

Sensitivity Analysis of the Minimum Task Period for

Arbitrary Deadline Real-Time Systems

 Fengxiang Zhang Alan Burns Sanjoy Baruah
 Department of Computer Science Department of Computer Science Department of Computer Science
 Southwest University University of York University of North Carolina
 Chongqing, China York, UK at Chapel Hill
 zhangfx@ieee.org burns@york.ac.uk North Carolina, USA

 baruah@cs.unc.edu

Abstract—The most important character of real-time systems
is that they have stringent timing deadlines that must be
guaranteed. A hard real-time system is required to complete its
operations before all its timing deadlines. For a given task set,
it is useful in an engineering context to know what changes to
period can be made to a task that will deliver a schedulable
system. In this paper, we develop the sensitivity analysis of task
period for EDF scheduled systems on a uniprocessor. We prove
that a minimum task period can be determined by a single
pass of the QPA algorithm; an improved scheme is presented
by using different initial values of the period. The approaches
developed for sensitivity analysis of task period are therefore
as efficient as QPA, and are easily incorporated into a system
design support tool.

Keywords: real-time and embedded systems; system design
and control; performance and reliability

1. INTRODUCTION

 The correctness of a real-time system depends on not
only the system's output but also on the time at which results
are produced. Typically, in the initial design of a real-time
system, the application is decomposed into a set of tasks
which are assigned the minimum interarrival times (periods)
with the worst-case execution time budgets. Unfortunately,
it is often the case that periods or execution times of tasks
exceed their initial budgets, leading to an unschedulable
system. Similarly, with an operational system, it may be
necessary to add enhancements which cause the periods of
certain tasks to decrease or new tasks to be added. Also
performance issues may require task periods to be reduced.

The system developer has to determine if code optimi-
zation is needed and to focus effort on those tasks where it
will have the most benefit in terms of obtaining a schedul-
able system. Focused code optimization and reduction can
be achieved by performing sensitivity analysis on tasks’
timing characteristics.
 Sensitivity analysis is very useful to the design and de-
velopment of real-time systems. Reducing task period can
result in more precise control performance. Changes, re-

ductions or additions, are usually applied to a specific task.
A typical query for an unschedulable system is which task
requires the smallest increase in period to deliver a sche-
dulable system.
 Most attempts to apply sensitivity analysis (see Section 4
for details) have concentrated on fixed priority preemptive
scheduling and have used a simple branch and bound (bi-
nary search) algorithm to iterate down on the borderline
values of the parameters that deliver breakdown schedula-
bility. By breakdown schedulability we mean that any fur-
ther change to a task’s characteristics (e.g. decreasing pe-
riod) will result in unschedulability. These search algo-
rithms are expensive to execute as they require the schedu-
lability test to be executed a large number of times as part of
the search.

In this paper, based on the initial work of [16] (ICCSIT),
we develop sensitivity analysis of the optimal (minimum)
task period for systems scheduled by EDF (earliest deadline
first) on a single processor. This paper has the following
significant improvements to the approach that was pro-
vided in [16]:

1) the infinitesimally small value is removed from
the task period computations, hence, the calculated
result is optimal.

2) this paper addresses the problem when the total uti-
lization of the task set is 1, therefore, more efficient
start values for the task period computations are
presented.

According to the EDF scheduling algorithm, at any time,
preemption is allowed; an arrived job with an earlier abso-
lute deadline can preempt the execution of a job with a later
absolute deadline. When a job completes its execution, the
system chooses the pending job with the earliest absolute
deadline to execute. The EDF algorithm is most widely
studied dynamic priority scheduling policy for real-time
systems, and it has been proved by Dertouzos [3] to be
optimal among all scheduling algorithm on a uniprocessor.
In the sense that if a real-time task set cannot be scheduled
by EDF, then this task set cannot be scheduled by any al-

2010 Pacific Rim International Symposium on Dependable Computing

978-0-7695-4289-8/10 $26.00 © 2010 IEEE

DOI 10.1109/PRDC.2010.16

101

gorithm.
The QPA algorithm is described in Section 3 have al-

lowed, efficient sensitivity analysis for task parameter to be
undertaken for arbitrary relative deadline systems. In addi-
tion, we derive algorithms that directly deliver the border-
line parameter values, no form of search or iteration is re-
quired. The methods are therefore very efficient and can
easily be incorporated into a design support tool that allows
the real-time systems engineer to manage change.

