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Abstract—The most important character of real-time systems 
is that they have stringent timing deadlines that must be 
guaranteed. A hard real-time system is required to complete its 
operations before all its timing deadlines. For a given task set, 
it is useful in an engineering context to know what changes to 
period can be made to a task that will deliver a schedulable 
system. In this paper, we develop the sensitivity analysis of task 
period for EDF scheduled systems on a uniprocessor. We prove 
that a minimum task period can be determined by a single 
pass of the QPA algorithm; an improved scheme is presented 
by using different initial values of the period. The approaches 
developed for sensitivity analysis of task period are therefore 
as efficient as QPA, and are easily incorporated into a system 
design support tool. 

Keywords: real-time and embedded systems; system design 
and control; performance and reliability 

 
1. INTRODUCTION 

   The correctness of a real-time system depends on not 
only the system's output but also on the time at which results 
are produced. Typically, in the initial design of a real-time 
system, the application is decomposed into a set of tasks 
which are assigned the minimum interarrival times (periods) 
with the worst-case execution time budgets. Unfortunately, 
it is often the case that periods or execution times of tasks 
exceed their initial budgets, leading to an unschedulable 
system. Similarly, with an operational system, it may be 
necessary to add enhancements which cause the periods of 
certain tasks to decrease or new tasks to be added. Also 
performance issues may require task periods to be reduced.  

The system developer has to determine if code optimi-
zation is needed and to focus effort on those tasks where it 
will have the most benefit in terms of obtaining a schedul-
able system. Focused code optimization and reduction can 
be achieved by performing sensitivity analysis on tasks’ 
timing characteristics. 
   Sensitivity analysis is very useful to the design and de-
velopment of real-time systems. Reducing task period can 
result in more precise control performance. Changes, re-

ductions or additions, are usually applied to a specific task. 
A typical query for an unschedulable system is which task 
requires the smallest increase in period to deliver a sche-
dulable system.  
   Most attempts to apply sensitivity analysis (see Section 4 
for details) have concentrated on fixed priority preemptive 
scheduling and have used a simple branch and bound (bi-
nary search) algorithm to iterate down on the borderline 
values of the parameters that deliver breakdown schedula-
bility. By breakdown schedulability we mean that any fur-
ther change to a task’s characteristics (e.g. decreasing pe-
riod) will result in unschedulability. These search algo-
rithms are expensive to execute as they require the schedu-
lability test to be executed a large number of times as part of 
the search. 

In this paper, based on the initial work of [16] (ICCSIT), 
we develop sensitivity analysis of the optimal (minimum) 
task period for systems scheduled by EDF (earliest deadline 
first) on a single processor. This paper has the following 
significant improvements to the approach that was pro-
vided in [16]: 

1)  the infinitesimally small value   is removed from 
the task period computations, hence, the calculated 
result is optimal. 

2)  this paper addresses the problem when the total uti-
lization of the task set is 1, therefore, more efficient 
start values for the task period computations are 
presented. 

According to the EDF scheduling algorithm, at any time, 
preemption is allowed; an arrived job with an earlier abso-
lute deadline can preempt the execution of a job with a later 
absolute deadline. When a job completes its execution, the 
system chooses the pending job with the earliest absolute 
deadline to execute. The EDF algorithm is most widely 
studied dynamic priority scheduling policy for real-time 
systems, and it has been proved by Dertouzos [3] to be 
optimal among all scheduling algorithm on a uniprocessor. 
In the sense that if a real-time task set cannot be scheduled 
by EDF, then this task set cannot be scheduled by any al-
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gorithm. 
The QPA algorithm is described in Section 3 have al-

lowed, efficient sensitivity analysis for task parameter to be 
undertaken for arbitrary relative deadline systems. In addi-
tion, we derive algorithms that directly deliver the border-
line parameter values, no form of search or iteration is re-
quired. The methods are therefore very efficient and can 
easily be incorporated into a design support tool that allows 
the real-time systems engineer to manage change. 

