
Semi-partitioned Model for Dual-core Mixed Criticality
System

Hao Xu
Department of Computer Science

University of York, UK
hx569@york.ac.uk

Alan Burns
Department of Computer Science

University of York, UK
alan.burns@york.ac.uk

ABSTRACT
Many Mixed Criticality Algorithms have been developed
with an assumption that lower criticality level tasks may
be abandoned to guarantee the schedulability of higher crit-
icality tasks when the criticality level of the system changes.
But it is valuable to explore a way that all of the tasks
remain schedulable throughout the criticality level changes.
This paper introduces a possible semi-partitioned model which
allows all of the tasks to remain schedulable if only one core
increases its criticality level. In such a model, some lower
criticality tasks are allowed to migrate instead of being aban-
doned and detailed response time analysis of the model is
given. This paper also addresses possible task allocation ap-
proaches, priority assignment and choice of migration tasks.
An evaluation is made upon different semi-partitioned ap-
proaches and recommendations are given.

1. INTRODUCTION
A system containing tasks with different criticality levels is

called a Mixed Criticality System (MCS). In such a system,
each task may have different Worst Case Execution Time
(WCET) estimates for its different criticality levels, and nor-
mally the WCET of a task will increase if its criticality level
increases. Vestal [16] firstly introduces an algorithm allow-
ing all of the tasks with different criticality levels to remain
schedulable regardless of the changes of the system mode.
System mode change refers to a switch of defined operating
modes of the system, which is generally controlled by a mode
change protocol [7]. In MCS, a system mode change mostly
refers to a change of the criticality level of the system, for
example, the system rises from a lower criticality level to
a higher criticality level. Based on this, a variety of algo-
rithms, such as AMC [5] and EDF-VD [4], were developed to
improve the scheduling efficiency of MCS. Most of these al-
gorithms were invented under the assumption that there are
two criticality levels, LO-crit level and HI-crit level (HI-crit
level is higher than LO-crit level), and LO-crit tasks may be
terminated in order to ensure the execution of HI-crit tasks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RTNS 2015, November 04 - 06, 2015, Lille, France.
Copyright 2015 ACM 978-1-4503-3591-1/15/11 $15.00.
http://dx.doi.org/10.1145/2834848.2834865.

when the criticality level of the system increases. Although
these LO-crit tasks will be brought back to execution after
the system level restores, it would be better if these tasks
can remain executing throughout the system mode change.
But it is not possible on single core platforms as the maxi-
mum computation capability of a core is fixed and it is often
too expensive to increase the performance of the core. Thus,
many researches [2][12][15] have been carried out to address
MCS on multi-core platform, as one of the key features of
a multi-core platform is that tasks may be able to migrate
from one core to others, which provides more flexibility for
scheduling. This migration progress is supported by many
operation systems, such as Linux. In Linux, an attribute
called CPU affinity is used to “bond” a task to a given set of
CPUs [13]. In other words, the Linux scheduler will assign
tasks to certain cores according to their CPU affinity value.
Considering that, a migration progress may be simplified to
changes of the CPU affinity attribute of a task.

Multi-core scheduling algorithms can generally be divided
into three categories [9]: partitioned scheduling, global schedul-
ing and semi-partitioned scheduling. Partitioned scheduling,
where tasks are statically mapped to processors, provides a
stable and predictable implementation which is preferable
for safety critical applications, while global scheduling al-
lows tasks to migrate from one processor to others during
execution which potentially provides higher overall utilisa-
tion. Semi-partitioned scheduling is a mixture of the pre-
vious two algorithms in that hard real-time tasks may be
statically mapped to processors and other tasks are able to
migrate for flexibility. Referring to MCS, HI-crit tasks may
be statically partitioned on processors in order to guarantee
their execution, while some LO-crit tasks may be migrated
when a system mode change is detected on their executing
core.

This paper explores semi-partitioned scheduling on multi-
core MCS in consideration that all tasks remain schedu-
lable if only one core enters the HI-crit mode. Firstly, it
gives some background information, including useful nota-
tions, the AMC algorithm and approaches to task alloca-
tions. Then it describes the semi-partitioned model based
on views of states; following with detailed response time
analysis of the model and an example. This paper also ad-
dresses possible approaches to task allocation, priority as-
signment and choice of migration tasks with reference to
the semi-partitioned model. After that, an experiment to
test the performance of the model comparing with a none-
migration model is introduced and the experiment results
are discussed. Conclusion are made at the end.

2. RELATED WORKS, MODELS AND NO-
TATION

2.1 MCS Notation
Since tasks may have different WCET for their different

criticality levels, the notation for MCS is a bit different from
the standardised notation for real time system. Table 1
shows the symbols used in this paper.

Notation Description
τi Task i
Di The deadline of task τi
Ti The period of task τi
Li The criticality level of task τi

Ci(Li) The WCET of task τi at criticality
level Li

Ui(Li) The utilisation of task τi at
criticality level Li

Ji The release jitter of task τi
cj Core j

Table 1: Real-time System Notation

Assume the platform contains several homogeneous cores,
then each core would have identical computing performance.
In addition, it is assumed that criticality mode changes do
not frequently occur on cores. Based on that, a migratable
task is not required to move back and forth continuously
between processors.

A sporadic task model is assumed, deadlines are in general
constrained; a “job” is used to represent one invocation of a
“task”.

2.2 Vestal’s Algorithm and Run-time Monitor-
ing

Vestal’s algorithm [16] allows priorities of high and low
criticality tasks to be interleaved in order to provide flex-
ibility in scheduling, however interleaved tasks need to be
considered as if they are at the same criticality level. It was
later proved that Audsley’s priority assignment is still opti-
mal for MCS [10]. The response time analysis for Vestal’s
algorithm is equation (1) where hp(i) stands for the task set
that contains all the tasks which have higher priority than
task τi.

Ri = Ci(Li) +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj(Li) (1)

This and following similar equations are solved using the
standard techniques for solving recurrence relations.

But since the original Vestal’s algorithm performs pes-
simistically on criticality inversion cases, Baruah and Burns
[3] introduced the usage of a runtime monitor to control the
execution time of lower criticality tasks . For example, re-
garding to task τj , which has a higher priority than task τi,
the execution time Cj shall be:

• if Li = Lj , then Cj(Li) should be used as the tasks
are at the same level of criticality.

• if Li < Lj , then Cj(Li) should be used since the lower
level of assurance is needed for task τi.

