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Abstract. Verifying that freight containers contain the items listed on
their manifests from X-ray scans is a suitable problem for computer vi-
sion. However standard techniques do not cope well with the huge num-
bers of possible categories of cargo, nor with the scarcity of training
data for many of these categories. The previously proposed MIRRORING
algorithm potentially offers a way to deal with such a problem. The algo-
rithm is based on the Appearance Hypothesis that “words with similar
contexts tend to have referents with similar appearance” which allows all
training images to be relevant to all labels, by exploiting the full range
of this relationship (including dissimilar and intermediate relationships).
Previously, this algorithm has only been demonstrated when applied to
labelling categories of object, represented by a set of 50 images, with a
single label. In this work, we demonstrate the algorithm operating on
single images with multiple labels.
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1 Introduction

At ports of entry (POESs) into a country, governments usually require the inspec-
tion of incoming and outgoing goods. At many POEs, freight passing through
is imaged by an X-ray scanner like those used for passenger hand luggage but
larger and using higher energies, with an X-ray generating linear accelerator on
one side and a vertical linear array of detectors on the other [1]. For the high-
throughput of a POE, automated analysis of the image would reduce costs and
interruptions to the flow of commerce. Such automated analysis could include:

— Detection and localisation of specific objects of interest (eg: high value items
such as vehicles, weapons, narcotics and people) [2].

— Detection of anomalous or unexpected images requiring human inspection.

— Manifest verification: ascertaining whether the contents of the container
agree with the legal declaration of its contents in type and amount [3].

This process is currently performed by customs staff at the POE using a
combination of targeted image and direct visual inspection. The current paper
reports work towards an eventual goal of automating the image-based part of
manifest verification.

To develop an automated computer-based manifest verification system we
need to overcome two domain-specific problems which prevent usage of standard
computer vision recognition methods:



1. There is a large number of categories of object possible: the Harmonised
Coding system (an internationally agreed list which defines manifest codes
and categories) has 10° possible codes [4].

2. It is not possible to collect adequately sized training sets for each category.
Indeed many categories we may encounter have no training examples. This
is due to the technology being fairly new, the lack of organised databases
and the legal and other difficulties in gaining access to these data.

These two problems lead us to focus on an approach different from the stan-
dard one-classifier-per-category, instead we hope to exploit the similarities in
appearance between categories. This approach was discussed and implemented
successfully for object categories appearing in photographic images by Griffin
et al. [5]. We wish to discover whether we can apply these ideas to the current
problem. In this present work we build on Griffin et al. [5] by taking two steps
towards the full manifest verification problem:

1. Our inputs are single images rather than categories of object (represented
by a set of 50 images in Griffin et al.).
2. We use multiple labels per image rather than a single label per category.

To test our algorithms, we use the multi-label classification problem proposed
at the 2013 ICML Workshop on Representation Learning [6] and publicly avail-
able as a competition on the Kaggle service [7]. The Kaggle challenge training
dataset consists of 100,000 photographic images paired with unstructured sets
of labels (word bags). The challenge is to learn the relation between images and
word bags, so that on a disjoint test set the correct word bag, from a choice of
two, can be picked for each image (Fig. 1).

& (wall, man, boy, graffiti, bubble, point,
brick, finger, drawing, art, cartoon,
painting, sidewalk, picture}

{trees, wind, red, leaf, sky, tree, wave, x
forest, green, white}

Fig. 1: An example image with the correct and a random incorrect bag of words.

Relating back to freight scanning, the Kaggle images are analogous to freight
scans and the word bags to individual manifest files containing multiple codes.

2 Object Classification in Computer Vision

Now we briefly discuss possible traditional object classification methods that
could be applied to the problem.

In an overview of multi-label classification [8], Tsoumakas and Katakis ex-
plain that multi-label classification, previously limited in its scope to text cat-
egorisation and medical diagnosis, is now being used in fields as disparate as



protein function classification, music categorisation and semantic scene classifi-
cation. Our example in Fig. 1 contains a chalk drawing of a boy on a wall. While
it would be a fair training example for each of its contained classes individually,
it is best described by the multi-label bag {walk, boy, drawing, ...}, making it
suited to the multi-label classification problem.

Another technique that can be used is multiple-instance learning, whereby
classification is trained using both positive and negative instances [9]. Negative
instances, say Maron and Lozano-Pérez, are those bags of words in which none
of the labels are present in the image — therefore, non-matching words are
permitted in the positive examples.

