
Integrated Analysis of Cache Related Preemption
Delays and Cache Persistence Reload Overheads

Syed Aftab Rashid∗, Geoffrey Nelissen∗, Sebastian Altmeyer†, Robert I. Davis‡, Eduardo Tovar∗
∗CISTER/INESC TEC, ISEP, Polytechnic Institute of Porto, Portugal, †University of Amsterdam, Netherlands

‡University of York, UK

Abstract—Schedulability analysis for tasks running on micro-
processors with cache memory is incomplete without a treat-
ment of Cache Related Preemption Delays (CRPD) and Cache
Persistence Reload Overheads (CPRO). State-of-the-art analyses
compute CRPD and CPRO independently, which might result in
counting the same overhead more than once.

In this paper, we analyze the pessimism associated with the
independent calculation of CRPD and CPRO in comparison to
an integrated approach. We answer two main questions: (1) Is
it beneficial to integrate the calculation of CRPD and CPRO?
(2) When and to what extent can we gain in terms of schedu-
lability by integrating the calculation of CRPD and CPRO? To
achieve this, we (i) identify situations where considering CRPD
and CPRO separately might result in overestimating the total
memory overhead suffered by tasks, (ii) derive new analyses that
integrate the calculation of CRPD and CPRO; and (iii) perform a
thorough experimental evaluation using benchmarks to compare
the performance of the integrated analysis against the separate
calculation of CRPD and CPRO.

I. INTRODUCTION

The increasing gap between processor and main memory
speeds has motivated the introduction of caches in modern
microprocessors. Program data and instructions that are loaded
into cache are available to the processor in a few clock cycles
compared to fetches from main memory which may take tens or
even hundreds of clock cycles. Most Commercial-Off-The-Shelf
(COTS) microprocessors use caches to decrease average-case
memory access latency; however, as caches have a limited
capacity in comparison to main memory, typically not all of
the data and instructions of all tasks can simultaneously reside
in the cache. With an unpartitioned cache, tasks compete for
limited cache space, with the execution of one task potentially
evicting memory blocks previously loaded into the cache by
other tasks. This can cause large variations in the execution
times of the tasks, depending on whether the instructions and
data that they require are already present in the cache or not.

In systems where preemptions are allowed, preempted tasks
may suffer additional delays if useful cache blocks (UCBs)
(that are resident in the cache and will be re-used before being
replaced) are evicted from the cache by preempting tasks. Such
evictions cause Cache-Related Preemption Delays (CRPDs) to
occur after task resumption when the useful cache blocks are
reloaded from main memory.

Considering multiple jobs of a particular task; the next job
of the task can benefit from the presence in cache of persistent
memory blocks that were loaded by a previous job of the same
task and that have remained in the cache until the next job
executes and can make use of those blocks. These cache blocks
are called Persistent Cache Blocks (PCBs) and this concept

is referred to as cache persistence1 [21]. Analysis of cache
persistence can be used to reduce pessimism in the computation
of interference from multiple jobs of a higher priority task in
state-of-the-art worst-case response time (WCRT) analysis for
systems using Fixed Priority Preemptive Scheduling (FPPS).
The PCBs of a task are identified assuming that the task runs in
isolation, i.e. assuming there are no other tasks in the system.
In practice this is not the case, PCBs may be evicted due to
interleaved or preemptive execution of other tasks, leading to
Cache Persistence Reload Overheads (CPRO).

In [21], the authors derived two analyses for CPRO that
were integrated into an improved response time analysis for
FPPS that takes account of reductions in memory demand due
to cache persistence, along with the CRPD. Their analysis
considers both the CRPD and CPRO and dominates the state-
of-the-art approaches that only consider CRPD. However, the
analysis in [21] may sometimes result in over-estimation of
the task response times. This is due to the fact that CRPD
and CPRO are calculated separately, providing independent
upper bounds on the two classes of overheads. However, as we
later show, scenarios maximising CRPD and those maximising
CPRO may be mutually exclusive, meaning that the total
overheads can be substantially less than the sum of the two
bounds.

In this paper we focus on two questions: (1) Is it beneficial
to integrate the calculation of CRPD and CPRO to remove
the over-estimation in the total overheads of tasks? (2) Under
what conditions and by how much can we gain in terms of
schedulability by integrating the calculation of CRPD and
CPRO? We answer these questions by: (i) identifying situations
where considering CRPD and CPRO separately might result
in overestimating the total memory overhead suffered by tasks
due to double counting of some memory blocks that need to
be reloaded, (ii) demonstrating how to integrate the calculation
of CRPD and CPRO to include only the additional CPRO that
are not already included in the CRPD calculation, and (iii)
through experimental evaluation using a set of benchmarks to
derive important observations that lead to situations where the
integrated CRPD-CPRO analysis may or may not outperform
separate treatment of CRPD and CPRO.

A. Related Work

Early work on accounting for scheduling overheads in FPPS
by Katcher et al. [15] and Burns et al. [9] focused on scheduler
overheads and context switch costs. Subsequent work on the

1Note that this form of cache persistence between jobs is distinct from
cache persistence within loops, as studied for example by Cullmann [11].

analysis of CRPD and their integration into schedulability
analyses used the concepts of UCBs and evicting cache blocks
(ECBs), i.e., all the cache blocks that are accessed by a
task during its execution. A number of methods have been
developed for computing CRPD under FPPS. Namely, the ECB-
Only approach [10], which considers just the preempting task,
as does the work by Tomiyama et al. [24]. The UCB-Only
approach [16], which considers just the preempted task(s). The
UCB-Union [23], ECB-Union [2] and an alternative approach
developed by Staschulat et al. [22] that consider both the
preempted and preempting tasks. These approaches were later
superseded by multi-set based methods (ECB-Union Multi-set
and UCB-Union Multi-set) which dominate them [3]. These
methods have been adapted to EDF scheduling [17], [20] and
to hierarchical scheduling with local fixed priority [18] and
EDF [19] schedulers. They have also been integrated into
analysis for multi-core systems [1].

Cache partitioning is one way of eliminating CRPD; however,
this results in inflated WCETs due to the reduced cache partition
size available to each task. Altmeyer et al. [4], [5] derived
an optimal cache partitioning algorithm when each task has
its own partition. They concluded that the trade off between
longer WCETs and CRPD often favours sharing the cache
rather than partitioning it.

The notion of cache persistence and CPRO was recently
introduced in [21]. Methods to compute the CPRO cost
and to integrate it in the WCRT analysis for FPPS were
proposed, showing significant improvement in the accuracy of
the response time analysis.

II. SYSTEM MODEL

In this work, we focus on single-core platforms with a single
level (L1) instruction cache. The cache is assumed to be direct-
mapped2, which means that each memory block in the main
memory can be mapped to only one specific block in the
cache3.

We consider a sporadic task model where each task has a
unique fixed priority. Any priority assignment scheme (e.g.,
Rate Monotonic or Deadline Monotonic) is acceptable. We
also assume that the tasks are independent and do not suspend
themselves during their execution. A task τi is defined by a
triplet (Ci, Ti, Di), where Ci is the worst-case execution time
(WCET) of τi, Ti is its minimum inter-arrival time and Di

is the relative deadline of each instance (or job) of τi. We
assume that the tasks have constrained deadlines, i.e., Di ≤ Ti.
We further decompose each task’s WCET into separate terms
for processing and memory access demand, respectively. The
worst-case processing demand PDi denotes the worse-case
execution time of τi considering that every memory access
is a cache hit. Consequently, it only accounts for execution
requirements of the task and does not include the time needed
to fetch data and instructions from the main memory. MDi

is the worst-case memory access demand of any job of task
τi; that is, the maximum time during which any job of τi is
performing memory operations. The values for Ci, PDi and

2Examples of microprocessors with direct-mapped caches include the
Renesas SH7750 and NEC VR4181 and VR4121.

3In common with most critical real-time systems, we assume that the
platform does not provide memory address translation or virtual memory.

MDi are determined assuming τi executes in isolation (i.e.,
without preemption, starting from an empty cache). It is also
important to note that the worst-case processing demand and
the worst-case memory access demand may not necessarily be
experienced on the same execution path of τi. Therefore, it
holds that Ci ≤ PDi +MDi. The worst-case response time
(WCRT) of task τi, denoted by Ri, is defined as the longest
time between the arrival and the completion of any of its jobs.

