
Schedulability Analysis for the Abort-and-Restart (AR)
Model

H.C. Wong
Real-Time Systems Research Group,

Department of Computer Science,
University of York, UK.

hw638@york.ac.uk

A. Burns
Real-Time Systems Research Group,

Department of Computer Science,
University of York, UK.
alan.burns@york.ac.uk

ABSTRACT
This paper addresses the scheduling of systems that imple-
ment the abort and restart (AR) model. The AR model
requires that preempted tasks are aborted. As a result high
priority tasks run quickly and shared resources need not be
protected (as tasks only work on copies of these resources).
However there is significant wastage as low priority tasks
may be subject to a series of aborts. We show that ex-
act analysis of the AR model is intractable. Two sufficient
but tractable tests are developed and are used to address
the priority assignment issue. Again an optimal tractable
algorithm is not available. The paper develops a priority as-
signment heuristic than is demonstrated to perform better
than existing schemes.

1. INTRODUCTION
Abort-and-Restart is a scheme to support Priority-based

Functional Reactive Programming (P-FRP). P-FRP has been
introduced as a new functional programming scheme [3] for
real-time systems. It combines the property of stateless ex-
ecution from Functional Reactive Programming (FRP) [17],
and supports priority assignment. Stateless execution means
that tasks execute independently and no resource is locked
by any task. To achieve this property of P-FRP, higher pri-
ority tasks can preempt lower priority tasks and the lower
priority tasks are aborted and restarted after the higher pri-
ority tasks have finished execution. In the classical preemp-
tive model, the lower priority tasks continue their execution
but it is different for P-FRP; the lower priority tasks restart
as new. Abort-and-Restart is the key operation for P-FRP
so we call it the Abort-and-Restart (AR) model in this pa-
per.

In the AR model, tasks cannot access resources directly.
Rather, tasks make copies of the resource at the beginning of
their execution. The updated data is then copied back into
the system once the tasks have completed their execution.
In some situations, higher priority tasks preempt lower pri-
ority tasks. Once the higher priority tasks have completed

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
RTNS 2014 , October 8 - 10 2014, Versailles, France
Copyright 2014 ACM 978-1-4503-2727-5/14/10 ...$15.00.
http://dx.doi.org/10.1145/2659787.2659813.

execution, the lower priority tasks are aborted and restarted.
The operation of abort-and-restart is to delete the old copy
of the resource, and take a new copy from the system.

The classical preemptive model must deal with the prob-
lem of resource sharing. These problems can bring serious
consequences. They may lead to inaccurate data, misses
deadlines or deadlock. To cater for these problems various
forms of priority inheritance and priority ceiling protocols
have been developed [15, 16]. One advantage of the AR
model is that it does not face these problems because tasks
do not access resources directly. The disadvantage is that
aborted tasks delete the old copy of the resource and restart
as new, hence the time spent before preemption is wasted.
In this paper, we call this wasted time, the abort cost.

1.1 Motivation for the AR model
Nowadays, computers have more power of execution than

before. In concurrent programming, sometimes program-
mers consider how to enhance the correctness of programs
rather than reduce the overhead. For a real-time system, it
is more complicated because of timing constraints and pri-
orities. A concurrency control mechanism for a system is
important because it affects the correctness and the schedu-
lability.

The AR model provides strong correctness guarantees on
dealing with shared resource. And it also supports FRP
which has been used for the domains of computer animation,
computer vision, robotics and control systems [9]. Original
FRP cannot be used for real-time systems but P-FRP has
rectified this. Hence the AR model allows P-FRP to be used
for real-time systems.

A real-time database system can be simply defined as a
database system with timing constraints [12]. The system
receives a high demand of requests and the responses are
required to be sent out before their deadlines. A transac-
tional memory can handle shared resource in a convenient
way, and the AR scheme can be applied to it. For example,
all transactions must be consistent and up-to-date for the
stock market. The AR model has the properties of atomic
execution and preemption. A transaction will not conflict
with another transaction, and an urgent transaction can be
execute as soon as possible.

Real-time Java is designed to allow programmers to de-
velop a real-time application using the Java language. Pre-
emptible Atomic Regions (PAR) is a new concurrency con-
trol abstraction for real-time systems [11]. The basic notions
of the AR model and the PAR model are similar but PAR
makes a log of shared resource and then the state of resource

will be rolled back if the task is preempted. The paper [11]
introduced the example of PAR for real-time Java. In other
words, the AR model has been implemented in a common
programming language.

