
Evaluation of ADFD and ADFD+ techniques

Mian Asbat Ahmad and Manuel Oriol

University of York, Department of Computer Science,
Deramore Lane, YO10 5GH YORK, United Kingdom

Abstract. The ever-increasing reliance on software-intensive system is
driving research to discover software faults more efficiently. Despite in-
tensive research, very few approaches have studied and used knowledge
about fault domains to improve the testing or the feedback given to
developers. The shortcoming was addressed by developing ADFD and
ADFD+ strategies presented in our previous publications. In the present
study, the two strategies were enhanced by integration of the automatic
testing tool Daikon and the precision of identifying failure domains was
determined through extensive experimental evaluation of real world Java
projects contained in Qualitas Corpus. The analyses of results, cross-
checked by manual testing indicated that ADFD and ADFD+ techniques
are highly effective in providing assistance but are not an alternative to
manual testing with the limited available resources.

Keywords: software testing, automated random testing, manual test-
ing, ADFD, ADFD+, Daikon

1 Introduction

The input-domain of a given System Under Test (SUT) can be divided into two
sub-domains. The pass-domain comprises of the values for which the software
behaves correctly and the failure-domain comprises of the values for which the
software behaves incorrectly. Chan et al. [1] observed that input inducing fail-
ures are contiguous and form certain geometrical shapes. They divided these
into point, block and strip failure-domains as shown in Figure 1. Adaptive Ran-
dom Testing achieved up to 50% better performance than random testing by
taking into consideration the presence of failure-domains while selecting the test
input [2].

(a) Point domain (b) Block domain (c) Strip domain

Fig. 1. Failure domains across input domain [1]

2 Evaluation of ADFD and ADFD+ techniques

We have developed two fully automated techniques ADFD [3] and ADFD+ [4],
which effectively find failures and failure domains in a specified range and also
provide visualisation of the pass and fail domains. The process is accomplished
in two steps. In the first step, an upgraded random testing is used to find the
failure. In the second step, exhaustive testing is performed in a limited region
around the detected failure in order to identify the domains. The ADFD searches
in one-dimension and covers longer range than ADFD+ which is more effec-
tive in multi-dimension and covers shorter range. Three separate tools including
York Extensible Testing Infrastructure (YETI), Daikon and JFreeChart have
been used in combination for developing ADFD and ADFD+ techniques. The
YETI [5], Daikon [6] and JFreeChart [7] are used for testing the program, gen-
erating invariants and plotting the pass and fail domains respectively.

The rest of the paper is organized as follows: § 2 presents enhancement of
the techniques. § 3 shows the difference in working mechanism of the two tech-
niques by a motivating example. § 4 highlights the key research questions. § 5
describes the evaluation process comprising experiments, results and answers to
the research questions. § 6 presents threats to validity while § 7 points out the
related work. Finally, § 8 presents conclusion of the study.

2 Enhancement of the techniques

Prior to experimental evaluation, new features were incorporated in ADFD and
ADFD+ techniques to: increase the code coverage, provide information about
the identified failure and generate invariants of the detected failure domains as
stated below:

1. The GUI was enabled to launch all the strategies defined in YETI from a
single interface. As an example, if ADFD strategy is selected for testing, the
system automatically hides the field (range value) associated with ADFD+

and displays two fields of lower and upper bounds. On the other hand if
ADFD+ strategy is selected for testing, the system automatically hides the
two fields (lower and upper bounds) associated with ADFD technique and
displays a single field of range value.

2. Code coverage was increased by extending the techniques to support the
testing of methods with byte, short, long, double and float type ar-
guments while it was restricted to int type arguments only in the original
techniques.

3. Invariants of the detected failure domains were automatically generated by
integrating the tool Daikon in the two techniques. Daikon is an automated
invariant detector that detects likely invariants in the program [6]. The gen-
erated invariants are displayed in GUI at the end of test execution.

4. The screen capture button was added to the GUI to allow the user to capture
multiple screen-shots at different intervals of testing for future reference.

Evaluation of ADFD and ADFD+ techniques 3

3 Difference in working mechanism of the two techniques

Difference in working mechanism of ADFD and ADFD+ for identification of
failure domains is illustrated by testing a simple Java program (given below)
with the two techniques. It is evident from the program code that failure is
generated when the value of variable x = {4, 5, 6, 7 or 8} and the corresponding
value of variable y = {2, 3 or 4}. The total number of 12 failing instances form
a block failure domain in the input domain.

/**

* A program with block failure domain.