We consider that preemption costs only refer to additional
cache reloads due to those preemptions. Other overheads that
remain constant over the execution of a task, e.g., due to context
switches and scheduler invocations, are assumed to be included
in the task’s WCET. The worst-case reload time of a cache
block from main memory is denoted by dmem .

We use hp(i) to denote the set of tasks with priorities higher
than that of τi. Similarly, lp(i) to denote the set of tasks with
priorities lower than that of τi. Further, hep(i) denotes the
set of tasks with priorities higher than or equal to that of τi
(i.e. hep(i) includes τi). Finally, aff(i, j) = hep(i) ∩ lp(j)
denotes the set of intermediate tasks that can execute during
the response time of τi but may also be preempted by some
higher priority task τj .

Note in this paper, similar to earlier work on CRPD and
CPRO, we assume a timing-compositional architecture [14],
i.e. the timing contribution of memory overheads can be
analyzed separately from other architectural features.

III. EXISTING CRPD AND CPRO ANALYSIS

In this section, we provide definitions for a number of key
concepts and summarize existing analyses of CRPD and CPRO,
which we later build upon.

A. Cache Related Preemption Delays
Definition 1 (Useful Cache Block (UCB) [16]). A memory
block m is called a Useful Cache Block at program point P, if
it is cached at P and will be reused at program point Q that
may be reached from P without eviction of m.

In this work we use the basic UCB definition from [16];
however, our approach is also compatible with the refined
definition given by Altmeyer et al. [6].

Definition 2 (Evicting Cache Block (ECB) [10]). Any cache
block accessed during the execution of the task and which can
then evict the memory block cached by another task is called
an Evicting Cache Block.

We now summarize the UCB-union and the UCB-union
multi-set approaches to CRPD analysis, which we later build
upon. We denote the CRPD caused by a task τj executing
during the response time of a task τi by γi,j .

To calculate the preemption cost γucbi,j , the UCB-union
approach [23] uses the ECBs of the preempting task τj and
the UCBs of all tasks in aff (i, j) possibly affected by the
preemption caused by τj :

γucbi,j = dmem ×

∣∣∣∣∣∣
 ⋃
∀k∈aff (i,j)

UCBk

 ∩ ECBj

∣∣∣∣∣∣ (1)

where, UCBk and ECB j are the sets of UCBs and ECBs
of task τk and τj , respectively. The preemption cost can then
be accounted for in the WCRT analysis as follows:

Rucb
i = Ci +

∑
∀j∈hp(i)

⌈
Rucb
i

Tj

⌉
× (Cj + γucbi,j) (2)

where the WCRT of τi is the smallest positive solution to (2).
Note that the UCB-union approach does not take into account

the actual number of job releases of a task. Therefore, it
overestimates the number of preemptions tasks can cause or
suffer and hence results in pessimistic CRPD bounds. To reduce
this pessimism, a multi-set extension of this analysis was
proposed in [3].

The UCB-union multi-set approach [3] takes into account
the maximum number of jobs Ej(Ri)

def
=
⌈
Ri
Tj

⌉
that each

higher priority task τj can release during the response time
of τi. It upper bounds the number of preemptions each task
τk ∈ aff(i, j) can suffer due to a higher priority task τj during
the response time of τi by Ej(Rk)Ek(Ri)

def
=
⌈
Rk
Tj

⌉
×
⌈
Ri
Tk

⌉
.

The resulting CRPD cost is denoted by γucb−mi,j and it accounts
for the total preemption cost that can be caused by all jobs of
τj released during the response time of τi. γucb−mi,j is given by

γucb−mi,j = dmem ×
∣∣∣Mucb

i,j ∩Mecb
i,j

∣∣∣ (3)

where Mucb
i,j and Mecb

i,j are multi-sets defined as

Mucb
i,j =

⋃
∀k∈aff (i,j)

 ⋃
Ej(Rk)Ek(Ri)

UCBk

 (4)

Mecb
i,j =

⋃
Ej(Ri)

ECBj (5)

The UCB-union multi-set approach dominates the UCB-
union approach and provides more precise bounds on the
CRPD cost by using the following WCRT equation.

Rucb−m
i = Ci +

∑
∀j∈hp(i)

⌈
Rucb−m
i

Tj

⌉
× Cj +

∑
∀j∈hp(i)

γucb−mi,j (6)

For a more detailed description of the formulation of (3) to (6),
including worked examples, see [3].

B. Cache Persistence
The notion of cache persistence and the concept of persistent

and non-persistent cache blocks (PCBs and nPCBs) was
introduced by Rashid et al. [21].

Definition 3 (Persistent Cache Block (PCB)). A memory block
of a task τi is called a persistent cache block, if once loaded
by τi, it will never be invalidated or evicted from the cache (in
the same or different job of τi) when τi executes in isolation.
Definition 4 (non-Persistent Cache Block (nPCB)). A non-
persistent cache block of task τi is an ECB that is not a PCB.
That is, it is a memory block that may need to be reloaded at
some point during the execution of τi (in the same or different
job), even when τi executes in isolation.

Based on the definition of non-persistent cache blocks
(nPCBs), the notion of the residual memory demand (MDr

i)
of a task τi is defined as follows.

Definition 5 (Residual Memory Demand). The residual mem-
ory demand MDr

i of task τi is the worst-case memory demand

of any job of τi when all its PCBs are already loaded in the
cache memory.

The number of PCBs and the residual memory demand
(MDr

i) of a task can be used to bound its total memory demand
M̂D i(t) in isolation during a time interval of length t:

M̂Di(t)
def
= min

{⌈
t

Ti

⌉
MD i ;

⌈
t

Ti

⌉
MDr

i+ | PCB i | ×dmem

}
(7)

The notion of CPRO is also defined in [21] as:

Definition 6 (Cache-Persistence Reload Overhead (CPRO)).
The cache-persistence reload overhead denoted by ρj,i is the
maximum memory reload overhead suffered by a task τj due
to evictions of its PCBs by tasks in hep(i) \ τj while τj is
executing during the response time of τi.

CPRO can be calculated using the CPRO-union and the
CPRO multi-set approaches [21]. The CPRO-union approach
uses the PCBs of task τj and the union of the ECBs of all
tasks in hep(i) \ τj to calculate the total CPRO ρunionj,i of task
τj during the response time of task τi as follows:

ρunion
j,i

def
=

(⌈
Ri
Tj

⌉
− 1

)
× ρ′j,i (8)

where ρ′j,i is the CPRO associated with a single job of τj .

ρ′j,i = dmem ×
∣∣∣∣PCBj ∩

(⋃
∀τk∈hep(i)\τj

ECBk

)∣∣∣∣ (9)

The CPRO-union approach assumes that the ECBs of all
tasks τk ∈ hep(i) \ τj are interfering with every job of τj
released within the response time of τi. This is pessimistic.
Indeed, considering two different tasks τk and τl in hep(i)\τj ,
the number of times τl can execute between different jobs of τj
is not necessarily equal to the number of times τk can interfere
with those jobs. The CPRO multi-set approach removes this
pessimism by first categorizing all the tasks that can execute
during the response time of τi, i.e., τk ∈ hep(i) \ τj into
two different sets: hp(j) and aff(i, j). It then uses the actual
number of executions of intermediate (∈ aff(i, j)) and higher
priority tasks (∈ hp(j)) to bound the CPRO cost ρmul

j,i :

ρmul
j,i

def
= dmem ×

∣∣∣Mecb
j,i ∩Mpcb

j,i

∣∣∣ (10)

where Mecb
j,i and Mpcb

j,i are multi-sets defined as

Mpcb
j,i =

⋃
Ej(Ri)−1

PCBj and Mecb
j,i = Mecb−aff

j,i ∪Mecb−hp
j,i

with Mecb−aff
j,i =

⋃
∀k∈aff(i,j)

 ⋃
(Ej(Rk)+1)Ek(Ri)

ECBk

 (11)

Mecb−hp
j,i =

⋃
∀l∈hp(j)

 ⋃
El(Ri)

ECB l

 (12)

Note that the CPRO multi-set approach dominates the CPRO-
union approach.