2. SYSTEM MODEL

 A hard real-time system comprises a set of n inde-
pendent real-time tasks 1 2{ , ,..., }n , each task consists of
an infinite or finite stream of jobs or requests which must be
completed before their deadlines. Let i indicate any given
task of the system. Each task can be periodic or sporadic.

Periodic tasks. All jobs of a periodic task i have a
regular interarrival time iT , we call iT the period of the
periodic task i . If a job for a periodic task i arrives at
time t , then the next job of task i must arrive at it T .

Sporadic tasks. The jobs of a sporadic task i arrive
irregularly, but they have a minimum interarrival time iT ,
we call iT the period of the sporadic task i . If a job of a
sporadic task i arrives at t , then the next job of task i
can arrive at any time at or after 1t T .

Each job of task i requires up to the same worst-case
execution time which equals the task i ’s worst-case ex-
ecution (computation) time iC , where 0iC , and each
job of task i has the same relative deadline which equals
the i ’s relative deadline iD ; iD could be less than,
equal to, or greater than iT . If a job of task i arrives at
time t , the required worst-case execution time iC must be
completed within iD time units, and the absolute deadline
of this job is i id t D .
 Let { , , }x x x xC D T be the task which needs to be add-
ed to an existing task set, or be the task which has its pa-
rameters changed as part of sensitivity analysis. We define
the other tasks in the system to be 1 2 1, ,..., n . Hence the
additional task, x could also be denoted as n , however,
we retain the notation x to indicate it is the task that has
an unknown parameter. We assume that in the absence of

x , the other tasks are schedulable, or else it is impossible
to make the task set schedulable by only changing x ’s
period.

Let iU be the utilization of task i (/i i iU C T), and
define U to be the total utilization of the task set, com-
puted by

1

n

ii
U U

 .

 The organization of the rest of the paper is as follows.
Section 3 introduces the exact schedulability analysis for
EDF systems which will be used in our sensitivity analysis.
Section 4 describes some literature related to sensitivity
analysis. Section 5 presents our sensitivity analysis ap-
proaches to the task parameter calculation. In Section 6, we
give the analysis to finding the minimum xT for task. The

conclusions are given in Section 7.

3. EXACT SCHEDULABILITY ANALYSIS

 This section describes the previous research results on
exact schedulability analysis for EDF scheduling with ar-
bitrary relative deadlines (i.e. iD unrelated to iT). In 1980,
Leung and Merrill [7] noted that a set of periodic tasks is
schedulable if and only if all absolute deadlines in the period
[0,max{ } 2]is H are met, where is is the start time of
task i , min{ } 0is , and H is the least common mul-
tiple of the task periods. In 1990, Baruah et al. [1] extended
this condition for sporadic task systems, and showed that
the task set is schedulable if and only if: 0t , ()h t t ,
where ()h t is the processor demand function given by:

1

() max{0,1 }
n

i
i

i i

t D
h t C

T

 . (1)

 Using the above necessary and sufficient schedulability
test, the value of t can be bounded by a certain value.

Theorem 1 [15] An arbitrary deadline task set is sche-
dulable if and only if 1U and

*
at L , ()h t t ,

where

 1
1 1

*
()

max{(),..., (), }
1

n

i i i
i

a n n

T D U
L D T D T

U

　 . (2)

As the processor demand function can only change at
the absolute deadlines of the tasks, only the absolute dead-
lines require to be checked in an upper bound interval.

In 1996, Spuri [11] and Ripoll et al [10] derived another
upper bound for the time interval which guarantees we can
find an overflow if the task set is not schedulable. This
interval is called the synchronous busy period (the length of
the first processor busy period of the synchronous task ar-
rival pattern). However, Ripoll et al. [10] only considered
the situation where i iD T .