* @author (Mian and Manuel)

*/

public class BlockErrorPlotTwoShort {

public static void blockErrorPlot (int x, int y) {

if ((x >= 4) && (x <= 8) && (y == 2)) {

abort (); /* error */

}

if ((x >= 5) && (x <= 8) && (y == 3)) {

abort (); /* error */

}

if ((x >= 6) && (x <= 8) && (y == 4)) {

abort (); /* error */

}

}

}

The test output generated by ADFD technique is presented in Figure 2. The
labelled graph shows 4 out of 12 failing values in red whereas the passing values
are shown in blue. The generated invariants identify all but one failing value
(x = 4). This is due to the fact that ADFD scans the values in one-dimension
around the failure. The test case shows the type of failure, name of the failing
class, name of the failing method, values causing the failure and line number of
the code causing failure.

The test output generated by ADFD+ technique is presented in Figure 3.
The labelled graph correctly shows all the 12 out of 12 available failing values
in red whereas the passing values are shown in blue. The invariants correctly
represent the failure domain. The test case shows the type of failure, name of
the failing class, name of the failing method, values causing the failure and line
number of the code causing failure.

The comparative results derived from execution of the two techniques on
the developed program indicate that, ADFD+ is more efficient than ADFD in
identification of failures in two-dimensional programs. The ADFD and ADFD+

performs equally well in one-dimensional program, but ADFD covers more range
around the first failure than ADFD+ and is comparatively economical because
it uses fewer resources than ADFD+.

4 Evaluation of ADFD and ADFD+ techniques

Fig. 2. Graph, Invariants and test case generated by ADFD for the given code

Fig. 3. Graph, Invariants and Test case generated by ADFD+ for the given code

4 Research questions

The following research questions have been addressed in the study:

1. What is the relevance of ADFD and ADFD+ techniques in identification and
presentation of failure domains in production software?

2. What types and frequencies of failure domains exist in production software?
3. What is the nature of identified failure domain and how it affects the auto-

mated testing techniques?

5 Evaluation

Experimental evaluation of ADFD and ADFD+ techniques was carried out to
determine: the effectiveness of the techniques in identifying and presenting the

Evaluation of ADFD and ADFD+ techniques 5

failure domains, the types and frequencies of failure domains, the nature of error
causing a failure domain and the external validity of the results obtained.

5.1 Experiments

In the present experiments, we tested all 106 packages of Qualitas Corpus con-
taining the total of 4000 classes. Qualitas Corpus was selected because it is a
database of Java programs that span across the whole set of Java applications
and is specially built for empirical research which takes into account a large num-
ber of developmental models and programming styles. All packages included in
Qualitas Corpus are open source with an easy access to the source code.

For experimental purpose, the main “.jar” file of each package was extracted
to get the “.class” files as appropriate input for YETI. All 4000 classes were in-
dividually tested. The classes containing one and two-dimensional methods with
arguments (int, long, float, byte, double and short) were selected for experimen-
tal analysis. Non-numerical arguments and more than two-dimensional methods
were ignored because the two proposed techniques support the testing of one and
two dimensional methods with numerical arguments. Each test took 40 seconds
on the average to complete the execution. The initial 5 seconds were used by
YETI to find the first failure while the remaining 35 seconds were jointly con-
sumed by ADFD/ADFD+ technique, JFreeChart and Daikon to identify, draw
graph and generate invariants of the failure domains respectively. The machine
took approximately 500 hours to perform the experiments completely. Due to
the absence of contracts and assertions in the code under test, undeclared ex-
ceptions were taken as failures in accordance with the previous studies [8], [3].
The source code of the programs containing failure domains were also evaluated
manually to cross-examine the experimental results.

In accordance with Chan et al. [1], classification of failure domain into various
types was based on the number of contiguous failures detected in the input-
domain as shown in Table 1. If the contiguous failures detected range from 1 to
5, 6 to 49 or 50 and above the failure domain is classified as point, block or strip
type respectively. If more than one type of domain are detected in a program, it
is termed as mix type.

Table 1. Classification of failure domains

S. No Type of failure domain No of contiguous failures

1 Point 01 to 05

2 Block 06 to 49

3 Strip 50 & above

point & block

4 Mix point & strip

point, block & strip

6 Evaluation of ADFD and ADFD+ techniques

5.2 Results

The testing of 106 Java packages including 4000 classes, resulted in 25 pack-
ages containing 57 classes to have various types of failure domains. The details
pertaining to project, class, method, dimension, line of code (LOC) and type of
detected failure domains for each class are given in Table 3. Out of the total of
57 methods indicated in the table, 10 methods are two-dimensional while the
remaining 47 methods are one-dimensional. A total number of 17262 lines of
code spread across 57 classes in various proportions as shown in the table. The
results obtained show that out of 57 classes 2 contain point failure domain, 1
contains block failure domain, 50 contain strip failure domain and 4 contain mix
failure domain.