1.2 Contributions and Organisation
This paper builds on the preliminary work in this area

published in JRWRTC [18]. An analysis for the AR model
is presented. It first confirms that an exact analysis is not
feasible as the critical instance cannot, in general, be identi-
fied in polynomial time. In the classical preemptive model,
the critical instant is when all tasks are released at the same
time, but this is not the case for the AR model. The sec-
ond contribution is to develop two new schedulability tests
for the AR model. These tests are sufficient for the model
but are open to exact analysis. In this paper, the tighter
schedulability test is termed the Multi-bag approach. A fi-
nal contribution is to address priority assignment for the
AR model. General priority assignment schemes such as
rate and deadline monotonic, are not optimal for the AR
model or the developed test. In this paper, we evaluate a
number of existing priority assignment schemes and provide
an improved (though still not optimal) priority assignment
scheme which is termed Execution-time-toward-Utilisation
Monotonic (EUM).

The rest of the paper is organised as follows. Section 2
shows the system model and the related work. It explains
the AR model and the related work introduces the previous
research for critical instant identification, schedulability test
and priority assignment. Section 3 is our analysis for the AR
model. It consists of critical instant and schedulability tests.
Section 4 introduces a new priority assignment for the AR
model, and it includes pseudo code. Section 5 discusses our
experiments. Finally Section 6 states our conclusions.

2. SYSTEM MODEL AND RELATED WORK
In this paper, we consider the static priority scheduling

of a set of sporadic tasks on a single processor. Each task
consists of a potentially unbounded sequence of jobs.

The notations and formal definitions used in this paper
are listed as follows:

N the number of tasks.

τi any given task in the system.

Ci the worst-case execution time for τi (also referred to as
WCET).

Ti period for τi.

U the total utilisation of a task-set, U ≡
N∑
i=1

Ci
Ti

.

Pi priority for τi.

Di deadline for τi.

Ri response time for τi.

αi the maximum abort cost for τi (see equation 1).

C̃i
j the new value for the WCET of τj , the biggest abort

cost is picked between τj and τi (see equation 3).

hp(i) higher than the priority of τi.

hep(i) higher or equal to the priority of τi.

lp(j) lower than the priority of τj .

Ej(Ri) the number of release of τj within Ri.

Mi,j a bag for τj when scheduling τi.

γi,j the total abort cost for τj when scheduling τi.

In general we allow Di ≤ Ti, although previous work and
many of the examples in this paper have Di = Ti.

2.1 The Abort-and-Restart Model
The Abort-and-Restart (AR) model [13, 14] is an im-

plementation scheme for P-FRP. The classical preemptive
model does not fit with P-FRP although it is similar to the
AR model except for the operation of abort-and-restart. In
the classical preemptive model, preempted tasks continue
their job once higher priority tasks completed execution.
The key concept of the AR model is that lower priority
tasks are preempted and aborted by releases of higher pri-
ority tasks. Once the higher priority tasks have completed,
the lower priority task are restarted as new.

Consider Table 1; there is a 2-task task-set. τ1 is the
highest priority task and has 3 ticks for WCET (Worst-case
execution time). Task τ2 has 4 ticks for WCET.

Table 1: An example task-set.
Task Period WCET Release offset Priority
τ1 12 3 3 1
τ2 15 4 0 2

In Figure 1, τ2 is released at 0 and executes until time 3,
because of the arrival of τ1, τ2 is aborted at 3. τ1 finishes its
job at 6 and τ2 is restarted as a new job so the spent time
between 0 and 3 is wasted.

Figure 1: An example task-set.

2.2 Copy-and-Restore Operation
The Copy-and-Restore operation [3, 4, 5, 6] occurs when

tasks begin or restart execution, they get a copy of the cur-
rent state from the system. We call the copy scratch state,
which is actually a set of data which will be used during the
execution of the task. Tasks only change their copy so no
tasks lock the data resource. If higher priority tasks arrive,
the lower priority task discards their copy. Once the higher
priority tasks have completed execution, the lower priority
tasks are aborted and restart. When a task has finished,
the copy is restored into the system as an atomic action;
this is illustrated in Figure 2 where τ1 starts at time 0 and
copies a set of data from the system. After six ticks, its
job is done and then it restores the updated data into the

system. Although atomic, copy-and-restore cannot be un-
dertaken instantaneously. Hence a high priority task cannot
abort a lower priority task while it is restoring state; the
higher priority task must block lending to a blocking term
in the analysis. For ease of presentation however this term
is omitted from the scheduling equations presented in this
paper.

Figure 2: Copy-and-Restore Operation.

2.3 Related Research
In the paper of Ras and Cheng [13], the authors state

that the critical instant argument from Liu and Layland
[10] may not apply fully to the AR model. In another paper
from Belwal and Cheng [4], the authors also realised that a
synchronous release of tasks does not lead to the worst-case
response time. The simple example in Table 1 and Figure 1
illustrates this if τ1 and τ2 are released together then R2 = 6.
Figure 1 shows clearly R2 ≥ 10.

Ras and Cheng [13] also state that standard response time
analysis is not applicable for the AR model, and assert that
the abort cost can be computed by the following equation:

αi =

N∑
j=i+1

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (1)

αi is the maximum abort cost for τi because the worst case
is when a higher priority task aborts the lower priority task
which has the biggest worst-case execution time. Equation
(1) uses the number of releases for a task, which has a higher
priority than τi, then multiplies this by the value of Ck which
is the maximum worst-case execution time between τi and
the higher priority task.