 
2. SYSTEM MODEL 

   A hard real-time system comprises a set of n  inde-
pendent real-time tasks 1 2{ , ,..., }n   , each task consists of 
an infinite or finite stream of jobs or requests which must be 
completed before their deadlines. Let i  indicate any given 
task of the system. Each task can be periodic or sporadic. 

Periodic tasks.  All jobs of a periodic task i  have a 
regular interarrival time iT , we call iT  the period of the 
periodic task i . If a job for a periodic task i  arrives at 
time t , then the next job of task i  must arrive at it T .  

Sporadic tasks. The jobs of a sporadic task i  arrive 
irregularly, but they have a minimum interarrival time iT , 
we call iT  the period of the sporadic task i . If a job of a 
sporadic task i  arrives at t , then the next job of task i  
can arrive at any time at or after 1t T . 

Each job of task i  requires up to the same worst-case 
execution time which equals the task i ’s worst-case ex-
ecution (computation) time iC , where 0iC  , and each 
job of task i  has the same relative deadline which equals 
the i ’s relative deadline iD ; iD  could be less than, 
equal to, or greater than iT . If a job of task i  arrives at 
time t , the required worst-case execution time iC  must be 
completed within iD  time units, and the absolute deadline 
of this job is i id t D  .     
   Let { , , }x x x xC D T  be the task which needs to be add-
ed to an existing task set, or be the task which has its pa-
rameters changed as part of sensitivity analysis. We define 
the other tasks in the system to be 1 2 1, ,..., n    . Hence the 
additional task, x  could also be denoted as n , however, 
we retain the notation x  to indicate it is the task that has 
an unknown parameter. We assume that in the absence of 

x , the other tasks are schedulable, or else it is impossible 
to make the task set schedulable by only changing x ’s 
period. 

Let iU  be the utilization of task i  ( /i i iU C T ), and 
define U  to be the total utilization of the task set, com-
puted by 

1

n

ii
U U


  . 

   The organization of the rest of the paper is as follows. 
Section 3 introduces the exact schedulability analysis for 
EDF systems which will be used in our sensitivity analysis. 
Section 4 describes some literature related to sensitivity 
analysis. Section 5 presents our sensitivity analysis ap-
proaches to the task parameter calculation. In Section 6, we 
give the analysis to finding the minimum xT  for task. The 

conclusions are given in Section 7. 

 
3.  EXACT SCHEDULABILITY ANALYSIS 

   This section describes the previous research results on 
exact schedulability analysis for EDF scheduling with ar-
bitrary relative deadlines (i.e. iD  unrelated to iT ). In 1980, 
Leung and Merrill [7] noted that a set of periodic tasks is 
schedulable if and only if all absolute deadlines in the period 
[0,max{ } 2 ]is H  are met, where is  is the start time of 
task i , min{ } 0is  , and H  is the least common mul-
tiple of the task periods. In 1990, Baruah et al. [1] extended 
this condition for sporadic task systems, and showed that 
the task set is schedulable if and only if: 0t  , ( )h t t , 
where ( )h t  is the processor demand function given by: 

          
1

( ) max{0,1 }
n

i
i

i i

t D
h t C

T

 
   

 
 .        (1) 

   Using the above necessary and sufficient schedulability 
test, the value of t  can be bounded by a certain value. 

Theorem 1 [15]  An arbitrary deadline task set is sche-
dulable if and only if 1U   and 

*
at L  , ( )h t t , 

where 

    1
1 1

*
( )

max{( ),..., ( ), }
1

n

i i i
i

a n n

T D U
L D T D T

U



  




　 .   (2) 

As the processor demand function can only change at 
the absolute deadlines of the tasks, only the absolute dead-
lines require to be checked in an upper bound interval. 