When considering cache persistence and CPRO, the WCRT
equation of a task τi under FPPS can be re-written as follows:

Ri = Ci +
∑

∀j∈hp(i)

(
γi,j + min

{⌈
Ri
Tj

⌉
Cj ;

⌈
Ri
Tj

⌉
PDj (13)

+ M̂Dj(Ri) + ρj,i

})

where γi,j is either equal to γucb−m
i,j (3), or

⌈
Rucb
i

Tj

⌉
× γucbi,j

(1), and ρj,i is either ρunion
j,i (8), or ρmul

j,i (10). In the remainder
of this paper, unless stated otherwise, we assume that (13) is
used to calculate the WCRT of a task τi.

For more information on the formulation of (7)-(13), readers
are referred to [21].

IV. PROBLEM FORMALIZATION

The CRPD of a task accounts for the evictions of its UCBs
due to preemptions caused by higher priority tasks. Similarly,
the CPRO accounts for the evictions of its PCBs between
successive job executions. Therefore, the total time spent
reloading cache blocks evicted during the response time of τi is
bounded by the sum of the CRPD and the CPRO experienced by
every task executing during τi’s response time. This overhead
is denoted by µi and is defined as follows.

Definition 7 (Total Memory Reload Overhead (µi)). Let
CRPD i,j(S) and CPRO i,j(S) be the total actual CRPD and
CPRO suffered by τj during the response time of one job of
τi in a given schedule S. The total memory reload overhead
µi during the response time of τi is the maximum sum of the
CRPD and CPRO of all tasks executing during τi’s response
time in any schedule S. Formally,

µi
def
= max

∀S

 ∑
∀τj∈hep(i)

(
CRPD i,j(S) + CPRO i,j(S)

) (14)

From the above definition, it follows that µi is upper-bounded
by
∑
τj∈hep(i)(γ

ucb−m
i,j + ρmulj,i) where γucb−mi,j and ρmulj,i are

computed by (3) and (10), respectively. However, independently
computing CRPD and CPRO may result in overestimating the
actual total memory reload overhead µi as illustrated in the
example below.

Example 1. Let τ be composed of three tasks {τ1, τ2, τ3} with
τ1 having the highest priority and τ3 the lowest. Fig. 1 presents
the task set parameters and the worst-case schedule for τ3
together with the evolution of the cache contents over time.
Cache blocks that have been evicted either due to CRPD or
CPRO and must be reloaded from main memory are highlighted
in red. The set of PCBs are highlighted in green.

Initially, the cache is empty and with τ3 being the first task to
execute it loads all its ECBs into the cache. When τ2 preempts
τ3 for the first time, it also loads its ECBs. Similarly, τ2 is
preempted by the highest priority task τ1 at time 2. Note that
ECBs of task τ1 and UCBs/PCBs of task τ2 are mapped to
the same cache blocks, i.e., {7, 8, 9, 10}. Therefore, when τ2
resumes its execution after the completion of the first job of
τ1 it needs to reload all its UCBs, (highlighted in red) as they

(a) Schedule maximizing CRPD during the response time of τ3

(b) Schedule maximizing CPRO during the response time of τ3

Fig. 1: Schedules maximizing τ3’s response time when C1 = 1,
C2 = 2, C3 = 9, T1 = 6, T2 = 6, T3 = 25, ECB1 =
{7, 8, 9, 10}, ECB2 = {7, 8, 9, 10}, ECB3 = {1, 2, 3, 4, 5},
UCB2 = {7, 8, 9, 10}, PCB2 = {7, 8, 9, 10} and UCB1 =
UCB3 = PCB1 = PCB3 = ∅
were evicted by τ1. These additional memory accesses will be
accounted for as CRPD.

Since, the first job of τ2 loads all τ2’s ECBs (PCBs and
nPCBs) into the cache, subsequent jobs of τ2 may have a lower
memory demand due to the existence of PCBs in the cache,
i.e., blocks {7, 8, 9, 10}. However, some of these PCBs may be
evicted due to other task executions. The additional memory
accesses required to reload evicted cache blocks are accounted
for as CPRO. Such a situation where the CPRO is maximized
is depicted in Fig. 1b.

Based on Fig. 1a, the total memory reload overhead µ3

during τ3’s response time is equal to the time needed to reload
12 cache blocks (i.e., the number of red blocks).

Now, if we use the UCB-union multi-set and the CPRO
multi-set approaches to calculate µ3, we have the following.

µ3 ≤ γucb−m3,1 + γucb−m3,2 + ρmul
1,3 + ρmul

2,3

Since τ2 is the only task with useful cache blocks (UCB2 =
{7, 8, 9, 10}), it is also the only task suffering from CRPD.
Therefore, γucb−m3,2 = 0. Using (3), we have (note that
E1(R3) = 3, E1(R2) = 1, E2(R3) = 3, and E3(R3) = 1):

γucb−m3,1 = dmem × | (3×UCB3 ∪ 3×UCB2) ∩ (3× ECB1)|
= dmem × 12

Similarly, when calculating the CPRO we can see that the
set of PCBs for all tasks except τ2 is empty. Hence, the total
CPRO during the response time of task τ3 comes only from
the evictions of PCBs of task τ2. Assuming that the CPRO is
calculated using (10) we have ρmul

1,3 = 0 and

ρmul
2,3 = dmem×|(2×PCB2)∩(4× ECB3 ∪ 3× ECB1) | = dmem×8

Adding CRPD and CPRO, it follows that the total memory
reload overhead during the response time of τ3 is upper-
bounded by dmem × 20. Thus it appears that 20 cache blocks

need to be reloaded during the response time of τ3. The reason
for the overestimation is that the total CRPD is indeed upper-
bounded by 12 cache blocks reloads (as shown in Fig. 1a) and
the total CPRO is indeed upper-bounded by 8 cache blocks
reloads (as shown on Fig. 1b), but both scheduling scenarios
cannot happen at the same time. It is not possible for the three
jobs of τ1 to result in the group of 4 cache block reloads three
times over due to preemptions (accounted for in γucb−m

3,1) and
two times over due to cache persistence overheads (accounted
for in ρmul

2,3). This observation leads to the following lemma.
Lemma 1. Let us assume that the total CRPD during the
response time of task τi is computed using (1) or (3) and that
the total CPRO during τi’s response time is computed with (8)
or (10). Let bk,` be the `th cache block of a task τk ∈ hp(i),
i.e., bk,` ∈ ECBk. The eviction of bk,` will be accounted for
in both the CRPD and CPRO, only if bk,` is a UCB and a
PCB of τk, i.e., bk,` ∈ UCBk ∩ PCBk.

Proof. This claim follows directly from the fact that (1) and (3)
account for the evictions of UCBs of tasks in hep(i). Therefore,
the eviction of cache block bk,` will be considered in the
CRPD calculation only if it is a UCB. Similarly, (8) and (10)
account for the evictions of PCBs of tasks in hp(i). Hence, the
eviction of cache block bk,` will be considered in the CPRO
calculation only if it is a PCB. Therefore, the eviction of bk,`
may be accounted for in both the CRPD and CPRO, only if
bk,` ∈ UCBk ∩ PCBk.

It can also be seen in Example 1 that for any task τk ∈ hp(i)
(e.g., τ2) executing during the response time of a lower priority
task τi (e.g., τ3), only higher priority tasks than τk (e.g., τ1
) can participate in both the CRPD and CPRO of τk. This
observation leads to the following lemma.

Lemma 2. For any task τk ∈ hp(i) executing during the
response time of a lower priority task τi, only the tasks in
hp(k) can contribute to both the CRPD and CPRO of τk.

Proof. By Definition 6, all tasks in hep(i) \ τk can contribute
to the CPRO of τk during the response time of τi.

Let τ` be any task in hep(i) \ τk. Two cases must be
considered:

1) If τ` ∈ aff(i, k) then τ` has a lower priority than τk.
Therefore, τ` can never preempt τk and hence cannot
contribute to τk’s CRPD.

2) If τ` ∈ hp(k) then τ` has a higher priority than that of
τk. Task τ` can therefore preempt τk and cause CRPD.