Effectiveness of ADFD and ADFD+ techniques The experimental results
confirmed the effectiveness of the techniques by discovering all three types of
failure domains (point, block and strip) across the input domain. The results
obtained by applying the two automated techniques were verified: by manual
analysis of the source code of all 57 classes; by cross checking the test case, the
graph and the generated invariants of each class; by comparing the invariants
generated by automatic and manual techniques.

The identification of failure domain by both ADFD and ADFD+ is dependant
upon the detection of failure by random+ strategy in YETI. Because only after
a failure is identified, its neighbouring values are analysed according to the set
range to plot the failure domain.

The generation of graph and invariants and the time of test execution directly
depends on the range value, if the range value of a technique is greater, the
presentation of failure domain is better and the execution time required is higher.
This is due to the testing and handling of greater number of test cases when the
range is set to a bigger level. Comparatively, ADFD requires fewer resources
than ADFD+ therefore it is less influenced by the range value.

Type and Frequency of Failure domains As evident from the results given
in Table 4 - 7, all the three techniques (ADFD, ADFD+ and Manual) detected
the presence of strip, point and block types of failure domains in different fre-
quencies. The results obtained show that out of 57 classes 2 contain point failure
domain, 1 contains block failure domain, 50 contain strip failure domain and
4 contain mix failure domain. Mix failure domain includes the combination of
two or more types of failure domains including point & block, point & strip and
point, block & strip.

The discovery of higher number of strip failure domains may be attributed
to the fact that a limited time of 5 seconds were set in YETI testing tool for
searching the first failure. The ADFD and ADFD+ strategies set in YETI for
testing the classes are based on random+ strategy which gives high priority to
boundary values, therefore, the search by YETI was prioritised to the boundary
area where there were greater chances of occurrence of failures constituting strip
failure domain.

Evaluation of ADFD and ADFD+ techniques 7

Nature of failure domain The nature of failure domain identified by two auto-
matic techniques (ADFD and ADFD+) and the manual technique was examined
in terms of simplicity and complexity by comparing the invariants generated by
automatic techniques with those of the manual technique. The results were split
into six categories (2 categories per technique) on the basis of simplicity and
complexity of failure domains identified by each of the three techniques. The
comparative results show that ADFD, ADFD+ and Manual testing can easily
detect 56, 48 and 53 and difficultly detect 1, 9 and 4 failure domains respectively
as shown in Table 2. The analysis of generated invariants indicate that the fail-
ure domains which are simple in nature are easily detectable by both automated
and manual techniques while the failure domains which are complex in nature
are difficultly detectable by both automated and manual techniques.

Table 2. Simplicity and complexity of Failure Domains (FD) as found by 03 techniques

T
y
p

e
o
f

fa
il
u
re

d
o
m

a
in

N
o
.

o
f

c
la

ss
e
s

N
o
.

o
f

F
D

E
a
sy

to
fi
n
d

F
D

b
y

A
D

F
D

E
a
sy

to
fi
n
d

F
D

b
y

A
D

F
D

+

E
a
sy

to
fi
n
d

F
D

b
y

M
T

H
a
rd

to
fi
n
d

F
D

b
y

A
D

F
D

H
a
rd

to
fi
n
d

F
D

b
y

A
D

F
D

+

H
a
rd

to
fi
n
d

F
D

b
y

M
T

Point 2 2 2 2 2 0 0 0

Block 1 1 0 1 1 1 0 0

Strip 50 50 50 45 48 0 5 2

0 0 0 0 0 0 0 0

Mix 3 3 3 0 2 0 3 1

1 1 1 0 0 0 1 1

Total 57 57 57 48 53 1 9 4

The simplicity of failure domain is illustrated by taking an example of ADFD,
ADFD+ and Manual Analysis in Table 7 for class BitSet. The negativeArray
failure is detected due to the input of negative value to the method bitSet.of(i).
The invariants generated by ADFD are {i ≤ -1, i ≥ -18}, by ADFD+ are {i
≤ -1, i ≥ -512} and by Manual Analysis are {i ≤ -1, i ≥ Integer.MIN INT}.
These results indicate maximum degree of representation of failure domain by
Manual Analysis followed by ADFD and ADFD+ respectively. This is mainly
due to the bigger range value in manual analysis followed by ADFD and ADFD+

respectively.