• if Li > Lj , then task τj needs to be guaranteed that
it should not execute for more than Cj(Lj) by using a
run-time monitor.

The response time analysis is extended from equation (1) to
be equation (2):

Ri = Ci(Li) +
∑

τj∈hp(i)

⌈
Ri
Tj

⌉
Cj(min(Li, Lj)) (2)

2.3 Adaptive Mixed Criticality Mode
Adaptive Mixed Criticality (AMC) is a further extension

by increasing the usage of the run-time monitor [5]. The
key thinking in AMC is that lower criticality level tasks may
be terminated in order to guarantee higher criticality level
tasks complete their executions. Assume the task set has
two criticality levels: HI-crit and LO-crit. Then the schedu-
lable test for AMC consists of three phases of analysis. The
first phase is to verify the schedulability of LO-crit mode,
when all of the tasks are executing with their LO-crit bud-
gets. The response time analysis for this phase is shown in
equation (3).

Ri(LO) = Ci(LO) +
∑

τj∈hp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO) (3)

The second phase is to verify the schedulability of HI-crit
mode, when only HI-crit tasks are executing and execute
with their HI-crit budget. The response time analysis for
this phase is shown in equation (4) where hpH(i) stands for
the set of HI-crit tasks with higher priority than that of task
τi.

Ri(HI) = Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)

Tj

⌉
Cj(HI) (4)

The third phrase is to check the schedulability of the progress
of criticality change. Since exact analysis of this phase is un-
likely to be tractable [5], a sufficient analysis can be done by
assuming that HI-crit tasks execute in their HI-crit budget
while LO-crit tasks execute in their LO-crit budget before
the system changes to HI-crit mode. In this case, for HI-crit
task τi, interferences from HI-crit tasks will not be affected
by changing the time when system enters HI-crit mode but
interferences from LO-crit tasks will increase if that time in-
creases. So Ri(LO), the time that τi finishes all its LO-crit
budget, is the latest time point the criticality change may
occur. So the response time analysis for this phase is shown
in equation (5) where hpL(i) stands for the set of LO-crit
tasks with higher priority than that of task τi.

Ri(HI)∗ =Ci(HI) +
∑

τj∈hpH(i)

⌈
Ri(HI)∗

Tj

⌉
Cj(HI)

+
∑

τk∈hpL(i)

⌈
Ri(LO)

Tk

⌉
Ck(LO)

(5)

Note Ri(HI)∗ > Ri(HI) so that if the task is deemed
schedulable with Ri(HI)∗, it is deemed to be schedulable
with Ri(HI).

2.4 Semi-partitioned Models
Zaid et al. [1] recently introducing a dual-partitioned

scheduling approach, which allows HI-crit tasks to be stati-
cally mapped to processors at all times while LO-crit tasks
executing with limited migration, under the assumption that
both processors will go into HI-crit mode at the same time.
Their model consists of two steady modes and a migrating
process. In the steady modes (LO-crit mode and HI-crit
mode), tasks are fully-partitioned to each core unless a crit-
icality change of the system is detected. During the criti-
cality change, LO-crit tasks can be migrated to other cores
to provide flexibility. Thus, a LO-crit task τi may have two
different designated processors ci(LO) and ci(HI). In ad-
dition, Zaid et al.’s model also assumed that LO-crit tasks
will get a decreased release frequency (Ti(LO) < Ti(HI))
but the WCET will remain the same (Ci(HI) = Ci(LO)).
In all, the response time analysis for two steady modes of
each core is shown in equation (6).

Ri(LO) =Ci(LO) +
∑

τj∈hp(i)

⌈
Ri(LO)

Tj(LO)

⌉
Cj(LO)

Ri(HI) =Ci(HI) +
∑

τj∈hp(i)

⌈
Ri(HI)

Tj(HI)
)

⌉
Cj(HI)

(6)

However, their model only checks the schedualbilities of two
states but omits checks on the mode change itself, which
makes their results incomplete. In addition, they made an
assumption that LO-crit tasks would have increased periods
in the HI-criticality mode that decrease the execution rate of
these tasks. The scheme presented in this paper has different
requirement and analysis.

2.5 Task Allocation
Kelly et al. [12] explored the problem of scheduling MCS

tasks on a fixed number of homogeneous processors. Their
model focuses on scheduling MCS tasks with relative dead-
lines equal to periods and tasks are statically allocated to
cores. In addition, the bin-packing algorithm they used is
First-Fit (FF). FF allocates tasks to the first processor on
which it “fits” where “fit” means a task can be successfully
scheduled along with the other tasks that are already al-
located to that processor. The order of tasks in the task
set will affect the performance of First-Fit. It has been
demonstrated that task sets with decreasing utilisation order
has better performance of FF than other orders in general
real-time system. However, as criticality level is included
in MCS, decreasing utilisation order is no longer the best
choice. Kelly et al. [12] compared the efficiency of FF among
different task set orders based on utilisation and criticality.
They named two task set orders as Decreasing Utilisation
(DU) and Decreasing Criticality (DC). Regarding to DU,
tasks with high utilisation values are allocated first. How-
ever, because each MCS task is associated with multiple
utilisation values, such an ordering requires a single utilisa-
tion value to be identified. In their experiment, they used a
nominal utilisation Ui(Li) to present the value of the task’s
utilisation at the specific criticality level of the task. Re-
garding to DC, tasks are ordered according to criticality and
tasks at the same criticality level are further ordered by de-
creasing nominal utilisation. After tasks are allocated, they
use RM Priority Assignment and Audsley’s Optimal Prior-
ity Assignment to assign the task priority on each processors

for different task set order: RM for DU (DU-RM), Audsley’s
for DC (DC-Audsley). In their analysis, task sets that are
successfully scheduled by either DU-RM or DC-Audsley but
not both. So although DC-Audsley outperformed DU-RM
according to their experiments, DC-Audsley did not domi-
nate DU-RM.

In addition, First Fit is only one of the algorithms that
are used to address the Bin Packing problem. There exists
other algorithms which are more suitable than First Fit in
certain situations. Among them, Best Fit (BF) and Worst
Fit (WF) are two algorithms developed based on FF that
not only check all of the previous bins but also bins that are
not yet used.