The central idea of their analysis is that the response time
for the AR model can be computed by the combination of
standard response time analysis and Equation (1). The new
equation is as follows:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj + αi (2)

Table 2 is a task-set given from paper [4]. τ3 is the highest
priority task and τ1 is the lowest priority task. They applied

Table 2: A task-set is given from the paper [4].
Task Period WCET
τ1 40 3
τ2 12 4
τ3 9 3

Equation (2) to the task-set and the calculation looks as
below for τ3:

1. R1
1 = 3 + (

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4) +

⌈
3
9

⌉
· 3 +

⌈
3
12

⌉
· 4 = 17

2. R2
1 = 3 + (

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4) +

⌈
17
9

⌉
· 3 +

⌈
17
12

⌉
· 4 = 31

3. R3
1 = 3 + (

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4) +

⌈
31
9

⌉
· 3 +

⌈
31
12

⌉
· 4 = 51

The task-set is deemed unschedulable.
In Section 3.2 we will derive an equivalent but more intu-

itive schedulability test for the AR model.
It was noted [3] above that Rate Monotonic (RM) prior-

ity assignment is optimal for implicit deadline tasks in the
standard model but is not optimal in the AR model. An
alternative assignment policy is introduced by Belwal and
Cheng [3], namely: Utilisation Monotonic (UM) priority as-
signment in which a higher priority is assigned to a task
which has a higher utilisation. Belwal and Cheng [3] state
that it furnishes a better schedulability rate than RM. They
also note that when RM and UM give the same ordering of
priorities then that order is optimal (for their analysis).

3. NEW ANALYSIS
In this section we derive a new sufficient test of schedu-

lability for the AR model. But first we explain why the
method cannot be exact.

3.1 Critical Instant for the AR model
First we consider periodic tasks and then sporadic. In the

AR model, a critical instant occurs when a higher priority
task aborts a lower priority, because the abort cost is added
to the response time. For 2-task task-set, there is only one
case where the highest priority task aborts the lowest prior-
ity task. This was illustrated in an earlier example (in Table
1 and Figure 1). For 3-task task-set, there are two cases as
the highest priority task can abort either of the two lower
priority tasks. To generalise:

Lemma 3.1. A task-set with N periodic tasks under the
AR model has at least (N-1)! abort combinations.

Proof. Consider a pure periodic task-set ΓN = {τ1, τ2,
..., τn} and all tasks only release once. The highest priority
task is τ1 and the lowest priority task is τn. Task τ1 has
N - 1 choices of lower priority tasks to abort in each of
their cases; τ2 has N - 2 choices of lower priority tasks to
abort. This continues until τn−1 which has only one choice
to abort. Finally, τn has zero choices because there is no
lower priority task. When higher priority tasks are released
more than once, the number of choices for those tasks are
increased. The number of abort combinations is therefore
at least (N − 1) ∗ (N − 2) ∗ ... ∗ 1, which is (N-1)!.

There is no information within the task set that would
indicate which set of abort combination could give rise to
the worst-case response times. Hence they all need to be
checked for exact analysis. For sporadic tasks:

Lemma 3.2. A sporadic task with a later release may bring
a longer response time.

Proof. In general, a sporadic task with its maximum
arrival rate delivers the worst-case response time. Lemma
3.2 can be proved by showing a counter example. In Table 3,
there is a 3-task task-set. Task τ1 is a sporadic task and has
the highest priority. It has a minimum inter-arrival time, 8.
Other tasks are periodic tasks.

Table 3: A task-set with a sporadic task.
Task Period WCET Priority
τ1 8 1 1
τ2 20 2 2
τ3 40 4 3

In Figure 3, the response time of τ3 is 16 when the second
job of τ1 is released with the minimum inter-arrival time, 8.

Figure 3: A time chart.

If, however, the second job of τ1 is released 1 tick later,
the response time of τ3 will be 17. In this condition, a spo-
radic task with a later release may bring a longer response
time.

For a set of sporadic tasks exact analysis would require all
possible released times to be checked.

Theorem 3.3. Finding the critical instant for the AR
model with periodic and sporadic tasks is intractable.

Proof. Lemma 3.1 shows that there is at least (N − 1)!
abort combinations for N periodic tasks, and all of which
must be checked for the worst-case to be found. For spo-
radic tasks all possible release-time over a series of releases
must be checked to determinate the worst-case impact of the
sporadic task. These two properties in isolation and together
show that this is an intractable number of release conditions
to check in order to define the critical instant.

In real-time scheduling, a schedulability test cannot be
exact (sufficient and necessary) if the critical instant cannot
be found in polynomial time.

3.2 New Formulation for schedulability tests
In the last section we showed that an exact analysis for

the AR model is not possible. In this section we derive a
sufficient test that is itself tractable. Hence we have traded
sufficiency with tractability. We believe this new test is more
intuitive than those previously published.