There are numerous such general methods for performing multi-label learning
and they have been previously summarised thoroughly [10]. We shall consider
mainly what is a good baseline method for multi-label classification: training
one classifier per label in a “one versus all” fashion, also known as “binary
relevance” [11][12]. This method involves producing as outputs predictions for
all of the labels for an unseen input whose binary classifiers return a positive
match. This is an effective technique and will be the one we shall employ due to
its clarity and meaningful foundation. Alternatives include training a classifier
for every possible label combination or using dependencies between labels in the
form of classifier chains. These multi-label learning methods can be categorised
into three major categories [10] [8]. The first is dubbed algorithm adaptation and
involves modifying an existing machine learning algorithm for the multi-label
problem such as Multi-Label k-Nearest Neighbour (ML-kNN) [13]. The second
is problem transformation and works by changing the multi-label problem into
a combination of multiple single-label problems which can then be tackled by
existing algorithms. Finally, a third idea from Madjarov et al. is that of ensemble
methods. They are a hybrid technique that build upon algorithm adaptation
and problem transformation methods [10], [8] by either training classifiers on
complete subsets of labels (as in RAKEL [14]) or by using additional information
such as label dependencies (as in Ensembles of Classifier Chains (ECC) [12]).

3 Distributional Learning of Appearance

Due to the two problems discussed in Section 1, the above described methods are
unsuitable for our particular problem. Instead we take a different approach. The
major concept used, which has previously been demonstrated [5], is a correla-
tion between word and appearance similarity. Exploitation of this correlation has
been proposed as underlying the ability of children to correctly extrapolate la-
bels for more object categories than they have explicitly been taught. Correlation
is expressed by the Appearance Hypothesis that “words with similar contexts
tend to have referents with similar appearance” [5]. The Appearance Hypothesis
derives from a broader, older hypothesis: the Symbol Interdependency Hypoth-
esis that relationships embodied in the world can be found in language (among
others, [15]). Using the Appearance Hypothesis, we no longer need to rely on
class-specific training sets, instead all images from all classes can contribute to
the recognition of each label, which potentially deals with the two problems for
manifest verification that we identified.

To make use of the Appearance Hypothesis requires a distance measure be-
tween words based on their usage patterns and an image-based distance between



appearances [16]. The measure of distance between words is termed distribu-
tional similarity. An explicit implementation of it is the Correlated Occurrence
Analogue to Lexical Semantics (COALS) algorithm [17]. COALS constructs a
semantic space of words based on statistical analysis of a corpus of documents in
the applicable language. We use the British National Corpus which comprises 97
million words in large collection of written and spoken texts [18]. COALS com-
putes a score for how often a word = appears in the neighbourhood of a word
y, taking account of the frequency of both. These scores are assembled into a
distributional vector for each word y. For words « we use the 14,000 most com-
mon (non-stop) words in the corpus. For words y we use all the labels present
in the Kaggle dataset. Distributional vectors between words are compared by
correlation, rescaled from [—1,1] to [1,0] so that they are like distances.

For appearance similarity we need image descriptors that are suitable for
a set of images which are diverse in context and layout, and that have some
traction on semantic context. Histogram methods are suitable for this. There
are many to chose from (eg: quantised SIFT [19] and Histogram of Oriented
Gradients (HOG) [20]) but following Griffin et al. [5], we use oriented Basic
Image Features (oBIFs) and Basic Colour histograms [21] [22].

oBIFs are computed by convolving the input image with a set of six derivative
of Gaussian filters [21]. From filter responses, a pixel-by-pixel classification of the
image into seven symmetry types is computed (roughly: flat, sloped, minimum,
maximum, dark line, light line and saddle point). Quantised orientations are also
computed with the calculation depending on the symmetry type. Accounting
for symmetry type and orientation yields 23 possible pixel labels. oBIFs are
calculated using filters of two different scales, yielding 529 = 232 possible pixel
codes. The frequencies of these codes are tallied and normalised into a 529-bin
histogram.

Colour histograms are calculated by binning RGB values according to a par-
tition of the colour cube into 11 Basic Colour categories [23], [24]. A histogram
of these eleven bins forms the colour feature.

Appearance similarity, or distance, is then defined as arccos(h;, h;) between
two square-rooted normalised histograms h; and h; in column vector form.