3. SEMI-PARTITIONED MODEL
The aim of the Semi-partitioned method developed in this

paper is to schedule more LO-crit task sets than the original
Vestal’s algorithm and guarantee all of the HI-crit and LO-
crit tasks are schedulable if only one core enters its HI-crit
mode. In consideration of the need of safety-critical appli-
cations, all HI-crit tasks need to be statically allocated to
each core. Regarding LO-crit tasks, some may also be stat-
ically allocated to cores while others are allowed to migrate
to other cores to provide flexibility for mode changes (how
to determine whether a task shall be statically allocated or
be able to migrate will be addressed in Section IV). Assume
that the criticality level change of one core has no effects on
others, the basic properties of the model are as follows:

• If all tasks execute within their LO-crit budget then
all deadlines are met and no tasks migrate.

• No LO-crit task is allowed to exceed its LO-crit budget.

• If HI-crit tasks on one core exceed their LO-crit bud-
get, then some LO-crit tasks will migrate, but ALL
LO-crit tasks and HI-crit tasks remain schedulable.

• If HI-crit tasks on more than one core exceed their
LO-crit budget, then some LO-crit tasks will be aban-
doned, but all HI-crit tasks remain schedulable (with-
out migration).

For example, for a dual-core platform, the dispatching of
jobs for execution occurs according to the following rules:

• Each core consists of a criticality level indicator Γ,
which is initialised to LO.

• For each core, while (Γ ≡ LO), task with highest pri-
ority is selected for execution.

• If a LO-crit task executes for its LO-crit budget with-
out signalling completion, its current release shall be
terminated. If a HI-crit task executes for its LO-crit
budget without signalling completion, then the criti-
cality level indicator Γi for this core ci will be changed
to HI.

• Once Γ ≡ HI, if the criticality level indicator of the
other core remains in LO, then all HI-crit tasks may
execute with their HI-criticality budgets while some
LO-crit tasks will keep executing with their LO-crit
budgets and other LO-crit tasks will immediately mi-
grate their current release onto the other core. If the

criticality level indicator of the other core is HI, then
all of the LO-crit tasks currently executing on the
core need to be abandoned while HI-crit tasks execute
within their HI-crit budgets.

This only shows the draft idea of the semi-partitioned al-
gorithm, the detailed mechanism of the model will be illus-
trated in the following sections.

3.1 Dual Core Platform
Assume that a task set S contains several tasks in two

criticality levels (HI-crit and LO-crit). If this task set is
due to be scheduled on a two cores platform (c1 and c2) by
the semi-partitioned algorithm, then on each core there shall
exist three types of tasks: HI-crit tasks, statically allocated
LO-crit tasks and migrating LO-crit tasks. Let HIi repre-
sent the set of HI-crit tasks on core ci, LOi to represent the
set of statically allocated LO-crit tasks and MIGi to repre-
sent the set of migrating LO-crit tasks, then the following
relationship can be obtained:

• S = (LO1 ∪ LO2) ∪ (HI1 ∪HI2) ∪ (MIG1 ∪MIG2)

In steady mode, all these tasks are statically partitioned
on each core and executing with their LO-crit budgets. De-
fine state X to represent this phrase, then the relationship
between tasks and cores may be viewed as:

• X1 = LO1 ∪HI1 ∪MIG1

• X2 = LO2 ∪HI2 ∪MIG2

• S = X1 ∪X2

If a criticality change occurs on one core (ci), then HI-
crit tasks (HIi) will execute with their HI-crit budget. For
LO-crit tasks, some of them (LOi) still execute on the core
with their LO-crit budget while the others (MIGi) need to
migrate to other cores as there is not enough space for them
on the core. Define state Y (1) to represent the case that
core c1 enters its HI-crit mode, then tasks in MIG1 will
be migrated from core c1 to core c2 and the relationship
between tasks and cores may be viewed as:

• Y (1)1 = LO1 ∪HI1

• Y (1)2 = LO2 ∪HI2 ∪MIG1 ∪MIG2

• S = Y (1)1 ∪ Y (1)2

Define state Y (2) to represent the case that core c2 enters
its HI-crit mode, then tasks in MIG2 will be migrated from
core c2 to core c1 and the relationship between tasks and
cores may be viewed as:

• Y (2)1 = LO1 ∪HI1 ∪MIG1 ∪MIG2

• Y (2)2 = LO2 ∪HI2

• S = Y (2)1 ∪ Y (2)2

In state Y (1), task set MIG1 is migrated from core c1 to
core c2 and in state Y (2), task set MIG2 is migrated from
core c2 to core c1. For tasks in Y (1)1 and Y (2)2, the migra-
tion progress does not affect their priority orders. For tasks
in Y (1)2 and Y (2)1, since extra tasks have been migrated

to these two cores, it is likely that the original priority or-
ders will be affected. So the priority orders in Y (1)2 and
Y (2)1 may need to be recalculated offline. For these mi-
grated tasks, it is not defined whether they have finished or
partly-completed or even not yet started before migration
occurs. Assume the migrations have no cost, all of the mi-
grating tasks still need to execute all their LO-crit budget on
newly allocated cores in order to guarantee their completion.
In addition, these tasks are likely to be released certain time
before migrating, which means they have reduced deadlines
(D(r)) after migration. To compare the exact value of such
deadline reduction is unlikely to be tractable as all of the re-
lease patterns need to be considered, so a sufficient analysis
can be obtained by applying the smallest reduced deadline
to each migrating tasks.

Theorem(1): For task τi, the worst case after migration is
that it needs to execute all its LO-crit budget in a reduced
deadline of D∗i = Di− (Ri−Ci), where Ri is the worst-case
response time for task ti in state X.

Proof. Assume the latest release of task τi is t0. The
task migrates at time t0 + t and has completed a units of
its current release job. Then in order to meet the deadline,
task τi needs to finish the rest of job, which is Ci−a, within
time Di − ((t0 + t) − t0) = Di − t after migration if no
migration costs are considered. In addition, for two tasks
with same periods, if task τ1 needs to finish C units in D
and task τ2 needs to finish C+x in D+x, then τ2 is harder
to schedule in FPS than τ1. In other words, if τ2 is deemed
to be schedulable, then τ1 is also schedulable. Thus, for τi,
it has worst case when it has to schedule Ci − a + a = Ci
within time Di−t+a = Di−(t−a). The value of (t−a) may
be understood as the time that task τi is pre-emptied before
migration, and the maximum of this value is Ri − Ci when
task τi has been pre-emptied for a maximum time without
executing any of its job. In all, the worst case for τi is that
it has to execute all its LO-crit budget (Ci) in a reduced
deadline of D∗i = Di − (Ri − Ci).