In 1996, Spuri [11] and Ripoll et al [10] derived another 
upper bound for the time interval which guarantees we can 
find an overflow if the task set is not schedulable. This 
interval is called the synchronous busy period (the length of 
the first processor busy period of the synchronous task ar-
rival pattern). However, Ripoll et al. [10] only considered 
the situation where i iD T . 

The length of the synchronous busy period bL  can be 
computed by the following process [10, 11]: 

                0

1

n

i
i

w C


  ,                    (3) 

               1

1

mn
m

i
i i

w
w C

T




 
  

 
 ,                (4) 

the recurrence stops when 1m mw w  , and then 1m
bL w  . 

 
A. Quick Processor-demand Analysis 

   In a given interval (e.g. between 0 and *
aL　), there can be 

a very large number of absolute deadlines that need to be 
checked. This level of computation has been a serious dis-
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incentive to the adoption of EDF scheduling in practice. A 
new much less computation-intensive (but still exact) test 
known as Quick convergence Processor-demand Analysis 
(QPA) has been proposed [15].  

Let L  be upper bound for the schedulability analy-
sis(i.e. *

aL　 or bL ). Define a failure point to be any time 
t  satisfying ( )h t t . QPA works by starting with a value 
of t  close to L  and then iterating back through a simple 
expression toward 0 or the largest failure point in (0, )L . It 
jumps over deadlines that can safely be ignored and hence 
only a small number of points are checked. For example, a 
16 task system that in the previous analysis had to check 
858,331 points (deadlines) can, with QPA, be checked at 
just 12 points. The efficiency of QPA was determined by an 
extensive set of experiments [14, 15]. 
   Let id  be an absolute deadline of a job for task i , then 

i i id kT D   for some ,k  .k N  The QPA test is given 
by the following algorithm and theorem. 

max{ | }i it d d L  ; 

while ( mint d ) 

  {if ( ( )h t t )  ( )t h t ; 

   else if ( ( )h t t )  max{ | }i it d d t  ; 

  else  break;         // failure deadline is found

  } 

if ( mint d )  the task set is unschedulable; 

else  the task set is schedulable; 

Algorithm 1. QPA 
 
Theorem 2 [15]  An arbitrary deadline task set is sche-
dulable if and only if 1U  , and the iterative result of Al-
gorithm 1 is mint d , where min 1min { }i n id D  . 
 
Property 1 [15]  QPA is an iterative process to find the 
largest failure deadline in a given time interval for unsche-
dulable task sets. 

 
4.  RELATED WORK 

There are a number of papers that have concentrated on 
sensitivity analysis for fixed priority scheduled systems, 
and they have used a simple binary search algorithm to 
iterate down on the optimal values of the parameters which 
deliver breakdown schedulability. These search algorithms 
are expensive to execute as they require the schedulability 
test to be executed a large number of times as part of the 
search. 

The first work to address sensitivity analysis was Le-
hoczky [6] in 1989. He computed the critical scaling factor 
as the largest possible decrease/increase in the execution 
time of all tasks that would deliver a schedulable system that 
was on the borderline of unschedulability. His work was for 

fixed priority preemptive scheduling with rate monotonic 
priority assignment.  
   Improvements to Lehoczky’s analysis were made by 
Katcher and Yerraballi [5, 13]: considering parameters oth-
er than execution time, producing better bounds [12], and 
using exact response-time analysis [8]. These methods all 
used binary search to identify the borderline parameter 
values. Further improvements were introduced by Regehr [9] 
and Bini et al. [2]. Tool sets aimed at fixed priority sche-
duling also incorporated sensitivity analysis – for example 
the MAST tool suite [4]. Most of these approaches were 
concerned fixed priority scheduling with uniprocessor sys-
tems.  
   Zhang et al [16] presented an efficient sensitivity anal-
ysis of task period for EDF scheduled systems, however, 
this analysis is sub-optimal and the calculated result cannot 
get to the minimum. In Section 6, we will present the 
minimum task period calculations for EDF systems with 
arbitrary relative deadlines. 

