
Motrusca: interactive model transformation use
case repository∗

Joost van Pinxten1 and Twan Basten1,2

1 Eindhoven University of Technology, Eindhoven, the Netherlands
2 TNO-ESI, Eindhoven, Netherlands

{j.h.h.v.pinxten,a.a.basten}@tue.nl

Abstract. Modeling and model transformations tools are maturing and
are being used in larger and more complex projects. The advantage of
a modeling environment and its transformation tools cannot be eas-
ily exploited by non-expert users as many subtle intricacies determine
the efficiency of transformation languages and their tools. We introduce
transformation use case examples that highlight such language/tooling
properties. These simple, non-trivial examples have been extracted from
an experiment with transformations of Design Space Exploration mod-
els. These examples show some typical modeling patterns and we give
some insight how to address the examples. We make a case for initiat-
ing an interactive, on-line repository for model transformation use cases.
This repository is aimed to be example-centric and should facilitate the
interaction between end-users and tooling developers, while providing
a means for comparing the applicability, expressivity, and efficiency of
transformation tools.

Keywords: model transformations, comparison, design space exploration

1 Introduction

Model transformations play a crucial role in Model-Driven Development (MDD)
since the OMG Meta-Object Facility [14] has been introduced in 2005. Amongst
others, the Eclipse Modeling Framework has eased the creation of fully-featured
editors (with Xtext and Sirius) for Domain-Specific Languages (DSLs). This
has greatly increased the popularity of MDD in the past years. With increasing
maturity of MDD environments [15] one would also expect a similar uptake in
usage of model transformation tools. Several model transformation languages
and tools have been introduced since 2006, such as QVTo [6], Epsilon [13], and
ATL [9] for Eclipse, but also MetaEdit+ MERL [10] and GME’s GReAT [2].
However, we find that there has been limited success in this area.

From our experiences, it is difficult to make an informed decision on what the
best approach is for certain model transformation scenarios. Typically, the devel-
oper’s experiences with other programming languages and personal preference

∗This work was carried out as part of the Octo+ project with Océ Technologies
B.V. under the responsibility of TNO-ESI, Embedded Systems Innovation by TNO.

dictate the choice for a particular tool/language. The high level of abstraction
makes it difficult to assess the differences between tools and languages, as only
basic documentation and examples are available. This information typically fo-
cuses only on the strong aspects of a single tool or language3 4.

We therefore recognize the lack of and need for an up-to-date unified public
repository for model transformation challenges. To make an informed decision,
we need clear, non-trivial use cases with motivating scenarios and corresponding
example implementations expressed in several model transformation languages.

Throughout this paper, we use the Design Space Exploration (DSE) scenario
as context. DSE is a critical aspect in the design of Embedded Systems as early
design decisions can be supported by efficient simulation and analysis of high-
level models. This can shorten the time-to-market and reduce late detection of
potential performance problems.

We first introduce the motivation, goals, and core ideas behind the Motrusca
interactive repository for model transformation use cases (Sec. 2). We then in-
troduce an example motivating scenario (Sec. 3) from which we highlight some
example use cases and motivate why they are hard to express succinctly and ef-
ficiently in current model transformation tools (Sec. 4). We discuss related work
in Sec. 5 and conclude in Sec. 6.

2 Interactive use case repository

With the plethora of model transformation languages and tools available, it has
become hard to even enumerate all (Eclipse-based) transformation languages. It
is even harder to determine which one can or should be used. It is often unclear
what functionality a transformation tool has (or lacks), what the adoption rate
is and what the current status of such tools is. Each transformation language
comes with its own set of examples and therefore cannot be directly compared
to another. Comparing transformation languages and choosing the right one is
currently a non-trivial activity.

2.1 Motivation and goals

With the Motrusca interactive model transformation use case repository, we
intend to change the way examples are created. Instead of reasoning from the
capabilities of a language, we want to reason from the perspective of a use
case. Each use case can then be implemented in different model transformation
languages, or even different variations in a single model transformation language.

These use cases are the starting point for a repository of good practices
in model transformations and discussions between model/transformation devel-
opers and tool developers. Although this information can also be captured on
forums, StackOverflow5, tutorials and blogs, we feel that a dedicated place to

3www.eclipse.org/atl/atlTransformations/
4www.eclipse.org/epsilon/examples/
5www.stackoverflow.com

www.eclipse.org/atl/atlTransformations/
www.eclipse.org/epsilon/examples/
www.stackoverflow.com

model transformations is essential to ensure maximum usefulness and visibil-
ity of the information. The Transformation Tool Contest (TTC) [7] is a yearly
academic event dedicated to a similar goal. However, Motrusca aims to com-
plement their activities by creating continuous, interactive feedback from model
transformation user groups.