The above has considered how the semi-partitioned algo-
rithm may improve the scheduling efficiency when only one
core has increased to the HI-crit mode. But in reality, both
of the cores may be in HI-crit modes at the same time. There
are two possible situations in which both of the cores are in
HI-crit mode: both cores increases into HI-crit mode at the
same time and two cores increases into HI-crit mode one af-
ter another. Regarding to the first case, as both cores enters
their HI-crit mode, migrating tasks have no place to execute
so they need to be abandoned while HI-crit tasks and stati-
cally allocated LO-crit tasks are still able to guarantee their
completion. Define state BX to represent this case based
on state X, the relationship of task sets can be obtained as:

• BX1 = LO1 ∪HI1

• BX2 = LO2 ∪HI2

• S = BX1 ∪BX2 ∪MIG1 ∪MIG2

Regard to the latter case which is based on the situation
that one core has already entered HI-crit mode, that the
schedulability of tasks on that core have been covered in the
previous section. Referring to the core that enters HI-crit
mode later, since extra LO-crit tasks have been executing
on the core, only abandoning the migrating tasks may not

guarantee the execution of HI-crit tasks. Considering that,
all LO-crit tasks on that core need to be abandoned. Define
state BY (1) to represent this situation based on state Y (1)
and state BY (2) to represent this situation based on state
Y (2), the relationship of task sets can be obtained as:

• BY (1)1 = LO1 ∪HI1

• BY (1)2 = HI2

• S = BY (1)1 ∪BY (1)2 ∪MIG1 ∪MIG2 ∪ LO2

• BY (2)1 = HI1

• BY (2)2 = LO2 ∪HI2

• S = BY (2)1 ∪BY (2)2 ∪MIG1 ∪MIG2 ∪ LO1

3.2 Analysis
The analysis of the semi-partitioned model is quite similar

to that of AMC. The schedulable test consists of a three-
phase analysis. The first phase is to verify the schedulabil-
ity of states X1 and X2 when all the tasks are partitioned
on two cores and executing within their LO-crit budgets.
The response time analysis for this phase is shown in equa-
tion (7) where chp(i) stands for the set of all tasks with
higher priority than that of task τi on the same core. So for
X = X1 ∪X2:

∀τi ∈ X : Ri(LO) = Ci(LO) +
∑

j∈chp(i)

⌈
Ri(LO)

Tj

⌉
Cj(LO)

(7)
The second phrase is to verify the schedulability of states

Y (1)1 and Y (1)2 and states Y (2)1 and Y (2)2 in the semi-
partitioned model when some tasks have been migrated from
one core to another. For states Y (1)1 and Y (2)2, the cores
enter HI-crit mode that HI-crit tasks are executing with their
HI-crit budgets while LO-crit tasks are executing with their
LO-crit budgets (this is represented as Ci(Li) for task τi).
The response time analysis for these tasks is shown in equa-
tion (8).

∀τi ∈(Y (1)1 ∪ Y (2)2) :

Ri(HI) = Ci(Li) +
∑

j∈chp(i)

⌈
Ri(HI)

Tj

⌉
Cj(Lj)

(8)

Meanwhile, tasks in Y (1)2 and Y (2)1 are executing in
LO-crit mode that all tasks are executing with their LO-crit
budgets. Additionally, since migrating tasks are released
before moving to the cores, the release jitters of these tasks
need to be considered when calculating their interference
upon other tasks. In order to guarantee the schedulability,
the maximum pre-empty time of the migrating tasks are
used as the release jitters when performing response time
analysis. According to this, if task τi migrates to another
core, the release jitter will be Ji = Ri−Ci(LO) ; otherwise,
Ji = 0. The response time analysis for these tasks is shown
in equation (9).

∀τi ∈(Y (1)2 ∪ Y (2)1) :

Ri(LO)∗ = Ci(LO) +
∑

j∈chp(i)

⌈
Ri(LO)∗ + Jj

Tj

⌉
Cj(LO)

(9)

The last phrase is to check the schedulability of the criti-
cality change progress which consists of two parts. The first
part is to check the schedulability of cores entering HI-crit
mode. This progress is quite similar to the mode change
progress from LO-crit level to MID-crit level in three crit-
icality level (LO-crit, MID-crit and HI-crit) AMC [11]. In
AMC, LO-crit tasks will be aborted, MID-crit and HI-crit
tasks will execute with MID-crit budgets. A sufficient re-
sponse time analysis for this AMC criticality mode change
is represented in equation (10), where hpM(i) stands for
the task set that contains all the MID-crit tasks which have
higher priority than tasks τi and Ri(LO) stands for the re-
sponse time of the task when the system is in LO-crit mode.

Ri =Ci(MID) +
∑

j∈hpH(i)

⌈
Ri
Tj

⌉
Cj(MID)

+
∑

k∈hpM(i)

⌈
Ri
Tk

⌉
Ck(MID)

+
∑

l∈hpL(i)

⌈
Ri(LO)

Tl

⌉
Cl(LO)

(10)

In the semi-partitioned model, migration tasks will be
“aborted” on the core when migration happens while other
LO-crit tasks remains executing in their LO-crit budgets,
and HI-crit tasks start to execute with their HI-crit budgets.
Comparing with the three criticality level AMC, migrating
tasks in semi-partitioned model perform similarly to LO-
crit tasks in AMC, other LO-crit tasks in semi-partitioned
model performs similarly to MID-crit tasks in AMC but exe-
cuting with their LO-crit budgets rather than MID-crit bud-
gets, and HI-crit tasks perform similarly to HI-crit tasks but
executing with their HI-crit budgets rather than MID-crit
budgets. Thus, by modifying equation (10), a sufficient re-
sponse time analysis for the semi-partitioned model can be
obtained as equation (11) where chpH(i) stands for the task
set that contains all the HI-crit tasks which have higher pri-
ority than task τi on the same core, chpL(i) stands for the
task set that contains all the non-migrating LO-crit tasks
which have higher priority than tasks τi on the same core,
chpMIG(i) stands for the task set that contains all the mi-
grating LO-crit tasks which have higher priority than tasks
τi on the same core.