Given a priority assignment, the worst-case response time
of task τn (priority Pn) will depend only on the behaviour of

tasks of priority greater than Pn. Consider the interference
caused by a single release of task τi(Pi > Pn). In the worst-
case τi will abort (just before it completes) a task with a
lower priority than τi but with the maximum execution time
of all lower priority tasks. Let the aborted task be τa, so
Pi > Pa ≥ Pn and Ca = max

∀j∈hepn
⋂

lpi
Cj .

The impact of τi will therefore be, in the worst-case, Ci

at priority Pi and Ca at priority Pa. As Pa ≥ Pn this is
equivalent (for τn) to τi having an execution time of Ci +

Ca at priority Pi. Let C̃n
i = Ci + Ca. The original task-

set with computation times Ci is transposed into a task-
set with C̃n

i . This is now a conventional task-set, so the
critical instant is when there is a synchronous release. (The
maximum interference on τn must occur when all higher
priority tasks arrive at their maximum rate, initially at the
same time, and all have their maximum impact.)

The worst-case for the AR model is that any higher pri-
ority task aborts a lower priority task which has the biggest
possible worst-case execution time, and that this abort oc-
curs just before the aborted task would actually complete.
By this process, a new value C̃i

j for τj is combined by Cj

and Ck:

C̃i
j = Cj + max

∀k∈hepi
⋂

lpj
Ck (3)

where C̃i
j is the new value for the WCET of τj , Cj is the

original WCET of τj and Ck is the biggest execution time
of a task with priority between τi and τj but τj is not in-
cluded. The response time analysis applies to τi. Note that
in general the C̃i

j values will depend on the task under in-
vestigation.

In Table 4, there is an example task-set. Deadline is equal
to period and the time unit is a tick. The highest priority
is 1. The response time of task τ4 is being computed.

Table 4: An example with new WCET for 4-task
task-set.

Task Period C C̃4
j Priority

τ1 28 2 7(2+5) 1
τ2 120 3 8(3+5) 2
τ3 140 4 9(4+5) 3
τ4 200 5 5(5+0) 4

The C̃4
j values are computed by Equation (3). In this

example we consider the response time for τ4 so i = 4. For
C̃4

1 , j is 1 and Ck is higher than or equal to τ4 but lower
than τ1. The calculation is C̃4

1 = C1 + C4, so the result of
C̃4

1 is 2 + 5 = 7.
For C̃4

4 , i and j are 4. Ck is higher than or equal to τ4 but
lower than τ4 so no task is matched, so the result of C̃4

4 is
5 + 0 = 5. After all the C̃4

j values had been calculated, we

use C̃i
j instead of C in the response time analysis; that is:

R4 = C̃4
4 +

∑
∀j∈hp4

⌈
R4

Tj

⌉
· C̃4

j (4)

This is solved in the usual way by forming a recurrence
relationship. The calculations are as follows:

1. R1
4 = 5 + (

⌈
5
28

⌉
· 7 +

⌈
5

120

⌉
· 8 +

⌈
5

140

⌉
· 9) = 29

2. R2
4 = 5 + (

⌈
29
28

⌉
· 7 +

⌈
29
120

⌉
· 8 +

⌈
29
140

⌉
· 9) = 36

3. R3
4 = 5 + (

⌈
36
28

⌉
· 7 +

⌈
36
120

⌉
· 8 +

⌈
36
140

⌉
· 9) = 36

To compare the result with the equation of Ras and Cheng
[13] (given in Section 2.3). Their calculation would be:

1. R1
4 = 5 + (

⌈
5
28

⌉
· 2 +

⌈
5

120

⌉
· 3 +

⌈
5

140

⌉
· 4) +

⌈
5
28

⌉
· 5 +⌈

5
120

⌉
· 5 +

⌈
5

140

⌉
· 5 = 29

2. R2
4 = 5 + (

⌈
29
28

⌉
· 2 +

⌈
29
120

⌉
· 3 +

⌈
29
140

⌉
· 4) +

⌈
29
28

⌉
· 5 +⌈

29
120

⌉
· 5 +

⌈
29
140

⌉
· 5 = 36

3. R3
4 = 5 + (

⌈
36
28

⌉
· 2 +

⌈
36
120

⌉
· 3 +

⌈
36
140

⌉
· 4) +

⌈
36
28

⌉
· 5 +⌈

36
120

⌉
· 5 +

⌈
36
140

⌉
· 5 = 36

The results are the same but Equation (4) clearly involves
less computation.

To compute the worst-case response time for τ3 requires
the C̃3

j values to be recomputed (as show in Table 5).

Table 5: C̃3
j values for τ3

Task Period C C̃3
j Priority

τ1 28 2 6(2+4) 1
τ2 120 3 7(3+4) 2
τ3 140 4 4(4+0) 3

The test derived above whilst more intuitive and more
efficiently solved is nevertheless equivalent to that previously
published.