In short, the Motrusca repository aims to achieve the following goals:

– identify use cases and best practices for model transformations
– trigger interaction between transformation developers and tool developers
– present alternative solutions to model transformation challenges
– provide a means to compare model transformation tooling/languages (e.g.

on their efficiency and applicability)

The use cases described in this paper have been added to the repository, along
with some initial implementation examples that show some of the differences
between Epsilon Transformation Language (ETL), QVTo and ATL.

2.2 Identifying use cases and best practices

New use cases will first be reviewed before implementations can be submitted.
Users should be motivated to supply enough information for a minimal example
that can be used for discussion. A proper use case example must have at least:

– a user story motivating the context (a scenario)
– a minimal example (meta)model
– a description of what the use case addresses and why the use case is inter-

esting to discuss

Motrusca will aim at making the processes of providing feedback and informa-
tion as easy and valuable as possible. Transformation developers can then more
easily share their experiences and expertise. It gives tool developers insight in the
way users think the tool should be used and also leads to exposing novice users
to the best practices. Inspired by test-driven development best practices, falla-
cies of one model transformation tool should be documented and consequently
avoided by other tools. We are essentially building a set of generic integration
tests that can be leveraged by transformation language/tool developers.

2.3 Interaction between tool users and developers

By providing a view from the perspective of a use case instead of from a tool/lan-
guage, novice users can become more comfortable with the best practices faster
and might be able to choose the proper tooling without the need for much exper-
imentation. One can compare this model to the popular StackOverflow model,
where users can ask questions and the community can provide answers and ask
questions to clarify the questions. Motrusca will initially aim at Eclipse-based
model transformation languages, but the ideas should translate to other mod-
eling platforms as well. Users will be able to vote for the answer/solution that
they deem most appropriate to the use case at hand, similar to questions on
StackOverflow.

2.4 Providing alternative solutions

The complexity of the model transformation does not have to originate from
the transformation language; for example, the source or target meta-model may
be inconvenient or inefficient for transformation purposes. Motrusca users are
therefore encouraged to provide out-of-the-box thinking and contribute insight
into different realizations (of the meta-model) and show the effect on the model
transformation use case.

2.5 Comparison overview

It is important that the solutions to the use cases can be compared to one an-
other. A comparison on several aspects based on our motivating case is shown in
Fig. 1. It shows several aspects similar to the quality framework of Kolahdouz-
Rahimi et. al. [12] to rate the transformation solutions that we have implemented
in Java, IncQuery + Xtend and Epsilon. Motrusca users will be motivated to
provide feedback in terms of these kind of quality attributes. By aggregating
such information, Motrusca can automatically indicate the popularity and effec-
tiveness of transformation tools.

Functional suitability

Sca
lab

ilit
y (

Mod
el)

S
ca

la
bi

lit
y

(D
S

E
)

Int
ero

pe
rab

ilit
y

Usability

Modularity

A
nalysability

Testability

Java

IncQuery

Epsilon

Worst

Mediocre

Best

Fig. 1: Overall comparison of model transformation approaches in DSE

Certain use cases are primarily related to the performance efficiency of the
model transformations, which can be properly quantified. The performance can
be measured, by making standardized experiments available through a cloud-
based service such as Travis6 or possibly through SHARE [18]. In addition to
performance efficiency, the scalability of the runtime is sometimes of interest to
be investigated and model instances that reflect scalability issues can be provided
with the use cases.

6www.travis-ci.org

www.travis-ci.org

3 Motivating scenario

The Octopus tool set [4] is developed to support the DSE process that serves
as the motivating case study in this paper. To facilitate automatic DSE in the
tool set, a Design Space Exploration Intermediate Representation (DSEIR [3])
has been introduced. This formal representation functions as an intermediate
between DSLs and a variety of analysis tools (e.g. CPN Tools [8], UPPAAL [5],
SDF3 [16]). The use of an intermediate format facilitates re-use of models and
tools, and improves model consistency and code maintainability. The Octopus
tool set provides generic tools for coping with design decisions in all kinds of
embedded systems. The following subsections describe the motivating industrial
use case, the philosophy of DSE with Octopus, and the high-level overview of
model transformations in Octopus.