∀τi ∈(Y (1)1 ∪ Y (2)2) :

Ri(HI)∗ = Ci(Li)

+
∑

j∈chpH(i)

⌈
Ri(HI)∗

Tj

⌉
Cj(HI)

+
∑

k∈chpL(i)

⌈
Ri(HI)∗

Tk

⌉
Ck(LO)

+
∑

l∈chpMIG(i)

⌈
Ri(LO)

Tl

⌉
Cl(LO)

(11)

The other part of the last phrase is to check the schedula-
bility of migrating tasks. As stated in the semi-partitioned
model, these tasks have a reduced deadline for their cur-
rent release during migrating. As equation (9) represents
the response time analysis for these migrating tasks after
migration, their results need to be compared with reduced

deadlines to decide their schedulability. Equation (12) shows
the calculation of the reduced deadlines for migrating tasks.

∀τi ∈ (MIG1 ∪MIG2) : D∗i = Di − (Ri(LO)− Ci) (12)

In addition, according to equation (11), it seems that set-
ting LO-crit tasks with high priority is likely to bring more
contribution to scheduling other tasks. Furthermore, ac-
cording to equation (12), tasks with higher priority are likely
to have relatively smaller pre-emptive time which leads them
to have relatively larger reduced deadline, which makes them
easier to schedule. However, such tasks may also have a quite
high priority after migration which will bring in more im-
pact on statically allocated tasks, including HI-crit tasks. So
there is a payoff when determining the choice of migrating
tasks. This is discussed in Section IV.

Referring to the case that both cores increase to their
HI-crit mode, the schedulability test for the first situation
that both cores enter mode change at the same time have
already been coved in equation (8). For the latter case, it is
similar to AMC algorithm that all LO-crit tasks needs to be
abandoned during mode change. The response time analysis
of HI-crit tasks can be viewed as equation (13) :

Ri(HI)∗∗ =Ci(HI) +
∑

j∈chpH(i)

⌈
Ri(HI)∗∗

Tj

⌉
Cj(HI)

+
∑

k∈chpL(i)

⌈
Ri(LO)∗

Tk

⌉
Ck(LO)

(13)

This completes all the analysis required to test the schedu-
lability of a dual-criticality system on a dual-core platform.
Regarding to all of the equations, the complexity of the semi-
partitioned algorithm for a taskset of size n is O(n3).

3.3 Semi-partitioned Example
To illustrate the response time analysis discussed above,

an example will be showed in the following. Regarding the
task set in Table 2, τ1, τ2, τ3 and τ4 are assigned to c1 and
τ4 may migrate to c2 when c1 enters high mode, while τ5, τ6,
τ7 and τ8 are assigned to c2 and τ8 may migrate to c1 when
c2 enters high mode. According to the priorities, for core c1,
P3 > P2 > P4 > P1; for core c2, P7 > P5 > P8 > P6.

Task C(LO) C(HI) T D L P c MIG
τ1 8 16 36 36 HI 7 1 NO
τ2 3 4 12 12 HI 3 1 NO
τ3 1 - 6 6 LO 1 1 NO
τ4 1 - 12 12 LO 5 1 YES
τ5 4 5 12 12 HI 4 2 NO
τ6 10 20 56 56 HI 8 2 NO
τ7 1 - 9 9 LO 2 2 NO
τ8 1 - 12 12 LO 6 2 YES

Table 2: AMC Example Task Set

For the semi-partitioned algorithm, the schedulability test
will be done in five phases: state X, state Y (1) with the mi-
gration progress X ⇒ Y (1), state BY (1), state Y (2) with
the migration progresses X ⇒ Y (2), and state BY (2). For
state X, all of the tasks are executing on their LO-crit bud-
get.

• X1 = {τ1, τ2, τ3, τ4} and P3 > P2 > P4 > P1

– R3(LO) = 1 < 6 = D3

– R2(LO) = 3 + d 4
6
e × 1 = 4 < 12 = D2

– R4(LO) = 1 + d 5
6
e × 1 + d 5

12
e × 3 = 5 < 12 = D4

– R1(LO) = 8 + d 20
6
e × 1 + d 20

12
e × 3 + d 20

12
e × 1 =

20 < 36 = D1

• X2 = {τ5, τ6, τ7, τ8} and P7 > P5 > P8 > P6

– R7(LO) = 1 < 9 = D7

– R5(LO) = 4 + d 5
9
e × 1 = 5 < 12 = D5

– R8(LO) = 1 + d 6
9
e × 1 + d 6

12
e × 4 = 6 < 12 = D8

– R6(LO) = 10 + d 23
9
e × 1 + d 23

12
e × 4 + d 23

12
e × 1 =

23 < 56 = D6

For state Y (1), task τ4 has migrated from core c1 to core
c2, and HI-crit tasks on c1 will execute on their HI-crit bud-
get while all other tasks remain executing with their LO-crit
budget. In addition, task τ4, as a migrating task, needs to
use its reduced deadline for checking its schedulability.

• Y (1)1 = {τ1, τ2, τ3} and P3 > P2 > P1

– R3(HI)∗ = 1 < 6 = D3

– R2(HI)∗ = 4 + d 5
6
e × 1 = 5 < 12 = D2

– R1(HI)∗ = 16 + d 36
12
e× 4 + d 36

6
e× 1 + d 20

24
e× 2 =

36 ≤ 36 = D1 as the worst case happens when
t = R1(LO) = 20

• Y (1)2 = τ4, τ5, τ6, τ7, τ8 and P7 > P5 > P4 > P8 > P6

– D∗4 = 12− (5− 1) = 8

– J4 = 5− 1 = 4

– R7(LO)∗ = 1 < 9 = D7

– R5(LO)∗ = 4 + d 5
9
e × 1 = 5 < 12 = D5

– R4(LO)∗ = 1+d 6
9
e×1+d 6

12
e×4 = 6 < 8 = D4(r)

– R8(LO)∗ = 1 + d 7
9
e × 1 + d 7

12
e × 4 + d 7+4

12
e × 1 =

7 < 12 = D8

– R6(LO)∗ = 10 + d 32
9
e × 1 + d 32

12
e × 4 + d 32+4

12
e ×

1 + d 32
12
e × 1 = 32 < 56 = D6

For state BY (1), core c2 also increases to HI-crit mode
that LO-crit tasks τ4, τ7 and τ8 on this core need to be
abandoned while HI-crit tasks τ5 and τ6 will execute in their
HI-crit budgets. Core c1 stays unchanged from state Y (1)
that no extra checks is required.