The length of the synchronous busy period bL can be
computed by the following process [10, 11]:

 0

1

n

i
i

w C

 , (3)

 1

1

mn
m

i
i i

w
w C

T

 , (4)

the recurrence stops when 1m mw w , and then 1m
bL w .

A. Quick Processor-demand Analysis

 In a given interval (e.g. between 0 and *
aL　), there can be

a very large number of absolute deadlines that need to be
checked. This level of computation has been a serious dis-

102

incentive to the adoption of EDF scheduling in practice. A
new much less computation-intensive (but still exact) test
known as Quick convergence Processor-demand Analysis
(QPA) has been proposed [15].

Let L be upper bound for the schedulability analy-
sis(i.e. *

aL　 or bL). Define a failure point to be any time
t satisfying ()h t t . QPA works by starting with a value
of t close to L and then iterating back through a simple
expression toward 0 or the largest failure point in (0,)L . It
jumps over deadlines that can safely be ignored and hence
only a small number of points are checked. For example, a
16 task system that in the previous analysis had to check
858,331 points (deadlines) can, with QPA, be checked at
just 12 points. The efficiency of QPA was determined by an
extensive set of experiments [14, 15].
 Let id be an absolute deadline of a job for task i , then

i i id kT D for some ,k .k N The QPA test is given
by the following algorithm and theorem.

max{ | }i it d d L ;

while (mint d)

 {if (()h t t) ()t h t ;

 else if (()h t t) max{ | }i it d d t ;

 else break; // failure deadline is found

 }

if (mint d) the task set is unschedulable;

else the task set is schedulable;

Algorithm 1. QPA

Theorem 2 [15] An arbitrary deadline task set is sche-
dulable if and only if 1U , and the iterative result of Al-
gorithm 1 is mint d , where min 1min { }i n id D .

Property 1 [15] QPA is an iterative process to find the
largest failure deadline in a given time interval for unsche-
dulable task sets.

4. RELATED WORK

There are a number of papers that have concentrated on
sensitivity analysis for fixed priority scheduled systems,
and they have used a simple binary search algorithm to
iterate down on the optimal values of the parameters which
deliver breakdown schedulability. These search algorithms
are expensive to execute as they require the schedulability
test to be executed a large number of times as part of the
search.

The first work to address sensitivity analysis was Le-
hoczky [6] in 1989. He computed the critical scaling factor
as the largest possible decrease/increase in the execution
time of all tasks that would deliver a schedulable system that
was on the borderline of unschedulability. His work was for

fixed priority preemptive scheduling with rate monotonic
priority assignment.
 Improvements to Lehoczky’s analysis were made by
Katcher and Yerraballi [5, 13]: considering parameters oth-
er than execution time, producing better bounds [12], and
using exact response-time analysis [8]. These methods all
used binary search to identify the borderline parameter
values. Further improvements were introduced by Regehr [9]
and Bini et al. [2]. Tool sets aimed at fixed priority sche-
duling also incorporated sensitivity analysis – for example
the MAST tool suite [4]. Most of these approaches were
concerned fixed priority scheduling with uniprocessor sys-
tems.
 Zhang et al [16] presented an efficient sensitivity anal-
ysis of task period for EDF scheduled systems, however,
this analysis is sub-optimal and the calculated result cannot
get to the minimum. In Section 6, we will present the
minimum task period calculations for EDF systems with
arbitrary relative deadlines.

5. APPROACH TO SENSITIVITY ANALYSIS

 This section describes our approach to task period
computations [16]. The essential idea of our sensitivity
analysis is to start with an unschedulable task set and use
QPA to test it, when a failure point is found, we change the
task period at this point and let the iterative process con-
tinue. We prove that whenever a task period is increased at
time t , values greater than t need not to be reassessed;
the algorithm can continue from t towards 0.
 Let 0d be a missed deadline found by QPA. From
Property 1, 0d is the largest failure deadline, hence there
is no failed point in the interval 0[(),)h d L .

Lemma 1 [16] After the value of xT is increased, there is
no failure point in 0[(),]h d L .