3.1 Copier data paths

The primary motivating use case for the Octopus tool set is the DSE for cost-
effective software/hardware configurations for the image processing data path
in high-performance, high-volume copier applications (Océ Technologies B.V.7).
The DSE supports early design decisions where, for example, the type of algo-
rithms and number of processors are explored.

In this domain, the software as well as the execution platform are modeled.
The software is modeled with tasks (e.g. scanning, image processing steps, print-
ing) that communicate data and require computation and storage services.

3.2 Design Space Exploration with Octopus

Application Platform

Mapping

Analysis

Diagnostics

Fig. 2: Separation of concerns in Octopus (from [4]) (left) and Y-chart; separation
of platform, application, mapping and diagnostics [11] (from [3]) (right)

7www.oce.com

www.oce.com

The Octopus tool set is designed as a modular system (Fig. 2, left) for DSE
of software-intensive embedded systems. It provides analysis and simulation ser-
vices for DSLs that translate to DSEIR. Model transformations play a crucial
role in both the analysis plugins and domain specific modeling front ends. The
Octopus tool set already supports several analysis/simulation engines, by trans-
formations from DSL to DSEIR and DSEIR to analysis/simulation models.

The model transformations to the analysis plugins are complex mappings of
the DSEIR concepts onto different sets of concepts. The transformation from
domain specific modeling front end imposes a different requirement; it should
support the modeling engineer by providing high-quality feedback on analysis
results in terms of the original model components.

3.3 Transformation flow in Design Space Exploration

Octopus contains several modeling front ends that allow the definition of pa-
rameterized DSEIR models. These models can be described in terms of a pa-
rameterized mapping, application, and platform as indicated in Fig. 2 (right).
An application contains tasks, which require a specific service in order to be
executed. The platform consists of resources that can provide a service at some
rate. The mapping specifies that the required services are allocated on a re-
source that provides them. The Octopus tool set uses an experiment definition
DSL (DseirText) to indicate the design space by stating the (range of) values for
the parameters, the model, and type of analysis or simulation to be executed.

DseirText
(Parameterized model)

Concrete
DSEIR model

Analysis type

UPPAAL
model and

queries
Output files

Apply parameter value,
transform to DSEIR

Step 1

Serialization

Step 3

Transformation
to analysis model

Step 2
Parameter
value range
Parameter
value range
Parameter
value range
Parameter
value range

Legend

Experiment data

Transformation

DSEIR

UPPAAL

Fig. 3: Octopus example transformation orchestration

The transformation orchestration for DSE with the Octopus tool set is de-
picted in Fig. 3. It denotes three distinct transformation steps. Step 1 is specific
to the modeling front-end, and steps 2 and 3 are specific to an analysis type. For
the UPPAAL case, the experiment indicates that the UPPAAL engine should
be used to analyze the latency bounds. The transformation engine needs to:

1. create concrete DSEIR models from domain-specific models; e.g. by substi-
tuting parameters by values and mapping DSL concepts to DSEIR concepts,

2. transform concrete DSEIR models to UPPAAL models,
3. serialize the UPPAAL model into UPPAAL model/query text.

The transformation from the input format to a DSEIR model consists pri-
marily of copying the structure and binding values to expressions based on the
parameter values that are provided in the experiment. The concrete DSEIR
model is then transformed into an abstract UPPAAL model and query defini-
tion. Finally, the resulting model and queries are serialized into files that serve
as the input for the UPPAAL engine.

4 Model transformation use cases

In this section, we highlight a few use cases that we have extracted from the DSE
scenario, in particular from the scenario described in Fig. 3. We discuss briefly
what difficulties arose when implementing these examples and how different
model transformation languages could handle them. We focus on the following
Eclipse-based model transformation tools: QVTo, Epsilon, and ATL. For more
details on the use cases, as well as models and transformation implementations,
see the Motrusca website www.motrusca.net.