• BY (1)2 = τ5, τ6 and P7 > P5 > P4 > P8 > P6

– R5(HI)∗∗ = 5 + d 5
9
e × 1 = 6 < 12 = D5 as the

worst case happens when t = R5(LO)∗ = 5

– R6(HI)∗∗ = 20 + d 55
12
e × 5 + d 32

9
e × 1 + d 32

12
e ×

1 + d 32
12
e × 1 = 55 < 56 = D6 as the worst case

happens when t = R6(LO)∗ = 32

For state Y (2), task τ8 has migrated from core c2 to core
c1, and HI-crit tasks on c2 will execute on their HI-crit bud-
get while all other tasks remain executing with their LO-crit
budget. In addition, task τ8, as a migrating task, needs to
use its reduced deadline for checking its schedulability.

• Y (2)1 = {τ1, τ2, τ3 τ4, τ8} and P3 > P2 > P4 > P8 >
P1

– D∗8 = 12− (6− 1) = 7

– J8 = 6− 1 = 5

– R3(LO)∗ = 1 < 6 = D3

– R2(LO)∗ = 3 + d 4
6
e × 1 = 4 < 12 = D2

– R4(LO)∗ = 1 + d 5
6
e × 1 + d 5

12
e × 3 = 5 < 12 = d4

– R8(LO)∗ = 1 + d 6
6
e × 1 + d 6

12
e × 3 + d 6

12
e × 1 =

6 < 7 = D8(r)

– R1(LO)∗ = 8 + d 23
6
e × 1 + d 23

12
e × 3 + d 23

12
e × 1 +

d 23+5
12
e × 1 = 23 < 36 = D1

• Y (2)2 = {τ5, τ6, τ7} and P7 > P5 > P6

– R7(H)∗ = 1 < 9 = D7

– R5(H)∗ = 5 + d 6
9
e × 1 = 6 < 12 = D5

– R6(H)∗ = 20 + d 48
9
e × 1 + d 48

12
e × 5 + d 23

12
e × 1 =

48 ≤ 56 = D6 as the worst case happens when
t = R6(LO) = 23

For state BY (2), core c1 also increases to HI-crit mode
that LO-crit tasks τ4, τ7 and τ8 on this core need to be
abandoned while HI-crit tasks τ5 and τ6 will execute in their
HI-crit budgets. Core c2 stays unchanged from state Y (2)
that no extra checks is required.

• BY (2)1 = τ1, τ2 and P3 > P2 > P4 > P8 > P1

– R2(HI)∗∗ = 4 + d 4
6
e × 1 = 5 < 12 = D5 as the

worst case happens when t = R2(LO)∗ = 4

– R1(HI)∗∗ = 16 + d 36
12
e × 4 + d 23

6
e × 1 + d 23

12
e ×

1 + d 23
12
e × 1 = 36 ≤ 36 = D1 as the worst case

happens when t = R1(LO)∗ = 23

As all of the sufficient response time analysis above are
less or equal to their deadline, this task set is schedulable
by using the semi-partitioned algorithm.

If the non-migration algorithm is applied to schedule this
task set, neither core c1 nor c2 is schedulable since R1 =
16 + d 44

12
e × 4 + d 44

6
c × 1 + d 44

12
c × 1 = 44 > 36 = D1 and

R6 = 20+d 57
12
e×5+d 57

9
e×1+d 57

12
e×1 = 57 > 56 = D6. As

migration only occurs if necessary, and the above example
shows multi-core platform delivers improved schedulability
if follows that the semi-partitioned algorithm dominates any
non-migration algorithm.

3.4 Returning to LO-crit Mode
This section will address the issue of returning to LO-crit

mode. There are three possible cases based on the number of
cores in HI-crit mode and which core is returning to LO-crit
mode.

• The first case occurs when only one core is in its HI-crit
mode. In this case, once the core (core c1 in state Y (1)
and core c2 in state Y (2)) in HI-crit mode experiences
an idle tick, it can return to LO-crit mode and the
next release of migrating tasks will be on their original
processor.

• The second case may happen when both cores are in
HI-crit mode and the core which enters HI-crit mode
later is returning to LO-crit mode. In this case, once
the core (core c2 in state BY (1) and core c1 in state
BY (2)) in HI-crit mode experiences an idle tick, it can
return to LO-crit mode and all of the tasks previously
abandoned, including the allocated LO-crit tasks and
migrating tasks belong to both cores, will start to ex-
ecute on this processor.

• The last case happens when both of the cores are in
HI-crit mode and the core which enters HI-crit mode
earlier (including the case that both core enters HI-crit
mode at the same time) is returning to LO-crit mode.
In this case, once the core (core c1 in state BY (1),
core c2 in state BY (2), and either core c1 or c2 in
state BX) in HI-crit mode experiences an idle tick, all
of the migrating tasks belongs to both cores will start
executing on this processor.

4. SEMI-PARTITIONED CONFIGURATION
The previous section has described how to determine whether

a given set of tasks with fixed priorities and allocated cores is
schedulable by the semi-partitioned algorithm. This section
will consider how to apply the semi-partitioned algorithm to
allocate a set of tasks to a dual-core platform. Given that
bin-backing algorithms will be used for task allocation, the
first step is to sort the set of the tasks into a specified order.
Since the primary target of MCS is to guarantee the exe-
cution of HI-crit tasks, it will be efficient to check if all the
HI-crit tasks are schedulable first, which means it is helpful
to put all of the HI-crit tasks in front of LO-crit tasks. As
stated in Section 2.5, criticality-aware utilisation descending
order provides better performance than others in First-Fit
partitioned MCS. It can be assumed that criticality-aware
utilisation descending order may also provide good perfor-
mance in semi-partitioned MCS as the majority of tasks are
still partitioned. However, different task orders perform dif-
ferently under different bin-packing algorithms. So other
possible task sorting orders, such as criticality-aware period
descending order and criticality-aware deadline descending
order, are required to be evaluated.

According to the migration mechanism stated in the semi-
partitioned model, setting a task as migratable will add
extra computation load to the system as these tasks need
to continue on the destination core, so it will be better to
minimise the chance of setting a task as migratable. Con-
sidering that, the next step is to check whether the task
set is schedulable with the non-migration algorithm. The
semi-partitioned algorithm will only be applied when the
non-migration algorithm cannot schedule the task set. The
non-migration algorithm simply assigns tasks using First-
Fit bin packing algorithm and checks response times when
HI-crit tasks execute with HI-crit budgets and LO-crit tasks
with LO-crit budgets. Note that only LO-crit tasks are mi-
gratable in the semi-partitioned algorithm, so if the non-
migration algorithm is not able to schedule all of the HI-crit
tasks then the task set will not be schedulable by the semi-
partitioned algorithm.