Griffin et al. [5] also describe a MIRRORING algorithm that uses word and
appearance distances to assess the compatibility of a label and an image by
comparison to a reference set of labelled images. Specifically, the better a label
w is for an image I, the better the correlation between (i) the image distances
from T to the reference set of images, and (ii) the word distances from w to the
labels of the reference set. This is illustrated in Fig. 2.

4 Experiments

Using the approach described in Section 3, the experiments that are reported in
this paper are as follows:

1. Baseline MIRRORING implementation. We test whether the algorithm is able
to deliver above chance performance even though we apply it to individual
images, rather than sets of 50, labelled with a bag of words, rather than a
single term. We assess the effect of reference set size, and the performance
of oBIF- or colour-based image distance alone or their combination.

2. Comparison of different ways to define build bag-bag distances from word-
word distances.



Correct Bag Incorrect Bag
Appearance Appearance
dist dist
oBIF
p=0.202 Word p=0.062 Word
g g “bag dist 37 g 0 3 “bag dist
Appearance Appearance
dist dist
Colour
p=0.199 Word p=0.161 Word
T 7.bag dist 52 0 “obag dist

Fig. 2: This figure illustrates the process of choosing the correct word bag for the
example in Fig. 1. Scatter plots show appearance distance (vertical) versus word bag
distance (horizontal) between the query image and the reference set of 100,000 images.
The top row is for oBIF-based appearance distance, the bottom row for colour. The
left column is when the correct word bag is paired with the query image, the right the
incorrect. In this case, the correct word bag is identified whether colour or oBIF's are
used because the plots on the left have larger correlations (p) than those on the right.

3. Assessment of whether more-frequently occurring words are more useful la-

bels than less-frequently occurring ones.

Investigation of whether semantically deep (eg: “tree”, “leaf”) words are

more useful labels than semantically shallow (eg: “solid”, “organism”) ones.

5. Assessment of whether the effectiveness of a reference set is determined by
composition as well as size.

5 Results and Discussion

5.1 Baseline

The MIRRORING algorithm was run against the data provided in the Kaggle
dataset. Results are plotted in Fig. 3 for different sized reference sets (k), and
using oBIF's, colour or their combination. Each point of the plotted curves is per-
formance assessed over 10* trials. Each trial used a different, randomly chosen,
test image paired with its correct word bag and a randomly-chosen incorrect
word bag. The reference set for each trial was randomly chosen and did not
include the test image or the image for the random bag.

Inspection of the results reveals that performance is greater than chance
performance (50%) for k > 2, rising with k& but plateauing around k& = 4096.
Colour performs better than pure oBIFs for all k, and the hybrid approach
performs the same as colour alone. The maximum performance, achieved at
k = 4096 is 73.7% using colour histograms. These results contrast with those
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Fig.3: Performance (vertical) of the MIRRORING algorithm as a function of ref-
erence set size k (horizontal). Error bars are 95% confidence intervals. Blue line
uses oBIF' histograms only, red line uses colour histograms only and the black
dashed line is a hybrid combination method.

in [5] where results plateaued around 660 categories, attaining a score of 77%
for colour, 81% for oBIFs and 84% for their combination.

Since the Kaggle competition involved foul play (cheating using the Hungar-
ian algorithm) [6], there is no other baseline against which to compare our work
except that of random chance of picking the correct bag (50%).

5.2 Variant Word Bag Distances

The distances between two bags of words should be based on the distances
between pairs of words, one from each bag, but there are several ways to do
this. A plausible scheme is to use one function (finner) to compute word-bag
distances from word-word distances, and a second function (fouter) to compute
a bag-bag distance from the word-bag distances. We have experimented with
using minimum, mean, median and maximum to be these two functions.

The results in Table 1 shows the average performance of the classification
algorithm using different variants of the finper and fouter functions and reference
sets of k = 32 images. The table shows that the best performing methods are
the “mean of minimums” or “mean of means”. All other results in this paper
(including the baseline results) were computed using the “mean of minimums”
method.

5.3 Variant Word Weightings: Frequency

The frequency at which different words appear in a corpus varies over several
orders of magnitude [25]. Plausibly, high frequency words may be more tightly
bound to the image appearance than low frequency or vice-versa. We assessed
this by replacing bags with a single word from the bag either randomly chosen,
or the most frequent or least frequent.