Property 2 [17] Any t in the interval 0 0[, ())d h d is
also a failure point before the parameter change.

0d 0)(h d L0t
Figure 1. Task parameter change at 0d

 From Lemma 1, after the increase of xT , we still have
no failed point in the interval 0[(),)h d L , as shown in Fig-
ure 1.
 From Lemma 1 and Property 2, when a failure deadline

0d is found, we only need to concentrate on the interval

0 0[, ())d h d . If there is no failure point in 0 0[, ())d h d after
the parameter change, then there is also no failure point in
the interval 0[,]d L .

103

 Let *L　 be the new upper bound after the parameter
change, as *L　 is always less than or equal to the initial
value of L , the interval 0[,]d L is also safe and need not
be rechecked.
 As any t in the interval 0 0[, ())d h d is a failure point,
we need to increase xT , to make sure there is no failure in
this time interval. Hence in 0 0[, ())d h d , we have to find
the maximum required xT so that for any 0t d ,

()h t t . In the following section, we will address this is-
sue.

6. MINIMUM PERIOD CALCULATION

 This section discuss the situation when the value of xC
and xD are given, we need to compute the minimum
value of xT to keep the task set schedulable. This means
task x ’s period can be optimally decreased to a certain
value xT while the task set is still schedulable, and if xT
is further decreased by any infinitesimally small value,
then the task set becomes unschedulable.
 When a missed deadline 0d is found with an initial

xT ’s value, following the discussions of Section 5, we need
to calculate the maximum required xT in 0 0[, ())d h d to
make sure there is no failure point in this interval. Then t
continues iterating back from 0d .

Theorem 3 [16] Let be an infinitesimally small value,

0d be a failure deadline found by QPA, and

1
0

1

max{0, }
n

i i
i

i i

d T D
M C

T

 ;

define 0min{ | }xt t t kC M t d , where k N .
 When xM D , then there will be no failure deadline
in the interval 0 0[, ())d h d if and only if

 () /x x
x

t M
T t D

C

. (5)

 When xM D , there will be no failure deadline in

0 0[, ())d h d if and only if

 0
0

()
(()) /x x

x

h d M
T h d D

C

. (6)

 Theorem 3 provides an approach to recalculate the task
period when a failure deadline is found by the QPA algo-
rithm. However, the calculation is sub-optimal, this means
the computed task period is not the minimum, and how
close is the value of xT to the minimum depends on the
value selection of . In the remainder this section, we
show that the infinitesimally small value can be re-
moved from the algorithm for the xT calculations.

Lemma 2 If 1 0
x

t M

C

,

then it is impossible to add such a task x to let the task set
be schedulable.

Proof. 1 0
x

t M

C

 xt M C

 0xC M t d (7)

 Since tasks 1 2 1, ,..., n are schedulable, and 0d is a
failure point when task x is accounted, there must be at
least one xC included in 0()h d , and we have

0() xh d M C , from inequality (7), 0 0() xh d M C d .
□

Lemma 3 When it is possible to add task x to let the
task set be schedulable, then

0

lim () /x
x

t M
t D

C

 () / 1x
x

t M
t D

C

.

Proof. Since 0
x

x

d M
t C M

C

 0

x x

d Mt M
k N

C C

, therefore

 () /x
x

t M
t D

C

 () /x
x x

t M
t D

C C

 () / 1x
x

t M
t D

C

.

Then
0

lim () / 1x

x

t M
t D

C

104

0

lim () / 1 / 1x
x x

t M t M
t D

C C

.

From Lemma 3, 1
x

t M

C
 , then we have 2 xt M C ,

and 2
x

t M

C
 , therefore

0

lim () / 1 / 1x
x x

t M t M
t D

C C

 () / 1x
x

t M
t D

C

. □

Lemma 4 If 0()
1 0

x

h d M

C

 ,

then it is impossible to add such a task x to let the task set
be schedulable.