Regarding to the semi-partitioned algorithm, there are
several possible approaches based on the choice of bin pack-
ing algorithm and selection of migration tasks. As stated in
Section 2.5, First-Fit, Best-Fit and Worst-Fit are the three

mostly used bin-packing algorithms in MCS. It is not clear
which method will perform best in for the semi-partitioned
algorithm. For the choice of migration tasks, there are two
main options. One option is to simply set the current fetched
task migratable while the other option attempts to migrate
the “highest” priority LO-crit task. The “highest” priority
task here stands for the task with the highest priority among
all migratable tasks. So this option attempts to set LO-crit
tasks migratable starting with the highest priority.

For priority assignment, Audesly’s optimal priority scheme
will be used to assign priorities for each task. An important
issue is that migration tasks will be assigned two priorities:
one used in its original core, the other for its destination
core. These values will be determined during task assign-
ment. A detailed semi-partitioned approach is as follows:

1. A task is fetched from the sorted task set.

2. Assign the task to one of the cores according to the
chosen bin packing algorithm (FF or BF or WF).

3. Uses Audsley’s algorithm to assign priorities for all
tasks and check whether all of the tasks are schedula-
ble.

4. If an un-schedulable task is found, try to assign the
task to the other core and assign the priority order
and do the checking again.

5. If both cores have been checked and neither of them
can schedule the fetched task, setting the fetched task/tasks
migratable will be considered.

6. Assign the fetched task to one of the cores according to
the chosen bin packing algorithm (FF or BF or WF)
and set the task migratable based on one of the ap-
proaches.

7. Uses Audsley’s algorithm to assign priorities for all
tasks on both cores considering migration effects and
check whether all of the tasks on both cores are schedu-
lable.

8. If an un-schedulable task is found, try to assign the
task to the other core and do the checking again.

9. If both cores have been checked and still neither of
them can schedule the fetched task, then the task is
not schedulable by the semi-partitioned algorithm.

10. Fetch another task to start a new loop until the task
set is empty or a task is detected unschedulable.

5. EVALUATION
According to the model, the semi-partitioned algorithm

should have better performance than the non-migration al-
gorithm based on the original Vestal’s algorithm. But it is
uncertain by how much the semi-partitioned algorithm has
improved the scheduling efficiency. This section will first in-
troduce an experiment designed to compare the performance
of the semi-partitioned algorithm and the non-migration al-
gorithm. Then it will explore six semi-partitioned approaches
and attempt to find the best one.

In order to represent the performance of the semi-partitioned
algorithm, software is produced to check the performance of
different semi-partitioned approaches and the non-migration

algorithm with the AMC algorithm. The software consists
of three parts. The first part of the software will gener-
ate task sets. Tasks are randomly set to be HI-crit tasks
or LO-crit tasks but the percentage of HI-crit tasks is con-
trolled to be a fixed number, and for all HI-crit tasks, their
HI-crit WCETs are a fixed number of times of their LO-
crit WCETs. These two fixed values will be changed in
the experiments to explore the performance of different al-
gorithms among different task set settings. In order to gain
uniform distributed parameters, UUnifast-discard algorithm
[8] is used to generate“nominal”utilisation (a“nominal”util-
isation represents the LO-crit utilisation for a LO-crit task
or the HI-crit utilisation for a HI-crit task), and Log-uniform
algorithm [14] is used to generate periods. Other parame-
ters of each task can be calculated based on these two val-
ues (D = T,C(Li) = Ui(Li) ∗ T). The second part of the
software is to pre-sort each task set before scheduling. As
stated in the task allocation section, all tasks will be sorted
in criticality-aware utilisation descending order. In such or-
der, HI-crit tasks will be placed in front of all LO-crit tasks,
and both HI-crit tasks and LO-crit tasks are in utilisation
descending order independently. The last part of the soft-
ware is to test the success rate of scheduling the task sets
by the different scheduling algorithms.

We investigated the performance of six semi-partitioned
approaches (Table 3) and compared them with the non-
migration algorithm. The non-migration algorithm is cho-
sen as the lowest bound of performance. Figure 1 shows the
percentage of tasksets that are schedulable for a system of
12 tasks, with on average 50% of those tasks having HI-crit
(P=0.5) and HI-crit execution budget twice that of LO-crit
(f=2). The Y-axis shows the percentage of the successful
task sets while the X-axis shows the sum of nominal utili-
sations of each task set. The sum of utilisation ranges from
1.7 to 2.1 to amplify the results.

Notation Description
Non-migration The non-migration approach

Semi-partitioned approach that migrates
Semi1FF the fetched task and uses First Fit

bin packing algorithm
Semi-partitioned approach that migrates

Semi1BF the fetched task and uses Best Fit
bin packing algorithm
Semi-partitioned approach that migrates

Semi1WF the fetched task and uses Worst Fit
bin packing algorithm
Semi-partitioned approach that migrates

Semi2FF the “highest” priority task and uses
First Fit bin packing algorithm
Semi-partitioned approach that migrates

Semi2BF the “highest” priority tasks and uses
Best Fit bin packing algorithm
Semi-partitioned approach that migrates

Semi2WF the “highest” priority tasks and uses
Worst Fit bin packing algorithm

Table 3: Real-time System Notation

We observe that all of the semi-partitioned schedulabil-
ity tests outperform the non-migration algorithm by a con-
siderable margin. This is expected as the semi-partitioned
algorithms allows more LO-crit tasks to be scheduled. Com-
paring all of the semi-partitioned algorithms, the algorithms
that migrate allocated tasks (Semi2) perform slightly bet-

Figure 1: Percentage of Schedulable Tasksets

ter than those algorithms which only migrate fetched tasks
(Semi1) . This is also to be expected as the former type
of algorithm checks more possibilities and is more likely to
migrate LO-crit tasks with higher priorities, which, as dis-
cussed earlier, may improve scheduling. Within Semi2 algo-
rithms, Semi2WF has the best performance when the sum
of utilisation is smaller than 1.9 while Semi2FF outperforms
others in the other cases.