Hence, only tasks in hp(k) can contribute to both τk’s CRPD
and CPRO.

V. INTEGRATED CRPD-CPRO ANALYSIS

In the existing literature, CRPD and CPRO are calculated
independently of each other. As discussed in Section IV, this
can lead to an overestimation of the total memory reload
overhead. In this section, we present a novel approach to
bound the total memory reload overhead during the response
time of a task τi. This section builds upon the UCB-union
and CPRO-union approaches for the calculation of CRPD and
CPRO, respectively. In Section VI, we extend this analysis to

consider the more precise, but also more complex, multi-set
variants of the CPRD and CPRO calculation.

It follows from Lemma 1 that only the cache blocks in⋃
∀τj∈hp(i) (UCB j ∩ PCB j) can have their evictions counted

twice during the CRPD and CPRO calculations. This dou-
ble counting can be removed either (i) during the CRPD
calculation by not considering the evictions of PCBs in⋃
∀τj∈hp(i) (UCB j ∩ PCB j), since their eviction will be

accounted for in the CPRO; or, (ii) during the CPRO
calculation by not considering the eviction of UCBs in⋃
∀τj∈hp(i) (UCB j ∩ PCB j), since their eviction will be con-

sidered in the CRPD. In this section, we focus on the latter
solution assuming that the CRPD is computed using the UCB-
union approach (i.e., using (1)).

Lemma 3. Let Γi be an upper-bound on the total CRPD during
the response time Ri of τi. Further assume that Γi is computed
using the UCB-union approach, i.e., Γi

def
=

∑
∀τj∈hp(i)

⌈
Ri
Tj

⌉
γucb
i,j .

Let ∆i be an upper-bound on the portion of the total
memory reload overhead during τi’s response time that is
not accounted for in Γi, that is, ∆i = µi − Γi, then we have
∆i ≤

∑
∀τj∈hp(i)

(⌈
Ri
Tj

⌉
− 1
)
× δj,i where

δj,i
def
= dmem ×

∣∣∣∣PCBj

⋂((⋃
∀τk∈aff(i,j)

ECBk

)⋃
(15)

(⋃
∀τk∈hp(j)

ECBk \ (UCBj ∩ PCBj)
))∣∣∣∣

Proof. It was proven in [23] that Γi upper-bounds the total
CRPD during τi’s response time. Therefore, the portion of
the total memory reload overhead µi that is not accounted
for in Γi is a subset of the total CPRO during τi’s response
time. Similar to the calculation of the total CPRO, at most(⌈

Ri
Tj

⌉
− 1
)

jobs of each higher priority task τj can suffer
memory reload overhead δj,i not yet accounted for in Γi. Since
the total CPRO is an upper-bound on ∆i, using (8) and (9)
we have ∆i ≤

∑
∀τj∈hp(i)

(⌈
Ri
Tj

⌉
− 1
)
× δj,i with δj,i ≤ ρ′j,i.

We now prove the validity of δj,i.
Since a fixed-priority scheduling algorithm is used, only

tasks with priorities higher than or equal to the priority of τi
(i.e., tasks in hep(i)) can execute during the response time of
τi. Therefore, any task τk ∈ hep(i) \ τj can execute between
two subsequent jobs of another task τj and hence participate
in τj’s CPRO by evicting some or all its PCBs. Let τk be any
task in hep(i) \ τj . Two cases need to be considered (note that
hep(i) \ τj = aff(i, j) ∪ hp(j)).

1) τk ∈ aff(i, j). Since τk has a lower priority than τj it
cannot preempt τj , and hence τk does not contribute to
the CRPD of τj . Therefore, the memory reload overhead
generated by τk on τj is not part of Γi and must be
entirely accounted for in δi,j . This worst-case interference
of τk on τj is maximized when τk loads all its cache
blocks (i.e., ECBk).

2) If τk ∈ hp(j) then, by Lemma 2, τk may contribute to
both the CRPD and CPRO of τj . As stated in Lemma 1,
the evictions of cache blocks of τj in UCB j ∩ PCB j

were already considered in Γi. Therefore, the number of
cache block evictions caused by τk on τj that were not
accounted for in Γi is maximized when τk loads all the
cache blocks in ECBk \ (UCB j ∩ PCB j).

From 1. and 2., the biggest set Sj,i of cache blocks that can
be loaded by tasks in hep(i) \ τj and were not yet considered
in Γi is given by:

Sj,i =

 ⋃
∀τk∈aff(i,j)

ECBk

⋃ ⋃
∀τl∈hp(j)

ECBl \ (UCBj ∩ PCBj)

The set of PCBs that must be reloaded by τj at each job
execution is thus upper-bounded by the intersection between
τj’s PCBs (i.e., PCB j) and the set Sj,i derived above. Since
each cache block reload takes at most dmem time units, the time
δj,i spent by τj at each job execution to reload evicted PCBs
that were not yet considered in Γi is bounded by (15).

As a corollary of Lemma 3, we can upper-bound the total
memory reload overhead µi as stated in the following theorem:

Theorem 1. The total memory reload overhead µi during τi’s
response time is upper-bounded by

∑
∀τj∈hp(i)

((⌈
Ri
Tj

⌉
× γucb

i,j

)
+

(⌈
Ri
Tj

⌉
− 1

)
× δj,i

)
(16)

Proof. Follows from Lemma 3 since µi = ∆i + Γi.

This directly leads to the following theorem:

Theorem 2. The WCRT of τi is upper-bounded by the smallest
positive solution to

Ri = Ci +
∑

∀j∈hp(i)

(
γi,j + min

{⌈
Ri
Tj

⌉
Cj ;

⌈
Ri
Tj

⌉
PDj (17)

+ M̂Dj(Ri) + δ̂j,i

})
where

δ̂j,i
def
=

(⌈
Ri
Tj

⌉
− 1

)
δj,i (18)

and γi,j is given by
⌈
Ri
Tj

⌉
γucbi,j for UCB-Union.

Proof. By Theorem 1 and substituting δ̂j,i for ρj,i in (13)

Since, δj,i calculated using (15) is always less than or equal
to ρ′j,i calculated using (9), the resulting WCRT obtained using
(17) is always less than or equal to the WCRT obtained using
(13) when γi,j is computed using the UCB-union approach.
In other words, the integrated approach to CRPD and CPRO
analysis given by Theorem 2 dominates the simple combination
of the UCB-union and CPRO-union approaches.

Example 2. We now compute the total memory reload overhead
of task τ3 in Example 1 using the results derived in Theorem 1.

Note that the UCB-union (1) and the UCB-union multi-set
(3) approaches would give exactly the same values for the
total CRPD. Therefore, the total CRPD is upper-bounded by
dmem × 12.

The set of PCBs for all tasks except τ2 is empty. Therefore,
based on (15), we have δ1,3 = 0 and

δ2,3 = dmem × |PCB2 ∩ (ECB3 ∪ (ECB1 \ (UCB2 ∩ PCB2))) |
= dmem × |{7, 8, 9, 10} ∩ ({7, 8, 9, 10} \ {7, 8, 9, 10}) | = 0

According to Theorem 1, µ3 is thus upper-bounded by (12×
dmem), which is in this case the exact overhead experienced
during the response time of τ3 as illustrated in Fig. 1a.

VI. MULTI-SET APPROACH TO INTEGRATED CRPD-CPRO
ANALYSIS

In this section, we improve the analysis presented in
Section V by building upon the UCB-union multi-set (3)
and CPRO-union multi-set (10) analyses that were shown to
dominate the UCB-union and CPRO-union approaches.

While the UCB-union approach assumes that every job of
a task τk ∈ hp(i) executing during the response time of τi
can contribute to the total CRPD, the UCB-union multi-set
approach (3) considers that only a subset of τk’s jobs actually
contribute to the preemption overhead. Hence, we must also
differentiate between jobs that are considered in the CRPD
and those that are not, when computing the portion of the total
memory reload overhead µi that is not yet accounted for in
the total CRPD.