Proof. 0()
1

x

h d M

C

 0() xh d M C

 0 0()xM C h d d . (8)

 Since 0M d , and 0d is a failure point when x is
included, then 0 xd D , and at least one xC must be
counted in 0()h d , we have 0() xh d M C , from inequa-
lity (8), 0 0() xh d M C d . □

Lemma 5 When it is possible to add task x to let the
task set be schedulable, then

 0
0

0

()
lim (()) /x

x

h d M
h d D

C

 0
0

()
(()) / 1x

x

h d M
h d D

C

.

Proof. Since 0() xh d M kC , then

 0
0

()
(()) /x

x

h d M
h d D

C

 0
0

()
(()) /x

x x

h d M
h d D

C C

 0
0

()
(()) / 1x

x

h d M
h d D

C

.

Since 0() xh d kC M , we have 0()
1

x

h d M

C

 . From

Lemma , 0()
1

x

h d M

C

 , then 0() 2 xh d M C , and

0()
2

x

h d M

C

 , therefore

 0
0

0

()
lim (()) /x

x

h d M
h d D

C

0 0

0
0

() ()
lim (()) / 1 / 1x

x x

h d M h d M
h d D

C C

0
0

()
(()) / 1x

x

h d M
h d D

C

. □

 From Lemma 3 and Lemma 5, then Theorem 3 for the

xT computation can be changed to Theorem 4.

Theorem 4 Let 0d be a failure deadline found by QPA,

and

1

0

1

max{0, }
n

i i
i

i i

d T D
M C

T

 ;

define 0min{ | }xt t t kC M t d , where k N .
 When xM D , there will be no failure deadline in the
interval 0 0[, ())d h d if and only if

 () / 1x x
x

t M
T t D

C

.

 When xM D , there will be no failure deadline in

0 0[, ())d h d if and only if

0
0

()
(()) / 1x x

x

h d M
T h d D

C

.

Proof. From Lemma 3 and equation (5):

() /x x
x

t M
T t D

C

105

 () /x x
x

t M
T t D

C

 () / 1x x
x

t M
T t D

C

.

From Lemma 5 and equation (6):

0
0

()
(()) /x x

x

h d M
T h d D

C

 0
0

()
(()) /x x

x

h d M
T h d D

C

 0
0

()
(()) / 1x x

x

h d M
T h d D

C

.

Then the conclusion can be obtained from Theorem 3. □

 At the beginning of the sensitivity analysis, we can
decrease the task period to the minimum so that 1U .
However, when the total utilization of the task set is equal
to 1, the upper bound *

aL　 is undefined (divide by 0), and
the bL is the least common multiple of all task periods,
thus it could become very large. A more efficient approach
is to let xT be decreased so that 1U at the start of
the computations, where is a very small given value
(e.g. 0.02), hence, the total utilization is very close to
1, then the initial value

1

1

/ (1)
n

i
x x

i i

C
T C

T

 .

If a failure is found with this initial value, then the task
period parameter change is optimal (i.e. the minimum xT
is calculated).

If no missed deadline is found with this value, this
means xT is still not the minimum value, then we can
decrease the value of xT , and start the iteration again with
an initial value so that the total utilization is more closer to
1 (e.g. let 0.01). If there is still no failure deadline,
then further decrease the initial value with 1U .

0.98 ; 0find ;

again:
1

1

/ (1)
n

i
x x

i i

C
T C

T

 ; (9)

max{ | }i i bt d d L ;

while (mint d)

 { if (()h t t) ()t h t ;

 else if (()h t t) max{ | }i it d d t ;

 else //recalculate the period

 { if (xM D)

 { 1 x
x

t M
t C M

C

;

 if (1 0
x

t M

C
)

 { () / 1x x
x

t M
T t D

C

; (10)

 1find ; }

 else return it is impossible to add such task;

 }

 else

 {if (
()

1 0
x

h t M

C

)

 {
()

(()) / 1x x
x

h t M
T h t D

C

; (11)

 1find ; }

 else return it is impossible to add such task;

 }

 }

 }

if (1 0find)

//iterate again with a smaller xT initial value

{ 0.01 ;

 goto again;

}

Algorithm 2. Minimum xT calculation

In the algorithm, we can set a variable ‘find’ to indicate
if there is a missed deadline to be found. Since *

aL is not
monotonic decreasing when xT is increased, we use bL
as the upper bound for the initial value of t .