Theorem 3.4. Equations (2) and (4) are equivalent.

Proof. We rephrase Equation (2) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· Cj +

∑
∀j∈hpi

⌈
Ri

Tj

⌉
· j−1
max
k=i

Ck (5)

and simplify:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
·
(
Cj +

j−1
max
k=i

Ck

)
(6)

both
j−1
max
k=i

Ck and max
∀k∈hepi

⋂
lpj
Ck are to pick a bigger WCET

task with priority is higher or equal to τi and lower than τj ,
so we rephrase it again.

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
·
(
Cj + max

∀k∈hepi
⋂

lpj
Ck

)
(7)

Equation (3) replaces into Equation (7) as below:

Ri = Ci +
∑
∀j∈hpi

⌈
Ri

Tj

⌉
· C̃i

j (8)

Finally, C̃i
j replaces to Ci using Equation (3).

As Equation (2) was previously proved to be sufficient for
the AR model [13] it follows that Equation (4) is similarly
sufficient.

Although the equations are equivalent, Equation (4) is in
the standard form for response time analysis and is there-
fore amenable to the many ways that have been found to
efficiently solve this form of analysis [8]. It is also in a form
that allows the issue of priority assignment to be addressed.

3.3 Tighter analysis
The approach of C̃i

j is sometimes too pessimistic because
higher priority tasks cannot always abort the lower priority
task with the biggest execution time on each release. In this
case, the higher priority task aborts the task with second
biggest execution time. The multi-set approach [1] from
CRPD1 has a similar property to the AR model.

In the AR model, task τj can abort any task τk ∈ hep(i)⋂
lp(j) up to Ej(Ri) times, where Ej(Ri) is the number

of release of τj within the response time of τi. Equation
(9) shows all tasks k ∈ hep(i)

⋂
lp(j) are found and put the

values (abort cost) into the set Mi,j . Ck is the abort cost for
τk. Ej(Rk)Ek(Ri) is the number of that τj aborts τk within
the response time of τi.

Mi,j =
⋃

k∈hep(i)
⋂

lp(j)

 ⋃
Ej(Rk)Ek(Ri)

Ck

 (9)

The total abort cost γi,j of τj for τi is calculated by adding
the Ej(Ri) largest values in Mi,j . The equation is shown
below,

γi,j =

Ej(Ri)∑
l=1

M l
i,j (10)

For the response time analysis, the total abort cost ,γi,j ,
is added to the interference from the above higher priority
tasks. Note that γi,j is re-computed on each iteration.

Ri = Ci +
∑

∀j∈hp(i)

(⌈
Ri

Tj

⌉
Cj + γi,j

)
(11)

In other words, each task τj has a bag Mi,j to contain a
series of abort cost Ck from tasks τk ∈ hep(i)

⋂
lp(j), with

the number is decided by Ej(Rk). A task-set has a number
of bags for each task. Therefore, we call this approach, the
multi-bag, in this paper.

3.4 Example
To illustrate, consider the example task set in Table 6.

Task T=D C
τ1 25 3
τ2 35 10
τ3 45 3

Table 6: An example task-set. (τ1 has the highest
priority.)

Using the approach of C̃i
j , the task-set is not schedulable.

The values for C̃3
1 , C̃

3
2 , C̃

3
3 are 13, 13 and 3. The calculation

is shown below,

1. R0
3 = 3

2. R1
3 = 3 + (

⌈
3
25

⌉
· 13 +

⌈
3
35

⌉
· 13) = 29

3. R2
3 = 3 + (

⌈
29
25

⌉
· 13 +

⌈
29
35

⌉
· 13) = 42

1Cache Related Pre-emption Delay anlysis.

4. R3
3 = 3 + (

⌈
42
25

⌉
· 13 +

⌈
42
35

⌉
· 13) = 55

.
It ends here because the response time is bigger than the

deadline.
Using the multi-bag approach, the task-set is schedulable.

The calculation is shown below,

1. R0
1 = 3

1. R0
2 = 10

2. R1
2 = 10 + (

⌈
10
25

⌉
· 3 + γl=1

2,1 {10}) = 23

3. R2
2 = 10 + (

⌈
23
25

⌉
· 3 + γl=1

2,1 {10}) = 23

1. R0
3 = 3

2. R1
3 = 3+(

⌈
3
25

⌉
·3+γl=1

3,1 {10, 3})+(
⌈

3
35

⌉
·10+γl=1

3,2 {3}) =
29

3. R2
3 = 3 + (

⌈
29
25

⌉
· 3 + γl=2

3,1 {10, 3, 3}) + (
⌈
29
35

⌉
· 10 +

γl=1
3,2 {3}) = 35

4. R3
3 = 3 + (

⌈
35
25

⌉
· 3 + γl=2

3,1 {10, 3, 3}) + (
⌈
35
35

⌉
· 10 +

γl=1
3,2 {3}) = 35.