Example 3. The example task set in Fig. 2 has three tasks
τ1, τ2 and τ3 with priorities assigned in numerical order such
that τ1 has the highest priority. We want to analyze the total
memory reload overhead µ3 during the response time of τ3.
Task τ2 is the only task with UCB2 ∩ PCB2 6= ∅. The sets of
UCBs and PCBs of τ1 and τ3 are empty. Therefore, τ2 is the
only task that may suffer CRPD and CPRO. The total memory
reload overhead µ3 is thus bounded by the sum of the CRPD
and CPRO suffered by τ2 during the response time of τ3.

By Lemma 2, τ1 is the only task that can contribute to both
τ2’s CRPD and CPRO. Since τ1 can preempt each job of τ2 at
most once (i.e., E1(R2) = 1), and because τ2 releases three
jobs during τ3’s response time (i.e., E2(R3) = 3), at most
three jobs of τ1 are preempting jobs of τ2 during the response
time of τ3, i.e., E1(R2)E2(R3) = 3. Therefore, at most three
jobs of τ1 may be contributing to both τ2’s CRPD and CPRO
during τ3’s response time. The two remaining jobs of τ1 can
only execute between jobs of τ2, and hence contribute only to
τ2’s CPRO.

To calculate the CPRO that any task τj ∈ hp(i) can suffer
during the response time of τi, taking into consideration what
has already been accounted for in the CRPD cost, we first
analyze the impact of each task in hep(i) \ τj on the CPRO
of τj . We characterize the maximum number of times a task
τk ∈ hep(i)\ τj can execute between successive jobs of τj . To
do so, we separately analyze the tasks in aff(i, j) (Lemma 4)
and the tasks in hp(j) (Lemma 5). We then identify how many
jobs of each task contribute only to the CPRO of τj and how
many jobs contribute to both the CRPD and the CPRO of τj
(Lemma 6). We then make use of this information to derive a
multi-set formulation (Lemma 7) that calculates the additional
CPRO of a task τj ∈ hp(i) that is not already accounted for
in the CRPD cost computed with (3).

Fig. 2: Illustrating the pessimism associated with the separate
UCB-union multi-set and CPRO multi-set analysis using the
task set {τ1, τ2, τ3} with C1 = 1, C2 = 2, C3 = 6, T1 = 3,
T2 = 6 and T3 = 20.

Lemma 4 (from [21]). The maximum number of times a task
τk ∈ aff(i, j) can execute between jobs of τj released during
τi’s response time is upper-bounded by (Ej(Rk)+1)×Ek(Ri).

Proof. Lemma 4 in [21].

Lemma 5 (from [21]). The maximum number of times a task
τk ∈ hp(j) can execute between successive jobs of τj released
during τi’s response time is upper bounded by Ek(Ri).

Proof. Lemma 3 in [21].

Example 3 shows that not all of the jobs released by a
higher priority task τl ∈ hp(j) (e.g., τ1 in Fig. 2) during the
response time of a lower priority task τi (e.g., τ3 in Fig. 2) can
preempt τj (e.g., τ2 in Fig. 2). The jobs that do not preempt
cannot contribute to both the CRPD and the CPRO of τj . This
observation leads to the following Lemma:

Lemma 6. For a task τj ∈ hp(i) executing during the response
time of τi, the number of jobs of any higher priority task
τl ∈ hp(j) that are already accounted for in the CRPD γucb−m

i,j

is given by Ndouble
l,j (Ri) = min{El(Ri) ; El(Rj)Ej(Ri)}.

Proof. The CRPD γucb−m
i,j in (3) is composed of the intersec-

tion of the two multi-sets Mucb
i,j and Mecb

i,j .
1) The calculation of Mecb

i,j (5) assumes that a task τl ∈ hp(j)
can release at most El(Ri) jobs during the response time
Ri of τi. Therefore, at most El(Ri) jobs of τl preempting
τj are accounted for in the calculation of γucb−m

i,j in (3).
2) The calculation of Mucb

i,j (4) assumes that for any task
τj ∈ aff (i, j), El(Rj)Ej(Ri) is an upper bound on the
number of times τj can be preempted by τl during τi’s
response time. Therefore, at most El(Rj)Ej(Ri) jobs of
τl are accounted for in γucb−m

i,j (3).

It follows that the number of jobs of τl accounted for in γucb−m
i,j

is given by Ndouble
l,j (Ri).

Using Lemmas 2, 4–6 we derive an upper bound on the
CPRO any task τj ∈ hp(i) can suffer during τi’s response
time, discounting what has already been taken into account in
the CRPD cost γucb−m

i,j . This upper bound is denoted by δmul
i,j .

Lemma 7. Let Γmi be an upper-bound on the total CRPD
during the response time Ri of τi. Further assume that Γmi
is computed using the UCB-union multi-set approach, i.e.,
Γmi =

∑
∀τj∈hp(i)

γucb−mi,j . Let ∆m
i be an upper-bound on the

portion of the total memory reload overhead that was not
accounted for in Γmi , that is, ∆m

i = µi − Γmi , then:

∆m
i ≤

∑
∀τj∈hp(i)

δmul
i,j (19)

where
δmul
i,j

def
= dmem ×

∣∣∣Mecb
j,i ∩Mpcb

j,i

∣∣∣ (20)

where Mecb
j,i and Mpcb

j,i are multi-sets defined as

Mpcb
j,i =

⋃
Ej(Ri)−1

PCBj (21)

Mecb
j,i = Mecb−aff

j,i ∪Mhp−int
j,i (22)

with Mecb−aff
j,i =

⋃
∀k∈aff(i,j)

 ⋃
(Ej(Rk)+1)Ek(Ri)

ECBk

 (23)

Mhp−int
j,i =

⋃
∀l∈hp(j)

((⋃
El(Ri)−Ndouble

l,j
(Ri)

ECB l

)⋃
(24)

(⋃
Ndouble
l,j

(Ri)

ECB l \
(
UCBj ∩ PCBj

)))

Proof. Since Γmi upper-bounds the total CRPD during τi’s
response time calculated using (3), the portion of µi that is
not accounted for in Γmi is a subset of the total CPRO during
τi’s response time that is,

∆m
i ≤

∑
∀τj∈hp(i)

δmul
j,i

where δmul
j,i ≤ ρmul

j,i .
We prove the validity of δmul

j,i below.

1. Since τj can release at most
⌈
t
Tj

⌉
jobs in a time window of

length t, the PCBs of τj can be evicted at most
(⌈

t
Tj

⌉
− 1
)

times within the time window of length t, contributing to
CPRO4. Therefore, the largest set of PCBs of τj that can be
evicted during the response time of τi is upper bounded by
the multi-set Mpcb

j,i =
⋃

Ej(Ri)−1
PCB j given in (21).

2. By Lemma 4, the maximum number of times a task
τk ∈ aff(i, j) can execute between two successive jobs
of τj during the response time of τi is upper bounded by
(Ej(Rk) + 1)× Ek(Ri). Hence, the largest set of ECBs that
can be loaded by τk between successive jobs of τj during
the response time of τi is given by

⋃
(Ej(Rk)+1)Ek(Ri)

ECBk.

Therefore the largest set of ECBs loaded by the tasks in aff(i, j)
between successive executions of τj is upper bounded by

Mecb−aff
j,i =

⋃
∀k∈aff(i,j)

(⋃
(Ej(Rk)+1)Ek(Ri)

ECBk

)
given in (23).

3. By Lemma 5, the maximum number of times a task τl ∈
hp(j) can execute between two successive jobs of τj during
the response time of τi is upper bounded by El(Ri). Hence,
the largest set of ECBs that can be loaded by τl and interfere
with the PCBs of τj is given by

⋃
El(Ri)

ECB l. However, by

Lemma 2, as τl ∈ hp(j) it can contribute to both the CRPD
and CPRO of τj during the response time of τi. Further, by
Lemma 6, the number of jobs of τl that were already considered

4Recall from (7) that all PCBs are assumed to be loaded once anyway.

in the CRPD of τj is equal to Ndouble
l,j (Ri). Therefore, instead

of assuming that all jobs released by τl ∈ hp(j) during the
response time of τi contribute to δmul

j,i , the multi-set Mhp−int
j,i

separately categorizes the impact of jobs of τl that can/cannot
be contributing to both the CRPD and CPRO of τj during the
response time of τi.
3.1 Since Ndouble

l,j (Ri) is the number of jobs of τl that were al-
ready considered in the CRPD of τj , then El(Ri)−Ndouble

l,j (Ri)
jobs of τl only contribute to the CPRO of τj . The memory
reload overhead generated by these El(Ri)−Ndouble

l,j (Ri) jobs
of τl on τj is not part of Γmi and must therefore be entirely
accounted for in δmul

j,i . The worst-case interference of all these
jobs is maximized when every job of τl loads all its cache
blocks (i.e., ECB l). Hence, the worse-case impact that these
jobs of τl can have on the τj’s CPRO is bounded by the multi-
set

⋃
El(Ri)−Ndouble

l,j (Ri)

ECB l given in the first term of (24).