4.1 Combining partial specifications into complete specifications

The separation of concerns in DSE inherently leads to multiple partial specifica-
tions that can be combined in several ways; Application, Platform, and Mapping
(see Fig. 4) are reusable specification parts. Each combination of partial speci-
fications leads to (at least) one concrete output model, which is compiled from
the referenced partial specifications. This leads to the following requirements:

1. an arbitrary (unknown) number of target models may need to be produced
2. a set of source elements (e.g. the partial specifications) are transformed into

a (set of) target element(s)
3. trace output model elements back to input elements

The first requirement cannot be specified properly in languages like QVTo, ETL,
and ATL; the models to be generated need to be enumerated explicitly. We there-
fore need a parameterizable workflow that repeatedly calls the transformation
to generate a specific output model from the input. Such a workflow can only be
effective when a single transformation can be executed with a small processing
overhead.

The second requirement, considering that multiple output models can be
generated from a multiple sources, is inherently difficult to achieve in single-
source rules as used in ETL. Before the introduction of EPL (Epsilon Pattern
Language), it was impossible to define rules such that a target element could be
traced back to the respective source elements. Transformation traces track source
to target elements and are used to compute which element must be referenced.
The third requirement is therefore an extension to the second requirement. QVTo
allows mapping of additional source elements by passing these as parameters to
the mapping function. ATL allows definition of multiple source elements in its
transformation rules.

www.motrusca.net

Experiment

SpecificationPart

name : EString

Specification

Application

Mapping

Platform

Task

Resource

Allocator AllocatorEntry

Service

name : EString

Load

amount : EInt = 0

Provide

rate : EInt = 0

Parameter

name : EString

ParameterRange

name : EString

[0..*] parts

[0..*] tasks [0..*] loads

[0..*] allocators [0..*] entries

[0..*] resources [0..*] provides
[1..1] platform

[1..1] application
[1..1] mapping

[0..*] services

[1..1] task

[1..1] service

[1..1] service

[1..1] service

[1..1] serviceAllocatedOn

[1..1] experiment

[0..*] parameters

[0..*] parameterRanges

Fig. 4: Simplified excerpt from DseirText metamodel

4.2 Similar structures

Recall from Section 3.3 that the Octopus toolset defines experiments in a DSL
DseirText, which are then exported to the intermediate format DSEIR. The
DseirText and DSEIR metamodels in Eclipse are very similar; DseirText contains
experiment definitions and parameters, whereas DSEIR does not. The transla-
tion between these model instances therefore consists of duplication of most of
the structure, with concrete values for the parameterized DseirText expressions.
In pure transformation approaches, this will lead to a lot of boilerplate code,
as each concrete class in DseirText needs to be transformed into its direct con-
crete DSEIR counterpart. A higher-order transformation could describe these
copy-actions more succinctly.

This problem has been partly addressed in ATL with a refining mode [17] [12]
for such transformations. the resulting refined model may overwrite the source
model, or can be saved in a new location. Epsilon Flock [13] is designed to
migrate between different versions of a metamodel, but can also be applied to
similar metamodels, to achieve a similar effect as the ATL refining mode.

4.3 Expanding parameters to concrete values

In DseirText, an Experiment contains a range of values for the parameters re-
quired in the SpecificationParts (see Fig. 4). As each SpecificationPart may be
defined before any Experiment refers to it, the range of a parameter (Parame-
terRange) and the actual usage of a Parameter are decoupled. In Java, a simple
mapping of parameter name to parameter value can be propagated and queried
by expression tree visitors; this makes looking up parameter values inexpensive.

We have been unable to come up with a clean, concise and efficient way
to express such transformations. With the Epsilon languages, we can leverage
EPL in the ETL context to achieve a similar effect. However, this unnecessar-
ily convolutes the definition of the transformation, as the underlying execution

mechanisms need to be instructed to cooperate, which is not a trivial task. In
QVTo, it is possible to look up the defining ParameterRange for a certain en-
countered Parameter with the ->any(self.name = parameter.name) operator.
This has, however, linear time worst case behavior, in comparison to constant
lookup time in the Java implementation.

4.4 Semantic gaps in expression trees

The basic concepts in the UPPAAL language are very different from the ba-
sic concepts in the DSEIR language and the expression trees transformation is
therefore a complex mapping. Consider for example communication between two
tasks; in the DSEIR concepts, task A can write directly into the input buffer of
task B. However, in UPPAAL, there is no such communication possible and the
communication is forced to use a global buffer.

This kind of semantic gap typically leads to many convoluted rules to capture
the mapping logic. Expressions related to the buffers have to be considered in
a different way than normal expressions; in procedural programming, a param-
eterized expression visitor can be used. It is, however, non-trivial to come up
with a maintainable and efficient solution in model transformation languages.