The complexity of failure domain is illustrated by taking an example of
ADFD, ADFD+ and Manual Analysis in Table 7 for class ArrayStack. The
OutOfMemoryError failure is detected due to the input of value to the method
ArrayStack(i). The invariants generated by ADFD are { i ≥ 698000000, i ≤
698000300}, by ADFD+ are { i ≥ 2147483636, I ≤ MAX INT}, by Manual
analysis { i ≥ 698000000 }. All the three strategies indicate the same failure but
at different intervals. The ADFD+ is unable to show the starting point of failure

8 Evaluation of ADFD and ADFD+ techniques

due to its small range value. The ADFD easily discovers the breaking point due
to its bigger range value while manual testing requires over 50 attempts to find
the breaking point.

6 Threats to validity

All packages in Qualitas Corpus were tested by ADFD, ADFD+ and Manual
technique in order to minimize the threats to external validity. The Qualitas
Corpus contains packages of different: functionality, size, maturity and modifi-
cation histories.

YETI using ADFD/ADFD+ strategy was executed only for 5 seconds to find
the first failure in the given SUT. Since both ADFD and ADFD+ are based on
random+ strategy having high preference for boundary values, therefore, most
of the failures detected are from the boundaries of the input domain. It is quite
possible that increasing the test duration of YETI may lead to the discovery of
new failures with different failure domain.

A threat to validity is related to the hardware and software resources. For
example, the OutOfMemoryError occurs at the value of 6980000 on the machine
used for executing the test. On another machine with different specification the
failure revealing value can increase or decrease depending on the hardware and
software resources.

It is to point out that all non-numerical and more than two-dimensional
methods were not considered in the experiments. The failures caught due to
error of non-primitive type were also ignored because of the inability of the
techniques to present them graphically. Therefore, the results may reflect less
number of failures.

7 Related Work

Shape and location of failure domain within the input domain have been studied
in the past. Similar to our findings, White et al. [9] reported that the bound-
ary values have more chances of forming strip failure domain. Finally [10] and
Bishop [11] found that failure causing inputs form a continuous region inside the
input domain. Chan et al. revealed that failure causing values form point, block
and strip failure domains [1].

Random testing is quick in execution and experimentally proven to detect
errors in programs of various platforms including Windows [12], Unix [13], Java
Libraries [14], Heskell [15] and Mac OS [16]. Its potential to become fully auto-
mated makes it one of the best choice for developing automated testing tools [17],
[14]. AutoTest [18], Jcrasher [17], Eclat [14], Jartege [19], Randoop [20] and
YETI [8], [3], [4] are a few of the most common automated random testing tools
used by the research community.

In our previous research publications, we have described the fully automated
techniques ADFD [3] and ADFD+ [4] for the discovery of failure domains and

Evaluation of ADFD and ADFD+ techniques 9

have experimentally evaluated the performance with one and two-dimensional
error-seeded numerical programs. The current study is a continuation of the pre-
vious work. It is aimed at the enhancement of the two techniques for evaluation
of the precision of identifying failure domains by integrating Daikon with ADFD
and ADFD+.

Our current approach of evaluation is inspired from several studies in which
random testing has been compared with other testing techniques to find the fail-
ure finding ability [22], [23], [24]. The automated techniques have been compared
with manual techniques in the previous research studies [25], [26]. This study is
of special significance because we compared the effectiveness of the techniques
by identifying failure domains rather than individual failures considered in the
previous studies.

8 Conclusion

Based on the results, it is concluded that the two automated techniques (ADFD
and ADFD+) are more effective in identifying and presenting complex (point
and block) failure domains with minimal labour. The manual technique is more
effective in identifying simple (long strip) failure domain but is tedious and
labour intensive. The precision to identify failure domains can be increased by
increasing the range value. The results indicate that the automated techniques
can be highly effective in providing assistance to manual testing but are not an
alternative to manual testing.

Acknowledgments The authors are thankful to the Department of Computer
Science, University of York for academic and financial support. Thanks are also
extended to Prof. Richard Paige and Prof. John Clark for their valuable guidance,
help and cooperation.