3.2 For all jobs of τl that can contribute to both the CRPD
and CPRO of τj , i.e., Ndouble

l,j (Ri), then as stated in Lemma 1,
the evictions of caches blocks of τj in UCB j ∩ PCB j were
already considered in Γmi . Therefore, the number of cache
block evictions caused by these Ndouble

l,j (Ri) jobs of τl on τj
that were not accounted for in Γmi is maximized when each
job loads all the cache blocks in ECB l \ (UCB j ∩ PCB j).
Hence, the worse-case additional impact of all jobs of τl that
contribute to both the CRPD and CPRO of τj is bounded by
the multi-set,

⋃
Ndouble
l,j (Ri)

ECB l \ (UCB j ∩PCB j) given by the

second term of (24).
Therefore, by 2. and 3. above, the largest set of ECBs that

can interfere with the PCBs of τj during the response time of
τi is upper bounded by Mecb

j,i = Mecb−aff
j,i ∪Mhp−int

j,i given by
(22). Hence, the largest set of PCBs of τj that can be evicted
by the tasks in hep(i) \ τj within the response time of τi with
evictions not already considered in Γmi , is upper bounded by
the intersection of Mpcb

j,i with Mecb
j,i . Since reloading a cache

block takes at most dmem time units, an upper bound on the
total CPRO δmul

j,i , not already included in the CRPD, is given

by dmem ×
∣∣∣Mecb

j,i ∩M
pcb
j,i

∣∣∣ in (20).

As a corollary of Lemma 7, we can upper-bound the total
memory reload overhead µi as stated in the following theorem:

Theorem 3. The total memory reload overhead µi during τi’s
response time is upper-bounded by∑

∀τj∈hp(i)

(
γucb−m
i,j + δmul

j,i

)
(25)

Proof. Follows from Lemma 7 since µi = ∆m
i + Γmi .

This leads directly to the following theorem.

Theorem 4. The WCRT of τi is upper-bounded by the smallest
positive solution to

Ri = Ci +
∑

∀j∈hp(i)

(
γi,j + min

{⌈
Ri
Tj

⌉
Cj ;

⌈
Ri
Tj

⌉
PDj+ (26)

M̂Dj(Ri) + δmul
j,i

})

where γi,j is given by γucb−mi,j for UCB-Union Multi-set.

Proof. By Theorem 3 and substituting δmul
j,i for ρj,i in (13)

Since, δmul
j,i calculated using (20) is always less than or

equal to ρmul
j,i calculated using (10), the resulting WCRT

obtained using (26) is always less than or equal to the WCRT
obtained using (13) when γi,j is computed using the UCB-
Union Multiset approach. In other words, the integrated multiset
approach to CRPD and CPRO analysis given by Theorem 4
dominates the seperate combination of the UCB-Union Multiset
and CPRO-Multiset approaches.

VII. EXPERIMENTAL EVALUATION

In this section, we evaluate how the integrated CRPD-
CPRO analyses perform in terms of schedulability and if it is
beneficial to use the integrated approaches in comparison to the
state-of-the art approaches that separately account for CRPD
and CPRO. We performed experiments using the Mälardalen
benchmark suite [13] and a set of sequential benchmarks from
TACLEBench [12] with various parameter settings.

The tasks parameters Ci, PDi, MD i, MDr
i along with the

sets of UCB , ECB , PCB and nPCB were extracted using
Heptane, a static WCET analysis tool5, as presented in [21]. The
target architecture was MIPS R2000/R3000 assuming a cache
line size of 32 Bytes, a cache size of 8kB and a block reload
time dmem = 8µs. The memory footprint of each task was
upper bounded by 256 cache sets (i.e., 100% of the cache size).
Table I (See Appendix A) shows the resulting task parameters
for the benchmarks used during the experiments.

The other task set parameters were randomly generated as
follows. The default number of tasks was 10 with task utiliza-
tions generated using UUnifast [8]. Each task was randomly
assigned the values Ci, PDi, MD i, MDr

i , UCB , ECB , PCB
and nPCB of one of the analyzed benchmarks. Task periods
were set such that Ti = Ci/Ui. Task deadlines were implicit
and priorities were assigned in deadline monotonic order.

We conducted experiments varying the total task utilization,
cache size, block reload time and task memory footprint (for
the experiment on task memory footprint See Appendix B). A
WCRT based schedulability analysis is performed using the
same task sets for all approaches.

1) Core Utilization.: In this experiment, we randomly gener-
ated 100 task sets (with 10 tasks each) with a total utilizations
varied from 0.025 to 1 in steps of 0.025. The experiment was
first performed using the Mälardalen benchmarks and then
using TACLEBench’s sequential benchmarks.

Fig. 3(a) and (b) show the number of task sets that were
deemed schedulable by the different analyses. Both plots also
show the number of task sets that were deemed schedulable
without considering any CRPD or CPRO. We only show
cropped versions of the plots starting from a utilization of
0.7. All approaches produce identical results below this point.

Observation 1. Integrated CRPD-CPRO analyses out-perform
the state-of-the-art CPRO-union and multi-set approaches that
separately account for CRPD and CPRO.

5See https://team.inria.fr/alf/software/heptane/

0

10

20

30

40

50

60

70

80

90

100

0.7 0.725 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

SC
HE

DU
LA

BE
 TA

SK
SE

T

CORE UTILIZATION

No Premption Cost
Separate CPRO-Uni
Integrated CRPD+CPRO Uni
Separate CPRO-Mul
Integrated CRPD+CPRO Mul

7%

2%

(a) Schedulability ratio using Mälardalen benchmarks

0

10

20

30

40

50

60

70

80

90

100

0.7 0.725 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1

SC
HE

DU
LA

BL
E T

AS
KS

ET

CORE UTILIZATION

No Premption Cost

Separate CPRO-Uni

Integrated CRPD+CPRO Uni

Separate CPRO-Mul

Integrated CRPD+CPRO Mul

(b) Schedulability ratio using TACLEBench

Fig. 3: Schedulability ratio with respect to total core utilization

Fig. 3a shows that when using Mälardalen benchmarks
the integrated schedulability tests accepted more task sets in
comparison to tests using separate CRPD and CPRO analyses.
The difference between the integrated CRPD-CPRO union
approach and the separate CPRO-union approach is more
significant in comparison to their multi-set counterparts. The
schedulability ratio is increased by up to 7%. However, as
the separate CPRO multi-set approach is already much more
precise the difference between the integrated CRPD-CPRO
multi-set and the separate CPRO multi-set approach is only
around 2%. Nevertheless, we can observe that there are task
sets that were schedulable using the integrated CRPD-CPRO
approaches but not with the separate CPRO-union and multi-set
approaches, therefore in this case the integrated CRPD-CPRO
approaches outperforms the separate CPRO-union and multi-
set approaches. Note also that the schedulability gain slightly
increases when the cache size increases. For instance, when
there are 512 cache sets the gain is 8% for the integrated CRPD-
CPRO union analysis, and 4% for the multi-set analysis.

Observation 2. For benchmarks (i.e., tasks) with large memory
footprints, there is no gain when integrating the CRPD-CPRO
calculation.