The second release of τ1 aborts τ3 because τ2 is finished
and no job is waiting for execution. The multi-bag approach
demonstrates an improvement but it is still only a sufficient
test.

4. PRIORITY ASSIGNMENT SCHEMES
In the section on related research, Rate Monotonic (RM)

and Utilisation Monotonic (UM) have been introduced as
possible priority assignment schemes for the AR model. Here,
we introduce another priority assignment called Execution-
time Monotonic (EM) which assigns a higher priority to a
task which has a bigger worst case execution time2. An
inspection of Equation (3) shows that the minimum exe-

cution times (the C̃i
j values) are obtained when priority is

ordered by execution time. Although this does not necessar-
ily minimise utilisation, it may furnish an effective priority
assignment scheme.

For many scheduling problems, Audsley’s Algorithm fur-
nishes an optimal priority assignment; i.e. the algorithm can
find a schedulable priority ordering if such an ordering ex-
ists [2]. Unfortunately one of the prerequisites for Audsley’s
Algortihm does not hold. Specifically, the response time of
a task depends not only on the set of higher priority tasks
but also on their relative order (which is not permitted).

Table 7: The response time of τ4 is 23.

Task Period WCET C̃4
j Priority

τ1 100 5 9(5+4) 1
τ2 120 4 7(4+3) 2
τ3 140 3 5(3+2) 3
τ4 200 2 2(2+0) 4

In Table 7 τ4 is the lowest priority task and its response
time is 23 (by Equation (4)). After τ2 and τ3 (higher pri-
ority) swapped their priorities, the response time for τ4 is
changed to 24 as shown in Table 8.

2Tasks with the same execution time are ordered by deadline

Table 8: The response time of τ4 is 24.

Task Period C C̃4
j Priority

τ1 100 5 9(5+4) 1
τ3 140 3 7(3+4) 2
τ2 120 4 6(4+2) 3
τ4 200 2 2(2+0) 4

4.1 New Algorithm
The Exhaustive Search (ES) Algorithm is optimal for any

model but the complexity is the factorial of the number of
tasks. Therefore, it is not applicable in general but it can
validate other algorithms for small values of N. By compari-
son with ES, both UM and EM are not optimal. Sometimes,
there are more than one schedulable orderings for a task-set.
Some tasks are scheduled by EM but not UM, and vice versa.
In a later section, the experiments show that UM and EM
have similar results. If a new algorithm dominates both UM
and EM, it will offer a better schedulability rate.

We derive a new algorithm that starts with EM ordering
and tests the tasks in priority order starting with the highest
priority task. If any task cannot be scheduled then try to
find a higher priority task which has less utilisation. The
ordering begins from the failed task to the top. If a task
is found then shift down the higher priority task below the
lower priority task. If no task is found, the task-set is deemed
to be not schedulable.

An example of the use of the algorithm is given in Table
9. Again deadline is equal to period; R is response time.
Note only C values are given in the table, the necessary C̃i

j

values are dependent on which task is actually been tested,
they must be re-computed for each task.

Table 9: An example task-set fails in EM ordering.
Task Period C U Priority R
τ1 60 6 0.1 1 6
τ2 50 5 0.1 2 16
τ3 32 4 0.125 3 24
τ4 25 3 0.12 4 30 (X)
τ5 100 2 0.02 5

The task-set is initially ordered by the EM algorithm. The
schedulability test begins from the top. τ1, τ2 and τ3 meet
their deadlines. A missed deadline occurs at τ4 so the algo-
rithm searches for a less utilisation task from τ3 to τ1. The
utilisation of τ2 is 0.1 which is less than τ4, τ2 shifts down
below τ4. The priority of τ3 shifts up to 2. The priority of
τ4 shifts up to 3. The priority of τ2 changes to 4.

In Table 10, the task-set has had its priorities changed and
is schedulable after the shifting. By the nature of shifting
down less utilisation tasks to the bottom, UM ordering is the
worst-case. The algorithm is intuitively a set of transforma-
tions starting at EM and moving towards UM. It dominates
both EM and UM. We name it, the Execution-time-toward-
Utilisation Monotonic (EUM) priority assignment scheme.

4.2 Time complexity

(higher priority to shorter deadline). If they also have the
same deadline then the shortest period is used to break the
tie.

Table 10: The task-set is scheduled by EUM algo-
rithm.