According to Theorem 4, Lemma 2 and Lemma 4, the
minimum xT calculation is given by Algorithm 2.

106

A. Illustrative Example

This section gives two examples to illustrate the work of
Algorithm 2. The first example comprises 4 tasks, and the
existing task set comprises 3 tasks, their parameters an task

x ’s execution time and relative deadline are as follows.

Example 1.

Task
Execution

Time
Relative
Deadline

Period

1 2 12 11

2 34 86 89

3 65 196 312

x 26 128 ?

The minimum xT is calculated by the following.

1. Calculate the initial value of xT by equation (9) (
=0.02), 125.104652xT .

2. Calculate the upper bound by equations (3)(4),
610bL . Hence max{ | } 606i i bd d L .

3. Then start the QPA iteration:
1) t 606, ()h t 548;
2) t 548, ()h t 536;
3) t 536, ()h t 534;
4) t 534, ()h t 534;
5) t 531, ()h t 534;
As 430 xM D , recalculate xT by equation (10),

135.333328xT .
6) t 531, ()h t 508;
7) t 508, ()h t 470;
8) t 470, ()h t 397;
9) t 397, ()h t 325;
10) t 325, ()h t 277;
11) t 277, ()h t 269;
12) t 26, ()h t 267;
13) t 267, ()h t 267;
14) t 265, ()h t 267;
As 215 xM D , recalculate xT by equation (10),

139.000000xT .
15) t 265, ()h t 241;
16) t 241, ()h t 201;
17) t 201, ()h t 195;
18) t 195, ()h t 128;
19) t 128, ()h t 82;
20) t 82, ()h t 14;
21) t 14, ()h t 2;

As min2t d , where min 12d , the iteration stops.
 Since a failure deadline is found during the iteration, the
minimum value is given by 139xT .

Example 2.

Task
Execution

Time
Relative
Deadline

Period

1 4 11 16

2 5 16 20

3 8 26 40

x 3 14 ?

The minimum xT is calculated by the following.

1. Calculate the initial value of xT by equation (9) (
=0.02), 10.714285xT .

2. Calculate the upper bound by equations (3)(4), 80bL .
max{ | } 78.285706i i bd d L .

3. Then start the QPA iteration:
1) t 78.285706 , ()h t 74;
2) t 74, ()h t 65;
3) t 65, ()h t 54;
4) t 54, ()h t 42;
5) t 42, ()h t 35;
6) t 35, ()h t 27;
7) t 27, ()h t 27;
8) t 26, ()h t 23;
9) t 23, ()h t 12;
10) t 12, ()h t 4;

Since there is no failure deadline found during the iteration,
start the iteration again with 0.01 :

1. Calculate the initial value of xT by equation (9) (
=0.01), 10.344827xT .

2. Calculate the upper bound by equations (3)(4), 80bL .
max{ | } 76.068962i i bd d L .

3. Then start the QPA iteration:
1) t 76.068962 , ()h t 77;
As 56 xM D , recalculate xT by equation (10),

10.5xT .
2) t 76.068962 , ()h t 74;
3) t 74, ()h t 65;
4) t 65, ()h t 54;
5) t 54, ()h t 420;
6) t 42, ()h t 35;
7) t 35, ()h t 30;
8) t 30, ()h t 27;
9) t 27, ()h t 27;
10) t 26, ()h t 23;
11) t 23, ()h t 12;
12) t 12, ()h t 4;

 Since a failure deadline is found during this iteration, the
optimal xT ’ value is 10.5.

7. CONCLUSION

 In the design and implementation of a real-time system,
it is useful to identify the conditions necessary for a given

107

set of tasks to meet all their timing deadlines when executed
on a specified hardware platform. It is often the case that we
need to know what is the minimum period of a task that will
result in a system that is borderline schedulable.