As shown in Fig. 3b, the integrated CRPD-CPRO analyses
do not improve over the state-of-the-art for the TACLEBench
benchmarks. In fact, the same number of task sets were
schedulable using all the approaches. The difference with
Fig. 3a can be understood as follows. Mälardalen benchmarks
consist of both light and heavy tasks (see Table I in Appendix A)
whereas the majority of tasks in TACLEBench have large
memory footprints using the entire cache. Therefore, almost
all tasks overlap in the cache, in which case the tasks with
lower priority than a task τj (i.e., the tasks in aff(i, j)) evict

the same cache blocks of τj as the tasks with higher priority
(i.e, in hp(j)). Hence, according to (15) and (20), integrating
the CRPD and CPRO analyses does not provide any gain.

From here on, we only show experimental results obtained
using the Mälardalen benchmarks.

2) Cache size: In FPPS, the cache size can have a significant
impact on the overall schedulability of the system. In this
experiment, we vary the total number of cache sets from 32 to
512. Fig. 4a shows the resulting weighted schedulability [7]
of each approach plotted against the total cache size6.

Observation 3. The integrated CRPD-CPRO analyses tend to
outperform the separate analyses when the cache size increases.

We can see from the plot in Fig. 4a, that initially increasing
the cache size decreases the schedulability of all the approaches
(i.e., from 32 to 128). This is mainly because most tasks use
between 32 to 128 cache sets. Hence, increasing the cache size
in this interval increases the number of ECBs and UCBs of
tasks resulting in higher values of CRPD. Most of the cache
blocks are evicted (and reloaded) for every task execution
and hence we observe that all the approaches produce similar
results. However, a further increase in cache size (i.e., from
128 to 512) means more tasks fit in the cache with less conflicts
between tasks. Therefore, we see an increase in schedulability
of all approaches. Also increasing the cache size results in
increasing the number of PCBs of tasks, so the overlap between
UCBs and PCBs of tasks also increase. Hence, we observe that
with an increase in cache size from 128 to 512, the integrated
CRPD-CPRO union and multi-set approach tend to perform
better than the state-of-the-art approaches.

3) Block Reload Time (dmem): In this experiment, we ana-
lyze the impact of block reload time dmem on the performance
of all the approaches by varying it between 2µs to 20µs, with
all other parameters set to default values. Fig. 4b shows the
resulting weighted schedulability.

Observation 4. For very low or very high values of block
reload time dmem , the integrated and separate CRPD-CPRO
analyses produce similar results.

For smaller values of dmem (i.e., between 2µs and 4µs)
the impact of CRPD and CPRO on the schedulability of
tasks is minimal. This means that similar results are achieved
for integrated and separate union and multi-set approaches.
Similarly, for higher values of dmem (i.e., dmem > 15µs),
the CRPD becomes very high and thus negates any gain in
schedulability resulting from the reduction of the CPRO cost in
the integrated analysis. In contrast, for values of dmem between
8µs to 12µs the impact of the overlap between CRPD and
CPRO is visible.

4) Task Priority and Memory footprint: An additional
experiment showing the impact of the highest priority task’s
memory footprint on the gain that can be achieved with the
integrated analysis is provided in Appendix B.

VIII. CONCLUSION AND FUTURE WORK

In this paper we answer two questions: (1) Is it beneficial to
integrate the calculation of CRPD and CPRO? and (2) when

6When calculating weighted schedulability we only consider task set
utilizations between 0.6 to 1 since for lower utilizations, all task sets are
schedulable.

0.35

0.45

0.55

0.65

0.75

0.85

0.95

32 64 128 256 512

W
EIG

HT
ED

 SC
HE

DU
LA

BI
LIT

Y

CACHE SIZE

No Premption Cost

Separate CPRO-Uni

Integrated CRPD+CPRO Uni

Separate CPRO-Mul

Integrated CRPD+CPRO Mul

(a) Varying cache size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 8 10 12 15 20

W
EIG

HT
ED

 SC
HE

DU
LA

BIL
ITY

BLOCK RELOAD TIME

No Premption Cost

Separate CPRO-Uni

Integrated CRPD+CPRO Uni

Separate CPRO-Mul

Integrated CRPD+CPRO Mul

(b) Varying block reload time dmem

Fig. 4: Weighted schedulability measure by varying cache
utilization, block reload time dmem and cache size

and to what extent can we gain in terms of schedulability
by integrating the calculation of CRPD and CPRO? Our
experimental evaluation, as well as theoretical dominance
results, showed that integrated CRPD-CPRO analysis can, in
some cases, increase the schedulability ratio by 2% to 7% by
providing a tighter calculation of total memory reload overheads
compared to state-of-the-art approaches. However, as pointed
out using a set of observations in the experimental evaluation
the gains obtained using the integrated CRPD-CPRO analysis
are dependent on certain system configurations and parameter
values. The average gains in terms of schedulability resulting
from the integration of CRPD-CPRO calculations may not be
large; however, it is important to note that nevertheless, the
integrated approaches dominate the state-of-the-art approaches
and this dominance is obtained with no increase in complexity,
or need for extra information. Therefore, it is indeed beneficial
to integrate the calculation of CRPD and CPRO.

As future work, we aim to extend the integrated CRPD-
CPRO analysis to set-associative LRU caches by adapting the
calculation of CPRO using a similar approach to that presented
in [3] for CRPD. Further research directions include adapting
ECB-union [3] CRPD analysis and exploring the effect that the
memory layout has on the integrated CRPD-CPRO analysis.
Acknowledgments. This paper is supported by NWO Veni Project, “The
time is now: Timing Verification for Safety-Critical Multi-Cores”and by the
ESPRC grant, MCCps (EP/K011626/1), and also by the Inria International
Chair program. EPSRC Research Data Management: No new primary data
was created during this study. This work was partially supported by National
Funds through FCT (Portuguese Foundation for Science and Technology)
and co-financed by ERDF (European Regional Development Fund) under the
Portugal2020 Program, within the CISTER Research Unit (CEC/04234); by

FCT and the ESF (European Social Fund) through POPH (Portuguese Human
Potential Operational Program), under PhD grant SFRH/BD/119150/2016.

REFERENCES

[1] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke.
A generic and compositional framework for multicore response time
analysis. In RTNS ’15, pages 129–138, 2015.

[2] S. Altmeyer, R. I. Davis, and C. Maiza. Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptive systems. In
RTSS’11, pages 261–271, 2011.

[3] S. Altmeyer, R. I. Davis, and C. Maiza. Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-emptive
systems. Real-Time Systems, 48(5):499–526, 2012.

[4] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. Evaluation of cache
partitioning for hard real-time systems. In ECRTS’14, pages 15–26,
2014.

[5] S. Altmeyer, R. Douma, W. Lunniss, and R.I. Davis. On the effectiveness
of cache partitioning in hard real-time systems. Real-Time Systems, pages
1–46, Jan 2016.

[6] S. Altmeyer and C. Maiza. Cache-related preemption delay via useful
cache blocks: Survey and redefinition. volume 57, pages 707–719.
Elsevier, 2011.

[7] A. Bastoni, B. Brandenburg, and J. Anderson. Cache-related preemption
and migration delays: Empirical approximation and impact on schedula-
bility. OSPERT’10, pages 33–44, 2010.

[8] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[9] A. Burns. Preemptive priority based scheduling: An appropriate
engineering approach. In S.H. Son, editor, Advances in Real-Time
Systems, pages 225–248. Prentice-Hall, 1994.

[10] J. Busquets-Mataix, J. J. Serrano, R. Ors, P. Gil, and A. Wellings. Adding
instruction cache effect to schedulability analysis of preemptive real-time
systems. In RTAS’96., pages 204–212, 1996.

[11] C. Cullmann. Cache persistence analysis: Theory and practice. ACM
Trans. Embed. Comput. Syst., 12(1s):40:1–40:25, March 2013.

[12] Heiko F. et al. TACLeBench: A benchmark collection to support worst-
case execution time research. In Martin Schoeberl, editor, WCET 2016,
volume 55 of OpenAccess Series in Informatics, pages 2:1–2:10. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2016.

[13] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The Mälardalen
WCET benchmarks: Past, present and future. In OASIcs-OpenAccess
Series in Informatics, volume 15. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2010.

[14] S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in
execution time analysis–definition and challenges. In CRTS’13, 2013.

[15] D.I. Katcher, H. Arakawa, and J.K. Strosnider. Engineering and analysis
of fixed priority schedulers. IEEE Trans. Softw. Eng., 19, 1993.