Task Period C U Priority R
τ1 60 6 0.1 1 6
τ3 32 4 0.125 2 14
τ4 25 3 0.12 3 20
τ2 50 5 0.1 4 50
τ5 100 2 0.02 5 88

EUM priority assignment starts with EM ordering and the
worst-case is when a task-set can only be scheduled by UM
ordering (or is not schedulable at all, but only fails at the last
task). The lower priority tasks shift up with higher priority
level one by one until the task-set is in UM ordering. After
each shifting, a schedulability test for the shifted task is un-
dertaken. In the analysis of time complexity, we count each
schedulability test rather than the computational complex-
ity. For instance, a N-task task-set starts with EM ordering
and the task-set is only scheduled by UM ordering which is
completely opposite to EM. Task τ1 is the highest priority
task and the lowest priority task is τN . The algorithm tests
each task by the priority ordering from high to low. In the
first recursion, it takes N tests from τ1 to τN and it fails at
τN . According to the nature of the algorithm, a failed task
shifts up if a higher priority task has less utilization. The
current status of the task-set is in reverse order of UM. It
is the same as the partial sums of the series 1 + 2 + ..+N .
The equation can be represented as below:

N∑
k=1

k =
N(N + 1)

2
(12)

so the time complexity of EUM priority assignment is N(N+1)
2

in worst-case. Clearly, EUM dominates EM and UM because
the algorithm starts with EM ordering and ends at UM or-
dering in the worst-case steps. Unlike Exhaustive Search
(ES) it is a tractable task.

5. EXPERIMENTAL EVALUATION
The experiments are separated into two parts. First, the

EUM algorithm is compared with other algorithms (DM,
UM, EM and ES). Secondly, the multi-bag approach is com-

pared with the C̃ approach using different priority assign-
ments. All experiments used the same parameters but dif-
ferent priority assignments. The parameters are: Deadline
is equal to or less than period. All tasks are periodic. A set
of N utilisation values Ui was generated by the UUniFast
Algorithm [7]. Task periods were generated between 500
and 5000 according to a log-uniform distribution3. And the
computed value Ti is assigned to τi. Task execution times
are: Ci = Ui · Ti. Utilisation for task-sets are ranged be-
tween 10% and 70%. Each utilisation rate generates 10000
different task-sets, i.e. U = 10% generates 10000 task-sets,
U = 11% generates another 10000 task-sets, and so on. The
numbers of task for the non-optimal group are 5, 8 and 15.
A maximum of 8 task is all that can be accomplished by ES.
The final experiment is therefore restricted to just 8 tasks.

For all diagrams, the X-axis is Utilisation rate and the

3The log-uniform distribution of a variable x is such that
ln(x) has a uniform distribution.

Figure 4: The number of tasks is 5.

Figure 5: The number of tasks is 15.

Y-axis is the Schedulability rate, i.e. the percentage of task
sets that were deemed schedulable.

In Figure 4 the number of tasks is 5. We observe that DM
has the worst schedulability, UM and EM are quite similar
before U = 27%. After that, UM is better than EM. EUM
is of course always better than the others.

In Figure 5 the number of tasks is 15. Again DM is the
worst; EM is better than UM and EUM is the best. Results
for larger value of N are similar (but are not included).

For the final comparing experiment of EUM and ES, ES is
the factorial of the number of task so we picked the number
of task as large as possible. In Figure 6 the number of tasks
is 8. The diagram shows the result that EUM is very close
to ES. Indeed it is impossible to distinguish between them
in the diagram. Nevertheless EUM is not optimal, the fig-
ure contains in total 410,000 task sets of which ES deemed
137,366 schedulable and EUM (136,712), a difference of 654
(i.e. schedulable by ES but not by EUM). Although not
exact, the performance of EUM for N = 8 leads to a reason-
able conclusion that EUM is an effective and near optimal
priority ordering for the AR model.

For a further analysis, Figures 7 and 8 show two examples
when deadline is less than period. In Figure 7, the number of
tasks is 20 and deadline is 80% of period. The schedulability
of using the UM ordering is getting worse at 18% utilisation
rate. In Figure 8, the number of tasks is also 20 but deadline
is 50% of period. It shows that DM is much better than both
UM and EM. EUM is still far better than the other priority

Figure 6: The number of tasks is 8.

Figure 7: The number of tasks is 20 with D = T *
80%.

assignments.
In the second experiment, the multi-bag approach is com-

pared with the C̃ approach using DM, EUM and ES priority
assignments. UM and EM are skipped because EUM domi-
nates them.

In Figure 9 the number of tasks is 5. The DM and EUM
lines are using the C̃ approach, and the DM-MB and EUM-
MB lines are using the multi-bag approach. From the re-
sults, DM-MB is improved cleary but EUM-MB is hard to
see the difference (actually improved in number).

In Figure 10 the number of tasks is 15. It has similar
patten but the improvement of DM-MB is reduced. The
EUM and EUM-MB lines are also hard to see the difference
(but still improved in number).

In Figure 11 the number of tasks is 8 but only 1000 task-
sets. The multi-bag approach takes more computation time
than the C̃ approach so the lines are not as smooth as other
figures. ES-MB is an optimal priority assignment with the
multi-bag approach. DM-MB is far away from ES-MB as
expected, and the result shows that the EUM priority as-
signment is still close to ES, which is optimal.