In order to explore the performances of the algorithms
relating to criticality factor (C(HI)/C(LO)) and the per-
centage of HI-crit tasks. Weighted schedulability measure
Wy(p) [6] is used for schedulability test y as a function of
parameter p to reduce a 3-dimensional plot to 2 dimensions.
For each value of p, this measure combines results for all
tasksets τ generated for all of a set of equally spaced utili-
sation levels (1.6 to 2.2 in steps of 0.012).

Wy(p) = (
∑
∀τ

u(τ) ∗ Sy(τ, p))/
∑
∀τ

u(τ) (14)

We show how the results are changed by varying one key
parameters at a time. Figure 2 varies the criticality factor,
Figure 3 varies the percentage of HI-crit tasks and Figure 4
varies the size of the taskset. The x-axis stands for the pa-
rameter examined and y-axis represents the weighted value.
According to Figure 2, Semi2WF has the best performance
when criticality factor is smaller than 2 while Semi2FF out-
performs others in the rest of the cases. In addition, all semi-
partitioned algorithms have increased performance as the
criticality factor increases. This is to be expected as the in-
crease of WCET difference between different criticality lev-
els allows more scheduling potential for migration tasks. Ac-
cording to Figure 3, the performance of the semi-partitioned
algorithms have formed a U-shape curve since each end of
the interval represents a one-criticality task set, and hence
the priorities are optimal. Regarding to individual perfor-
mances, Semi2WF has the best performance in most of the
cases (0 < p < 0.8) while Semi1WF has the best perfor-
mance when the percentage of criticality tasks is quite high
(0.8 < u < 1). According to Figure 4, the performance

Figure 2: Varying the Criticality Factor

of the semi-partitioned algorithms have formed a U-shape
curve. This is expected as tasks are relatively large in small
sized tasksets which adds difficulty in finding acceptable mi-
grating tasks, while in large sized tasksets, the interference
from high priority tasks increases which adds difficulty to the
schedulability of migrated tasks with reduced deadlines. Re-
garding to individual performances, Semi2WF has the best
performance when the size of the taskset is small (n 6 12)
while Semi2FF has the best performance in the rest of the
cases (n > 12).

Overall, Semi2WF and Semi2FF has the best performance
in the majority of the cases. Thus, a combining usage of
Semi2WF and Semi2FF may be the most appropriate on
scheduling a two criticality level MCS on a dual-core plat-
form.

6. CONCLUSION
In this paper, we considered semi-partitioned scheduling,

upon a preemptive dual-core platform, with two criticality
levels and with the assumption that if only one core enters
its HI-crit mode, all tasks remained schedulable. Moreover
we require that if both cores enter the HI-crit mode then all
HI-crit tasks are guaranteed to meet their deadlines. Finally
we note that with normal behaviour (i.e. both cores are in
the LO-crit mode) no migrations occur.

We have studied six scheduling approaches based on two
possible task migration scheme and three bin-packing al-
gorithms. All of these algorithms have better performance
than the non-migration algorithm, and the semi-partitioned
approaches that migrates the highest priority migratable
LO-crit tasks with Worst Fit bin-packing algorithm and the
semi-partitioned approaches that migrates the highest prior-
ity migratable LO-crit tasks with First Fit bin-packing algo-
rithm have been observed to have better performance than
others in most of the cases. It is suggested that a combined
use of these two approaches may deliver the most advantage
of the semi-partitioned approach for a mixed criticality sys-
tem with two levels of criticality executing on a dual-core
platform.

Figure 3: Varying the Criticality Percentage

In future work, we will generalise the analysis to multiple
criticality levels; we shall also extend the model to platforms
contains more than two cores.

7. REFERENCES
[1] Z. Al-bayati, Q. Zhao, A. Youssef, H. Zeng, and Z. Gu.

Enhanced partitioned scheduling of mixed-criticality
systems on multicore platforms. In Design Automation
Conference (ASP-DAC), 2015 20th Asia and South
Pacific, pages 630–635. IEEE, 2015.

[2] J. H. Anderson, S. K. Baruah, and B. Brandenburg.
Multicore operating-system support for mixed
criticality. In Proceedings of the Workshop on Mixed
Criticality: Roadmap to Evolving UAV Certification.
Citeseer, 2009.

[3] S. Baruah and A. Burns. Implementing mixed
criticality systems in ada. In Reliable Software
Technologies-Ada-Europe, pages 174–188. Springer,
2011.

[4] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Real-Time
and Embedded Technology and Applications
Symposium (RTAS), pages 13–22. IEEE, 2010.

[5] S. K. Baruah, A. Burns, and R. I. Davis.
Response-time analysis for mixed criticality systems.
In Real-Time Systems Symposium, pages 34–43. IEEE,
2011.

[6] Andrea Bastoni, Björn Brandenburg, and James
Anderson. Cache-related preemption and migration
delays: Empirical approximation and impact on
schedulability. Proceedings of OSPERT, pages 33–44,
2010.

[7] A. Burns. System mode changes-general and
criticality-based. In WMC, pages 3–8. RTSS, 2014.

[8] A. Burns and R. I. Davis. Improved priority
assignment for global fixed priority pre-emptive

Figure 4: Varying the Taskset Size

scheduling in multiprocessor real-time systems.
Real-Time Systems, 47(1):1–40, 2010.

[9] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys, 43(4):35, 2011.

[10] F. Dorin, P. Richard, M. Richard, and J. Goossens.
Schedulability and sensitivity analysis of multiple
criticality tasks with fixed-priorities. Real-time
systems, 46(3):305–331, 2010.

[11] T. Fleming and A. Burns. Extending mixed criticality
scheduling. Proc. WMC, RTSS, pages 7–12, 2013.

[12] O. R. Kelly, H. Aydin, and B. Zhao. On partitioned
scheduling of fixed-priority mixed-criticality task sets.
In Trust, Security and Privacy in Computing and
Communications, pages 1051–1059. IEEE, 2011.

[13] R. Love. Kernel korner: CPU affinity. Linux Journal,
2003(111):8, 2003.

[14] R. Staggord P. Emberson and R. I. Davis. Techniques
for the synthesis of multiprocessor tasksets. In 1st
International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time System
(WATERS).

[15] P. Rodriguez, L. George, Y. Abdeddaim, and
J. Goossens. Multi-criteria evaluation of partitioned
edf-vd for mixed-criticality systems upon identical
processors. In Workshop on Mixed Criticality Systems,
2013.

[16] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time
assurance. In Real-Time Systems Symposium, 2007.
RTSS 2007. 28th IEEE International, pages 239–243.
IEEE, 2007.