 
5. APPROACH TO SENSITIVITY ANALYSIS 

   This section describes our approach to task period 
computations [16]. The essential idea of our sensitivity 
analysis is to start with an unschedulable task set and use 
QPA to test it, when a failure point is found, we change the 
task period at this point and let the iterative process con-
tinue. We prove that whenever a task period is increased at 
time t , values greater than t  need not to be reassessed; 
the algorithm can continue from t  towards 0. 
   Let 0d  be a missed deadline found by QPA. From 
Property 1, 0d  is the largest failure deadline, hence there 
is no failed point in the interval 0[ ( ), )h d L . 
 
Lemma 1 [16]  After the value of xT  is increased, there is 
no failure point in 0[ ( ), ]h d L . 
 
Property 2 [17]  Any t  in the interval 0 0[ , ( ))d h d  is 
also a failure point before the parameter change. 
 

0d 0 )(h d L0t   
Figure 1. Task parameter change at 0d  

 
   From Lemma 1, after the increase of xT , we still have 
no failed point in the interval 0[ ( ), )h d L , as shown in Fig-
ure 1. 
   From Lemma 1 and Property 2, when a failure deadline 

0d  is found, we only need to concentrate on the interval 

0 0[ , ( ))d h d . If there is no failure point in 0 0[ , ( ))d h d  after 
the parameter change, then there is also no failure point in 
the interval 0[ , ]d L . 
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   Let *L　 be the new upper bound after the parameter 
change, as *L　 is always less than or equal to the initial 
value of L , the interval 0[ , ]d L  is also safe and need not 
be rechecked. 
   As any t  in the interval 0 0[ , ( ))d h d  is a failure point, 
we need to increase xT , to make sure there is no failure in 
this time interval. Hence in 0 0[ , ( ))d h d , we have to find 
the maximum required xT  so that for any 0t d , 

( )h t t . In the following section, we will address this is-
sue. 

 
6.  MINIMUM PERIOD CALCULATION 

   This section discuss the situation when the value of xC  
and xD  are given, we need to compute the minimum 
value of xT  to keep the task set schedulable. This means 
task x ’s period can be optimally decreased to a certain 
value xT  while the task set is still schedulable, and if xT  
is further decreased by any infinitesimally small value, 
then the task set becomes unschedulable. 
   When a missed deadline 0d  is found with an initial 

xT ’s value, following the discussions of Section 5, we need 
to calculate the maximum required xT  in 0 0[ , ( ))d h d  to 
make sure there is no failure point in this interval. Then t  
continues iterating back from 0d . 

Theorem 3 [16]  Let   be an infinitesimally small value, 

0d  be a failure deadline found by QPA, and                   

 

1
0

1

max{0, }
n

i i
i

i i

d T D
M C

T





  
  

 
 ; 

define 0min{ | }xt t t kC M t d      , where k N . 
   When xM D , then there will be no failure deadline 
in the interval 0 0[ , ( ))d h d  if and only if 

           ( ) /x x
x

t M
T t D

C






  

    
 

.      (5) 

   When xM D , there will be no failure deadline in 

0 0[ , ( ))d h d  if and only if 

        0
0

( )
( ( ) ) /x x

x

h d M
T h d D

C




  
    

 
.   (6) 

   Theorem 3 provides an approach to recalculate the task 
period when a failure deadline is found by the QPA algo-
rithm. However, the calculation is sub-optimal, this means 
the computed task period is not the minimum, and how 
close is the value of xT  to the minimum depends on the 
value selection of  . In the remainder this section, we 
show that the infinitesimally small value   can be re-
moved from the algorithm for the xT  calculations. 
 

Lemma 2  If 1 0
x

t M

C
 

  
 

, 

then it is impossible to add such a task x  to let the task set 
be schedulable. 