6. CONCLUSION
The AR model has been proposed as a means of im-

plementing priority-based functional reactive programming.
Any released task, if it has a higher priority than the current

Figure 8: The number of tasks is 20 with D = T *
50%.

Figure 9: The number of tasks is 5.

running task, will abort that task. It can therefore imme-
diately make progress. As a consequence the aborted task
must re-start its execution when it is next executes.

We have confirmed that the AR model is intractable, in
the sense that exact analysis is not possible due to the num-
ber of cases that need to be investigated in order to identify
the worst-case release conditions (the critical instant). Nev-
ertheless a tractable sufficient test and a tighter sufficient
test have been developed that allow the issue of priority or-
dering to be addressed.

Unfortunately optimal priority ordering is also problem-
atic with the AR model. Deadline (or Rate) monotonic or-
dering is demonstrably not optimal. Also the optimal Aud-
sley’s algorithm is not applicable. We have however devel-
oped a heuristic (called EUM) that performs well and has
only N2 complexity (for N tasks). On small sized systems
(N = 8) EUM performs almost identically to an optimal
scheme (using exhaustive search). For larger numbers of
N (where exhaustive search is infeasible) it performs better
than previous published approaches.

7. REFERENCES
[1] S. Altmeyer, R. Davis, and C. Maiza. Improved cache

related pre-emption delay aware response time
analysis for fixed priority pre-emptive systems.
Real-Time Systems, 48(5):499–526, 2012.

Figure 10: The number of tasks is 15.

Figure 11: The number of tasks is 8 (only 1000 task-
sets).

[2] N. Audsley. Optimal priority assignment and
feasibility of static priority tasks with arbitrary start
times. Report YCS 164, University of York, 1991.

[3] C. Belwal and A. Cheng. On Priority Assignment in
P-FRP. RTAS, pages 45–48, 2010.

[4] C. Belwal and A. Cheng. Determining Actual
Response Time in P-FRP. In R. Rocha and
J. Launchbury, editors, Practical Aspects of
Declarative Languages, volume 6539 of Lecture Notes
in Computer Science, pages 250–264. Springer
Berlin/Heidelberg, 2011.

[5] C. Belwal and A. Cheng. Determining Actual
Response Time in P-FRP Using Idle-Period Game
Board. Object-Oriented Real-Time Distributed
Computing, IEEE International Symposium on,
0:136–143, 2011.

[6] C. Belwal and A. Cheng. Feasibility Interval for the
Transactional Event Handlers of P-FRP. In Proc. of
the IEEE International Conference on Trust, Security
and Privacy in Computing and Communications,
TRUSTCOM, pages 966–973, Washington, DC, USA,
2011.

[7] E. Bini and G. Buttazzo. Measuring the Performance
of Schedulability Tests. Real-Time Systems,
30:129–154, 2005.

[8] R. Davis, A. Zabos, and A. Burns. Efficient Exact

Schedulability Tests for Fixed Priority Real-Time
Systems. IEEE Transactions on Computers,
57(9):1261–1276, 2008.

[9] R. Kaiabachev, W. Taha, and A. Zhu. E-FRP with
priorities. In Proceedings of the 7th ACM & IEEE
international conference on Embedded software,
EMSOFT ’07, pages 221–230, New York, NY, USA,
2007. ACM.

[10] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment.
J. ACM, 20(1):46–61, 1973.

[11] J. Manson, J. Baker, A. Cunei, S. Jagannathan,
M. Prochazka, B. Xin, and J. Vitek. Preemptible
atomic regions for real-time Java. In Real-Time
Systems Symposium, 2005. RTSS 2005. 26th IEEE
International, pages 10 pp.–71, 2005.

[12] O. Ulusoy and G. Belford. Real-time transaction
scheduling in database systems. Information Systems,
18(8):559 – 580, 1993.

[13] J. Ras and A. Cheng. Response Time Analysis for the
Abort-and-Restart Task Handlers of the
Priority-Based Functional Reactive Programming
(P-FRP) Paradigm. In Embedded and Real-Time
Computing Systems and Applications, RTCSA, pages
305–314, 2009.

[14] J. Ras and A. Cheng. Response Time Analysis of the
Abort-and-Restart Model under Symmetric
Multiprocessing. In Computer and Information
Technology (CIT), pages 1954–1961, 2010.

[15] L. Sha, R. Rajkumar, and J. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. IEEE Transactions on Computers,
39(9):1175–1185, 1990.

[16] H. Takada and K. Sakamura. Real-time
synchronization protocols with abortable critical
sections. In Proc. of the First International Workshop
on Real-Time Computing Systems and Applications,
pages 44–52, 1994.

[17] Z. Wan and P. Hudak. Functional reactive
programming from first principles. In Proc. of the
ACM SIGPLAN, PLDI, pages 242–252. ACM, 2000.

[18] H. Wong and A. Burns. Improved priority assignment
for the abort-and-restart (ar) model. In 7th Junior
Researcher Workshop on Real-Time Computing
(JRWRTC), 2013.