[16] C. G. Lee, J. Hahn, Y. M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim. Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling. Computers, IEEE Transactions on,
47(6):700–713, 1998.

[17] W. Lunniss, S. Altmeyer, and R. I. Davis. A comparison between fixed
priority and edf scheduling accounting for cache related pre-emption
delays. Leibniz Transactions on Embedded Systems, 1(1), 2014.

[18] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis. Accounting for
cache related pre-emption delays in hierarchical scheduling. In RTNS’14,
pages 183–192, 2014.

[19] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis. Cache related pre-
emption delays in hierarchical scheduling. Real-Time Systems, 52(2):201–
238, 2016.

[20] W. Lunniss, R.I. Davis, C. Maiza, and S. Altmeyer. Integrating cache
related pre-emption delay analysis into edf scheduling. In RTAS’13,
2013.

[21] S. A. Rashid, G. Nelissen, D. Hardy, B. Akesson, I. Puaut, and
E. Tovar. Cache-persistence-aware response-time analysis for fixed-
priority preemptive systems. In ECRTS’16, pages 262–272, 2016.

[22] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-
time systems with precise modeling of cache related preemption delay.
In ECRTS’05, pages 41–48, 2005.

[23] Y. Tan and V. Mooney. Timing analysis for preemptive multitasking
real-time systems with caches. ACM TECS, 6(1):7, 2007.

[24] H. Tomiyama and N. D. Dutt. Program path analysis to bound cache-
related preemption delay in preemptive real-time systems. In CODES’00,
pages 67–71, 2000.

APPENDIX A
BENCHMARK PARAMETERS

TABLE I: Benchmark parameters used in the experiments

Name Ci PDi MD i MDr
i ECB i PCB i UCB i nPCB i Benchmark Type

lcdnum 3440 984 2740 192 20 20 20 0 Mälardalen

bs 1399 203 1223 34 11 11 10 0 Mälardalen

fibcall 1585 785 886 89 8 8 7 0 Mälardalen

bsort100 712289 710289 90893 88907 20 20 18 0 Mälardalen

select 17138 11158 7858 1394 60 60 60 0 Mälardalen

fir 8407 6112 3076 792 22 22 20 0 Mälardalen

sqrt 5667 2770 3242 362 26 26 25 0 Mälardalen

ns 30149 28149 6172 4186 20 20 19 0 Mälardalen

jfdctint 17347 7747 10473 965 96 96 96 0 Mälardalen

matmult 429286 426086 48560 45384 28 28 27 0 Mälardalen

expint 59446 57046 13586 11102 31 31 29 0 Mälardalen

insertsort 7574 5974 2343 752 16 16 10 0 Mälardalen

ludcmp 37335 27036 13757 3545 98 98 98 0 Mälardalen

cnt 10090 7191 3818 933 27 27 26 0 Mälardalen

prime 25891 23791 4246 2152 17 17 16 0 Mälardalen

minmax 2522 122 2400 0 22 22 19 0 Mälardalen

ndes 137968 120823 31871 14834 121 75 100 46 Mälardalen

compress 176564 164273 38187 25594 86 86 85 0 Mälardalen

crc 143172 135796 25288 17932 44 44 43 0 Mälardalen

fdct 17350 6550 11525 9327 106 22 58 84 Mälardalen

minver 21668 4868 17265 518 167 167 159 0 Mälardalen

fft 157880 123681 45816 11888 141 141 140 0 Mälardalen

ud 28427 20627 10415 10415 75 53 31 22 Mälardalen

adpcm 230123 196131 55609 21501 240 240 237 0 Mälardalen

nsichneu 316409 22009 294400 294400 256 0 256 256 Mälardalen

statemate 190496 10586 180110 180110 256 36 256 220 Mälardalen

fmref 12117800 2143590 10148500 10063200 256 161 256 95 TACLEBench

adpcm-dec 479761 460616 84090 64892 173 173 172 0 TACLEBench

adpcm-enc 482994 462750 70921 50646 178 178 177 0 TACLEBench

h264-dec 2609630 1661910 1143780 1130800 256 133 256 123 TACLEBench

huff-dec 821956 808273 112838 97680 84 84 84 0 TACLEBench

lift 1945120 1929300 282201 265799 140 140 140 0 TACLEBench

petrinet 38532 4632 34191 9633 256 229 256 27 TACLEBench

audiobeam 1883880 1824060 310955 302240 253 75 253 178 TACLEBench

APPENDIX B
TASK PRIORITY AND MEMORY FOOTPRINT

The integrated CRPD-CPRO approaches avoid double count-
ing in the total memory reload overhead caused by the
higher priority tasks. Therefore, the memory footprints of
higher priority tasks can greatly affect the performance of
the integrated CRPD-CPRO analysis.

To evaluate the impact of task memory footprints on
the performance of the integrated CRPD-CPRO approaches,
we performed a simple experiment using a single task set
comprising 6 tasks (τ1 to τ6, where τ1 has the highest priority).
We increased the memory footprint (i.e., number of ECBs) of
the highest priority task τ1 and analyzed its impact on the total
memory reload overhead µ4 of the medium priority task τ4.
Task set parameters used in this experiment were set as follows.
Core utilization was fixed at 0.7, with task utilizations generated
using UUnifast algorithm. Each task was assigned parameters
using the ludcmp benchmark7. Task periods were set such that

7Here, we deliberately chose a benchmark with significant memory footprint
to impact the memory reload overhead of other tasks.

TABLE II: Relative gain µgain
4 for the CRPD-CPRO union and

multi-set approaches by increasing the number of ECBs of τ1

Increase of τ1’s ECBs µgain
4 with integrated µgain

4 with integrated
(%) CRPD-CPRO union CRPD-CPRO multi-set

No Increase 9% 12%
20% 11% 16%
40% 13% 18%
60% 14% 20%
80% 15% 20%
100% 16% 20%

Ti = Ci/Ui (i.e., T1 = 161586, T2 = 171642, T3 = 220971,
T4 = 710848, T5 = 1363503 and T6 = 14533791). Cache size
was fixed to 256 cache sets with dmem = 8µs.

In this experiment, we evaluate the relative performance of
the integrated CRPD-CPRO approaches in terms of memory
reload overhead µ. Therefore, we report the gain on the total
memory reload overhead µgain for task τ4, i.e., µgain

4 , by
increasing the number of ECBs of the highest priority task τ1.

The relative gain µgain
i is defined as µgain

i
def
=

µsep
i −µ

int
i

µsep
i

where µsep
i is the total memory reload overhead for task τi

under the separate CRPD and CPRO analysis and µint
i is

similarly the total obtained with the integrated analysis. For
the integrated CRPD-CPRO Union approach, µint

i is given by
(16), whereas for the CRPD-CPRO multi-set approach µint

i is
given by (25). For the separate approaches, in each case the
value of ρunion

j,i or ρmul
j,i is used instead of δj,i or δmul

j,i .

Observation 5. If the memory footprint of higher priority
tasks increase, then the relative gain of the integrated analyses
over the state-of-the-art analyses increases.

Table II shows that the gain in total memory reload overhead
of τ4 increases with the τ1’s memory footprint.

This behavior can be explained as follows. If one of the
higher priority tasks (e.g., τ1) has a big memory footprint (i.e.,
more ECBs) it can contribute more to both CRPD and CPRO
of lower priority tasks. This results in increasing the overlap
between the CRPD and CPRO of those tasks. In contrast, if
the higher priority tasks have small memory footprints, they
will have less impact on the CRPD and CPRO of medium and
lower priority tasks and hence the overlap between the CRPD
and CPRO will also be small.

This observation explains the rather small average schedula-
bility gain in the experiments presented until now. Since tasks
with smaller memory footprints mostly have lower execution
times, their periods are most of the time shorter. Therefore,
higher priority tasks usually have smaller memory footprints in
the randomly generated task sets, hence resulting in a reduced
gain. Yet, we note that this relationship between memory
footprint, WCET, and period does not always hold in practice.
Tasks with short periods and a relatively small WCET may still
have a substantial memory footprint if they implemented via
straight-line code. Similarly tasks with long WCETs may have
a small memory footprint in the case where they implement a
small loop that is repeated many times