Proof.  1 0
x

t M

C
 

  
 

  

     xt M C     

     0xC M t d                       (7) 

   Since tasks 1 2 1, ,..., n     are schedulable, and 0d  is a 
failure point when task x  is accounted, there must be at 
least one xC  included in 0( )h d , and we have 

0( ) xh d M C  , from inequality (7), 0 0( ) xh d M C d   .   
□ 
 
Lemma 3  When it is possible to add task x  to let the 
task set be schedulable, then 

        
0

lim ( ) /x
x

t M
t D

C






 



   
       

     

        ( ) / 1x
x

t M
t D

C




 
   

 
. 

Proof.  Since 0
x

x

d M
t C M

C

 
  
 

   

  0

x x

d Mt M
k N

C C
  

   
 

, therefore 

        ( ) /x
x

t M
t D

C





 
  

   
 

 

      ( ) /x
x x

t M
t D

C C



 

 
     

 
 

      ( ) / 1x
x

t M
t D

C


  
 

     
 

. 

Then 
0

lim ( ) / 1x

x

t M
t D

C
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0

lim ( ) / 1 / 1x
x x

t M t M
t D

C C
 




 


    
        

   
. 

From Lemma 3, 1
x

t M

C
   , then we have 2 xt M C   , 

and 2
x

t M

C
   , therefore 

   
0

lim ( ) / 1 / 1x
x x

t M t M
t D

C C
 




 


    
       

   
 

  ( ) / 1x
x

t M
t D

C




 
   

 
.    □ 

 

Lemma 4   If 0( )
1 0

x

h d M

C


  ,  

then it is impossible to add such a task x  to let the task set 
be schedulable. 

Proof.  0( )
1

x

h d M

C


    0( ) xh d M C    

  0 0( )xM C h d d   .                   (8) 

   Since 0M d , and 0d  is a failure point when x  is 
included, then 0 xd D , and at least one xC  must be 
counted in 0( )h d , we have 0( ) xh d M C  , from inequa-
lity (8), 0 0( ) xh d M C d   .   □ 
 
Lemma 5  When it is possible to add task x  to let the 
task set be schedulable, then 

      0
0

0

( )
lim ( ( ) ) /x

x

h d M
h d D

C


 



   
       

 

      0
0

( )
( ( ) ) / 1x

x

h d M
h d D

C

 
   

 
. 

Proof.  Since 0( ) xh d M kC  , then 

       0
0

( )
( ( ) ) /x

x

h d M
h d D

C


 

  
   

 
 

     0
0

( )
( ( ) ) /x

x x

h d M
h d D

C C

 
 

     
 

 

     0
0

( )
( ( ) ) / 1x

x

h d M
h d D

C
 

 
     

 
. 

Since 0( ) xh d kC M  , we have 0( )
1

x

h d M

C


 . From  

Lemma , 0( )
1

x

h d M

C


 , then 0( ) 2 xh d M C  , and 

0( )
2

x

h d M

C


 , therefore 

    0
0

0

( )
lim ( ( ) ) /x

x

h d M
h d D

C


 



   
       

 

   

0 0

0
0

( ) ( )
lim ( ( ) ) / 1 / 1x

x x

h d M h d M
h d D

C C
 



 
     

    
    

    

  

0
0

( )
( ( ) ) / 1x

x

h d M
h d D

C

 
   

 
.    □ 

   From Lemma 3 and Lemma 5, then Theorem 3 for the 

xT  computation can be changed to Theorem 4. 
 
Theorem 4  Let 0d  be a failure deadline found by QPA, 

and                      

          
1

0

1

max{0, }
n

i i
i

i i

d T D
M C

T





  
  

 
 ; 

define 0min{ | }xt t t kC M t d      , where k N .  
   When xM D , there will be no failure deadline in the 
interval 0 0[ , ( ))d h d  if and only if 

            ( ) / 1x x
x

t M
T t D

C




 
   

 
. 

   When xM D , there will be no failure deadline in 

0 0[ , ( ))d h d  if and only if 

0
0

( )
( ( ) ) / 1x x

x

h d M
T h d D

C

 
   

 
. 