5 Related work

A framework based on the 2001 ISO/IEC software product quality model has
been defined for and applied to model transformation to quantify several aspects
of model transformation approaches (language and tool combination) [12]. Our
work complements this work.

There have been a few attempts at public metamodel [1] and model trans-
formation8 [7] repositories for gathering insight into usage and performance of
transformation languages and tools. The yearly TTC records and compares ex-
pert results for a particular model transformation use case [7], providing insight
into the status of state-of-the-art model transformation. The results are reported
primarily in terms of functionality and appeal. In contrast to these repositories,
Motrusca will enable much tighter interaction between transformation and tool
developers. Motrusca also enables direct, interactive comparison of transforma-
tion languages.

6 Conclusions

In this paper, we have introduced a scenario and corresponding use cases that
are hard to implement efficiently with the current state-of-the-art model trans-
formation tools. We have highlighted several aspects that are hard for novices
to distinguish without having to dive deep into a language. Taking industrial
model transformation challenges as a starting point can boost the adoption and

8www.eclipse.org/atl/atlTransformations/

www.eclipse.org/atl/atlTransformations/

advancement of model transformation tools and languages. We introduce the
goals of Motrusca as an interactive on-line repository and motivate its existence.
The presented use cases are a good starting point for the Motrusca repository
at www.motrusca.net.

References

1. The atlanmod zoo. http://www.emn.fr/z-info/atlanmod/index.php/Zoos.
2. Daniel Balasubramanian, Anantha Narayanan, Christopher van Buskirk, and Ga-

bor Karsai. The graph rewriting and transformation language: Great. Electronic
Communications of the EASST, 1, 2007.

3. T. et al. Basten. Model-driven design-space exploration for embedded systems:
The octopus toolset. In Proc. of ISoLA’10, pages 90–105. 2010.

4. T. et al. Basten. Model-driven design-space exploration for software-intensive em-
bedded systems - (extended abstract). In Proc. of FORMATS’12, pages 1–6, 2012.

5. G. Behrmann, A. David, K.G. Larsen, P. Pettersson, W. Yi, and M. Hendriks.
Uppaal 4.0. In QEST’06, pages 125–126. IEEE Computer Society, 2006.

6. Object Management Group. Meta object facility (mof) 2.0 query/view/transfor-
mation, v1.1. 2011.

7. E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Á Hegedüs, M. Hermannsdörfer,
T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L.M. Rose,
S. Wätzoldt, and S. Mazanek. A survey and comparison of transformation tools
based on the transformation tool contest. SCP, 85, Part A(0):41 – 99, 2014.

8. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for
modelling and validation of concurrent systems. STTT, 9(3-4):213–254, 2007.

9. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez. Atl: a qvt-like
transformation language. In Proc. of OOPSLA’06, pages 719–720. ACM, 2006.

10. Steven Kelly and Juha-Pekka Tolvanen. Domain-specific modeling: enabling full
code generation. John Wiley & Sons, 2008.

11. B. Kienhuis, E. Deprettere, K. Vissers, and P. van der Wolf. An approach for
quantitative analysis of application-specific dataflow architectures. In Proc. ASAP,
pages 338–349. IEEE, 1997.

12. S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, and P. van Gorp. Evaluation
of model transformation approaches for model refactoring. SCP, 85:5–40, 2014.

13. D. Kolovos, L. Rose, A. Garćıa-Domı́nguez, and R. Paige. The Epsilon Book.
February 2014.

14. OMG. ISO/IEC 25010 - Information technology – Meta Object Facility (MOF).
Technical report, 2005.

15. R.F. Paige and D. Varró. Lessons learned from building model-driven development
tools. Software & Systems Modeling, 11(4):527–539, 2012.

16. S. Stuijk, M. Geilen, and T. Basten. Sdf3: Sdf for free. In Proc. of ACSD ’06,
pages 276–278, 2006.

17. M. Tisi, S. Mart́ınez, F. Jouault, and J. Cabot. Refining models with rule-based
model transformations. Technical report, 2011.

18. P. van Gorp and S. Mazanek. Share: a web portal for creating and sharing exe-
cutable research papers. Procedia Computer Science, pages 589 – 597, 2011. ICCS.

www.motrusca.net
http://www.emn.fr/z-info/atlanmod/index.php/Zoos

	Motrusca: interactive model transformation use case repository