In this paper, we proved that the minimum task period
can be recalculated when a failure deadline is found during
the QPA iteration. We addressed the problem when the task
set’s utilization is equal to 1, therefore, the implementation
of sensitivity analysis can be improved by using different
initial values of task period which are determined by .
There is no restriction on the task parameters, and there is
no additional search or iterations required by the computa-
tions, hence the approaches are as efficient as QPA, and they
can easily be incorporated into a design support tool.
 As a future work, we will investigate the most suitable
values of by extensive simulations.

ACKNOWLEDGMENT

This work is supported by Natural Science Foundation
Project of Chongqing (project No. CSTC,2010BB2010)
and Science Research Foundation of Southwest University
(project No. SWU110006).

REFERENCES

[1] S.K. Baruah, A.K. Mok, and L.E. Rosier. Preemptively Sche-
duling Hard-Real-Time Sporadic Tasks on One Processor. Pro-
ceedings 11th IEEE Real-Time System Symposium, pp.182-190,
1990.
[2] E. Bini, M. Natale, and G. Buttazzo. Sensitivity Analysis for
Fixed-Priority Real-Time Systems. In Proceedings 18th Euromi-
cro Conference on Real-Time Systems, pp.13-22, 2006.
[3] M.L. Dertouzos. Control Robotics: The Procedural Control of
Physical Processes. Proceedings of the IFIP Congress, pp.807-813,
1974.
[4] M. Harbour, J. Garcia, J. Gutierrez, and J. Moyano. MAST:
Modeling and Analysis Suite for Real-Time Applications. In Pro-
ceedings of Euromicro Conference on Real-Time Systems, 2001.
[5] D. Katcher, H. Arakawa, and J. Strosnider. Engineering and
Analysis of Fixed Priority Schedulers. Software Engineering
Journal, 19(9):920-934, 1993.
[6] J. Lehoczky, L.Sha, and Y. Ding. The Rate Monotonic Sche-
duling Algorithm: Exact Characterization and Average Case Be-
havior. Proceedings of IEEE Real-Time Systems Symposium,
pp.166-171, 1989.
[7] J.Y.-T. Leung and M.L. Merrill. A Note on Preemptive Sche-
duling of Periodic, Real-Time Tasks. Information Processing
Letters, pp.115-118, 1980.
[8] S. Punnekkat, R. Davis, and A.Burns. Sensitivity Analysis of
Real-Time Task Sets. In: ASIAN, pp.72-82, 1997.
[9] J. Regehr. Scheduling Tasks with Mixed Preemption Relations
for Robustness to Timing Faults. In Proceedings IEEE Real-Time
Systems Symposium, 2002.
[10] I. Ripoll, A. Crespo, and A.K. Mok. Improvement in Feasi-

bility Testing for Real-Time Tasks. Journal of Real-Time Systems,
11(1):19-39, 1996.
[11] M. Spuri. Analysis of Deadline Scheduled Real-time Systems.
Technical Report 2772, INRIA, France, 1996.
[12] S. Vestal. Fixed-priority Sensitivity Analysis for Linear
Compute Time Models. IEEE Transactions on Software Engi-
neering, 20(4)1994.
[13] R. Yerraballi, R. Mukkamala, K. Maly, and H. Wahab. Issues
in Schedulability Analysis of Real-Time Systems. In Proceedings
of 7th Euromicro Workshop on Real-Time Systems, pp.87-92, 1993.
[14] F. Zhang and A. Burns. Schedulability Analysis for Real-Time
Systems with EDF Scheduling. Technical Report YCS-426-2008,
Dept. of Computer Science, University of York, UK, 2008.
[15] F. Zhang and A. Burns. Schedulability Analysis for Real-Time
Systems with EDF Scheduling. IEEE Transactions on Computers,
58(9):1250-1258, 2009.
[16] F. Zhang, A. Burns, and S. Baruah. Sensitivity Analysis of
Task Period for EDF Scheduled Arbitrary Deadline Real-Time
Systems. Proceedings 3rd IEEE International Conference on
Computer Science and Information Technology, (3), pp.23-28,
2010.
[17] F. Zhang, A. Burns, and S. Baruah. Sensitivity Analysis for
EDF Scheduled Arbitrary Deadline Real-Time Systems. Pro-
ceedings 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, in press, 2010.

108