Proof.  From Lemma 3 and equation (5): 

    

( ) /x x
x

t M
T t D

C
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x
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T t D
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   ( ) / 1x x
x

t M
T t D

C




 
   

 
. 

From Lemma 5 and equation (6): 

    

0
0

( )
( ( ) ) /x x

x

h d M
T h d D

C




  
    

 
 

  0
0

( )
( ( ) ) /x x

x

h d M
T h d D

C


 

  
    

 
 

  0
0

( )
( ( ) ) / 1x x

x

h d M
T h d D

C

 
   

 
. 

Then the conclusion can be obtained from Theorem 3.  □ 

 
   At the beginning of the sensitivity analysis, we can 
decrease the task period to the minimum so that 1U  . 
However, when the total utilization of the task set is equal 
to 1, the upper bound *

aL　 is undefined (divide by 0), and 
the bL  is the least common multiple of all task periods, 
thus it could become very large. A more efficient approach 
is to let xT  be decreased so that 1U     at the start of 
the computations, where   is a very small given value 
(e.g. 0.02  ), hence, the total utilization is very close to 
1, then the initial value 

              
1

1

/ (1 )
n

i
x x

i i

C
T C

T





    .              

If a failure is found with this initial value, then the task 
period parameter change is optimal (i.e. the minimum xT  
is calculated). 

If no missed deadline is found with this value, this 
means xT  is still not the minimum value, then we can 
decrease the value of xT , and start the iteration again with 
an initial value so that the total utilization is more closer to 
1 (e.g. let 0.01  ). If there is still no failure deadline, 
then further decrease the initial value with 1U  . 

 
 

0.98 ; 0find  ; 

again: 
1

1

/ (1 )
n

i
x x

i i

C
T C

T





    ;                       (9) 

max{ | }i i bt d d L  ; 

while ( mint d ) 

  { if ( ( )h t t ) ( )t h t ; 

    else if ( ( )h t t ) max{ | }i it d d t  ; 

   else                   //recalculate the period 

 { if ( xM D ) 

    { 1 x
x

t M
t C M

C 
  

      
; 

          if ( 1 0
x

t M

C
    ) 

            { ( ) / 1x x
x

t M
T t D

C



 

  
 

;     (10) 

            1find  ; } 

          else  return it is impossible to add such task; 

         } 

      else 

        {if (
( )

1 0
x

h t M

C


  )     

            {
( )

( ( ) ) / 1x x
x

h t M
T h t D

C


 
  

 
;   (11) 

             1find  ; } 

         else  return it is impossible to add such task; 

        } 

     } 

  } 

if ( 1 0find    )  

//iterate again with a smaller xT  initial value 

{ 0.01   ;   

 goto again; 

} 

Algorithm 2. Minimum xT  calculation 
 

In the algorithm, we can set a variable ‘find’ to indicate 
if there is a missed deadline to be found. Since *

aL  is not 
monotonic decreasing when xT  is increased, we use bL  
as the upper bound for the initial value of t . 

According to Theorem 4, Lemma 2 and Lemma 4, the 
minimum xT  calculation is given by Algorithm 2. 
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A. Illustrative Example 

This section gives two examples to illustrate the work of 
Algorithm 2. The first example comprises 4 tasks, and the 
existing task set comprises 3 tasks, their parameters an task 

x ’s execution time and relative deadline are as follows. 
 
Example 1. 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1  2 12 11 

2  34 86 89 

3  65 196 312 

x  26 128 ? 
 
The minimum xT  is calculated by the following. 