For a k = 32 reference set, the performance using the full bags was 62.1%;
using a single random word this dropped, as expected, to 56.1%. The scores using
the most frequent (55.7%) and least frequent words (56.2%) were not statistically



Mean performance

f finner Min | Mean |[Median| Max
outer

Min 58.7% [60.3% [58.2% [58.8%
Mean 62.1%(62.1%]60.6% [57.6%
Median 60.4% [61.7% [60.1% [57.5%
Max 58.9% [58.1% [57.3% [53.3%

Table 1: Mean performance over 10 trials, for k = 32 and varying word bag
distance methods.

significantly different from the random word, so we conclude that it is not useful
to weight word distances according to frequency.

5.4 Variant Word Weightings: Semantic Depth

Semantic depth measures the specificness of words. Low depth words are broad
categories (eg: animal), deeper words are more specific (eg: squirrel). Like fre-
quency, semantic depth is a plausible feature to use to weight words in distance
calculations [26]. We measured semantic depth using path distances from the
word ‘entity’ in the WordNet hyponym /hypernym lattice [27]. We first assessed
semantic depth using the same random single word method used for frequency.
For a k = 32 reference set, and the same baseline full bag performance of
62.1%, using a single random word, this dropped to 55.5%. Then instead using
the semantically shallowest word we achieved an increase to 56.7%, while using
the deepest word a value of 56.2%. The results shown in Fig. 4(a) support this
possible slight improvement for shallow words compared to random ones.

L e
Full bag
UE:
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o6} %1 Baseline (with Cls)
ozl g Weighted variants
10}
058} £
One word o]
0.57} from bag E
+ variants Q
0.56 c
42}
. ]
0.55 + E
0540 50% . . . . . . . . .
‘ ‘ . - -15 -1 -075 =05 0 05 1 15 2
Shallow Deep Random alpha
(a) (b)

Fig.4: (a) Comparing a bag against (i) the semantically shallowest, (ii) seman-
tically deepest, or (iii) a random word in the second bag each time. (b) Varying
word weightings by depth®. Baseline performance for the same trials but with no
weighting shown by straight line, with 95% confidence intervals in dashed blue.



We further investigated this by using full bag distances, but weighting words
according to depth® for a € [—2,2]. The results shown in Fig. 4(b) show the
best effect for a = —1, which corresponds to giving greater weight to shallower
words.

5.5 Optimal Subsets

We assessed whether all sets of k reference images gave equal performance or
whether superior sets could be found. The distribution of performance scores
for random k = 32 reference sets was found to be approximately normally dis-
tributed with p = 62.0% and o = 1.91%, greater than the expected standard
variation from 10 trials of 0.49%, indicating that there is performance variation
which is dependant on subset choice. So we may be able to improve performance
by finding effective subsets. We “hunt” for an effective subset starting from a
random subset by repeatedly swapping in new random elements and seeing if
performance improves. We perform 256 swaps at each different k.
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Fig. 5: Performance for random reference sets (blue) compared to effective refer-
ence sets discovered by hunting (orange).

Fig. 5 shows that we were able to achieve considerably improved performance
by using effective rather than random reference sets. Though the margin between
them appears to decrease with increasing k.

6 Conclusion

We have demonstrated that the MIRRORING algorithm achieves above chance per-
formance for the Kaggle dataset. Compared to the demonstration of MIRRORING
in [5], our experiment used:

1. Single images rather than sets of 50 images.
2. Multiple labels per image rather than single labels per set of 50 images.



Similarly to [5], we observe increasing performance with the number of reference
sets, with an eventual plateau. In contrast to [5], we observed better perfor-
mance for colour than for oBIF or hybrid. This may be due to the labels having
been generated freely in response to the images rather than the images being
assembled for a particular label.

In other experiments we determined that “mean of minimums” was the best
way to compute bag-bag distances from word-word distances, that frequency
weighting was ineffective, that semantically shallow words are slightly more
bound to image appearance than deep, and that effective reference sets can
be found that are better than random.

Overall, these results show that it is possible to use the Appearance Hypoth-
esis to correctly select a labelling for an image containing multiple classes rather
than just one and using only single reference images rather than larger sets.

Relating to the manifest verification problem, this approach shows it is pos-
sible to verify whether a bag of words labels a complex scene without having
specific classifiers for each and without necessarily having any examples of any
individual object. By equating a bag of words to a list of Harmonised Codes
within a manifest file, and an X-ray scan to a complex image scene, we have
built firm grounding for being able to quantify the labelling match of a manifest
file for a cargo scan and thus notice mismatched labelling as is required by the
original practical scenario.
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