References

1. Chan, F., Chen, T.Y., Mak, I., Yu, Y.T.: Proportional sampling strategy: guidelines
for software testing practitioners. Information and Software Technology 38(12)
(1996) 775–782

2. Chen, T.Y.: Adaptive random testing. Eighth International Conference on Qualify
Software 0 (2008) 443

3. Ahmad, M.A., Oriol, M.: Automated discovery of failure domain. Lecture Notes
on Software Engineering 02(4) (2014) 331–336

4. Ahmad, M.A., Oriol, M.: Automated discovery of failure domain. Lecture Notes
on Software Engineering 03(1) (2013) 289–294

5. Oriol, M.: York extensible testing infrastructure (2011)
6. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C., Tschantz, M.S.,

Xiao, C.: The daikon system for dynamic detection of likely invariants. Science of
Computer Programming 69(1) (2007) 35–45

7. Gilbert, D.: The jfreechart class library version 1.0. 9. (2008)

10 Evaluation of ADFD and ADFD+ techniques

8. Oriol, M.: Random testing: Evaluation of a law describing the number of faults
found. In: Software Testing, Verification and Validation (ICST), 2012 IEEE Fifth
International Conference on, IEEE (2012) 201–210

9. White, L.J., Cohen, E.I.: A domain strategy for computer program testing. Soft-
ware Engineering, IEEE Transactions on (3) (1980) 247–257

10. Finelli, G.B.: Nasa software failure characterization experiments. Reliability En-
gineering & System Safety 32(1) (1991) 155–169

11. Bishop, P.G.: The variation of software survival time for different operational input
profiles (or why you can wait a long time for a big bug to fail). In: Fault-Tolerant
Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third International
Symposium on, IEEE (1993) 98–107

12. Forrester, J.E., Miller, B.P.: An empirical study of the robustness of Windows NT
applications using random testing. In: Proceedings of the 4th USENIX Windows
System Symposium. (2000) 59–68

13. Miller, B.P., Fredriksen, L., So, B.: An empirical study of the reliability of UNIX
utilities. Communications of the ACM 33(12) (1990) 32–44

14. Pacheco, C., Ernst, M.D.: Eclat: Automatic generation and classification of test
inputs. Springer (2005)

15. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. Acm sigplan notices 46(4) (2011) 53–64

16. Miller, B.P., Cooksey, G., Moore, F.: An empirical study of the robustness of
macos applications using random testing. In: Proceedings of the 1st international
workshop on Random testing, ACM (2006) 46–54

17. Csallner, C., Smaragdakis, Y.: JCrasher: an automatic robustness tester for Java.
Software: Practice and Experience 34(11) (2004) 1025–1050

18. Ciupa, I., Pretschner, A., Leitner, A., Oriol, M., Meyer, B.: On the predictability
of random tests for object-oriented software. In: Software Testing, Verification,
and Validation, 2008 1st International Conference on, IEEE (2008) 72–81

19. Oriat, C.: Jartege: a tool for random generation of unit tests for java classes. In:
Quality of Software Architectures and Software Quality. Springer (2005) 242–256

20. Pacheco, C., Ernst, M.D.: Randoop: feedback-directed random testing for java. In:
Companion to the 22nd ACM SIGPLAN conference on Object-oriented program-
ming systems and applications companion, ACM (2007) 815–816

21. Oriol, M., Tassis, S.: Testing .NET code with YETI. In: Engineering of Complex
Computer Systems (ICECCS), 2010 15th IEEE International Conference on, IEEE
(2010) 264–265

22. Hamlet, D., Taylor, R.: Partition testing does not inspire confidence (program
testing). IEEE Transactions on Software Engineering 16(12) (1990) 1402–1411

23. Weyuker, E.J., Jeng, B.: Analyzing partition testing strategies. Software Engi-
neering, IEEE Transactions on 17(7) (1991) 703–711

24. Gutjahr, W.J.: Partition testing vs. random testing: The influence of uncertainty.
Software Engineering, IEEE Transactions on 25(5) (1999) 661–674

25. Leitner, A., Ciupa, I.: Reconciling manual and automated testing: the autotest
experience. In: Proceedings of the 40th Hawaii International Conference on System
Sciences - 2007, Software Technology, Technology (2007) 3–6

26. Ciupa, I., Meyer, B., Oriol, M., Pretschner, A.: Finding faults: Manual testing
vs. random+ testing vs. user reports. In: Software Reliability Engineering, 2008.
ISSRE 2008. 19th International Symposium on, IEEE (2008) 157–166

* Tables 3 - 7 are available at https://code.google.com/p/yeti-test/