1. Calculate the initial value of xT  by equation (9) ( 
=0.02), 125.104652xT  . 

2. Calculate the upper bound by equations (3)(4), 
610bL  . Hence max{ | } 606i i bd d L  . 

3. Then start the QPA iteration: 
1)  t  606, ( )h t  548; 
2)  t  548, ( )h t  536; 
3)  t  536, ( )h t  534; 
4)  t  534, ( )h t  534; 
5)  t  531, ( )h t  534; 
As 430 xM D  , recalculate xT  by equation (10), 

135.333328xT  . 
6)   t  531, ( )h t  508; 
7)   t  508, ( )h t  470; 
8)   t  470, ( )h t  397; 
9)   t  397, ( )h t  325; 
10)   t  325, ( )h t  277; 
11)   t  277, ( )h t  269; 
12)   t  26, ( )h t  267; 
13)   t  267, ( )h t  267; 
14)   t  265, ( )h t  267; 
As 215 xM D  , recalculate xT  by equation (10), 

139.000000xT  . 
15)   t  265, ( )h t  241; 
16)   t  241, ( )h t  201; 
17)   t  201, ( )h t  195; 
18)   t  195, ( )h t  128; 
19)   t  128, ( )h t  82; 
20)   t  82, ( )h t  14; 
21)   t  14, ( )h t  2; 

As min2t d  , where min 12d  , the iteration stops. 
  Since a failure deadline is found during the iteration, the 
minimum value is given by 139xT  . 

 

Example 2. 

Task 
Execution 

Time  
Relative 
Deadline 

Period 

1  4 11 16 

2  5 16 20 

3  8 26 40 

x  3 14 ? 

The minimum xT  is calculated by the following. 

1. Calculate the initial value of xT  by equation (9) ( 
=0.02), 10.714285xT  . 

2. Calculate the upper bound by equations (3)(4), 80bL  . 
max{ | } 78.285706i i bd d L  . 

3. Then start the QPA iteration: 
1) t  78.285706 , ( )h t  74; 
2) t  74, ( )h t  65; 
3) t  65, ( )h t  54; 
4) t  54, ( )h t  42; 
5) t  42, ( )h t  35; 
6) t  35, ( )h t  27; 
7) t  27, ( )h t  27; 
8) t  26, ( )h t  23; 
9) t  23, ( )h t  12; 
10)   t  12, ( )h t  4; 

Since there is no failure deadline found during the iteration, 
start the iteration again with 0.01  : 

1. Calculate the initial value of xT  by equation (9) ( 
=0.01), 10.344827xT  . 

2. Calculate the upper bound by equations (3)(4), 80bL  . 
max{ | } 76.068962i i bd d L  . 

3. Then start the QPA iteration: 
1) t  76.068962 , ( )h t  77; 
As 56 xM D  , recalculate xT  by equation (10), 

10.5xT  . 
2) t  76.068962 , ( )h t  74; 
3) t  74, ( )h t  65; 
4) t  65, ( )h t  54; 
5) t  54, ( )h t  420; 
6) t  42, ( )h t  35; 
7) t  35, ( )h t  30; 
8) t  30, ( )h t  27; 
9) t  27, ( )h t  27; 
10)   t  26, ( )h t  23; 
11)   t  23, ( )h t  12; 
12)   t  12, ( )h t  4; 

  Since a failure deadline is found during this iteration, the 
optimal xT ’ value is 10.5. 

 
7.  CONCLUSION 

   In the design and implementation of a real-time system, 
it is useful to identify the conditions necessary for a given 
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set of tasks to meet all their timing deadlines when executed 
on a specified hardware platform. It is often the case that we 
need to know what is the minimum period of a task that will 
result in a system that is borderline schedulable.  

In this paper, we proved that the minimum task period 
can be recalculated when a failure deadline is found during 
the QPA iteration. We addressed the problem when the task 
set’s utilization is equal to 1, therefore, the implementation 
of sensitivity analysis can be improved by using different 
initial values of task period which are determined by  . 
There is no restriction on the task parameters, and there is 
no additional search or iterations required by the computa-
tions, hence the approaches are as efficient as QPA, and they 
can easily be incorporated into a design support tool. 
   As a future work, we will investigate the most suitable 
values of   by extensive simulations. 
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