 1) ( )m

it h t h d← − = , and ( ) ( )m
ih t t h d= = ,  

then we have 1 ( 1)t h t− < − , so 3 ( )h t  calculations 
required compared only 2 with the previous 

max{ | }i it d d t← < .   □ 
 
   Since the situation described in Theorem 12 happens 
rarely, the optimized QPA* with Theorem 10 can decrease 
the required calculations for the vast majority of 
unschedulable systems and all schedulable systems, and at 
most one more ( )h t  calculation is required by a 
unschedulable system in a particular case. 
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